Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.112
Filtrar
1.
Environ Monit Assess ; 193(5): 249, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33829338

RESUMEN

This study presents the development of an analytical method for the simultaneous determination of multiclass illicit drugs (cocainoids, opiates, amphetamines, and cannabinoids) and psychoactive pharmaceuticals (anxiolytics, hypnotics, antipsychotics, antidepressants, and antiparkinsonian), in municipal wastewater. The analytical method was validated in terms of specificity, linearity, precision, and accuracy. The recoveries (%) for the majority of the analytes ranged between 70 and 120%, while the method showed good repeatability (2.4-29.2%). The limits of detection (LOD) of the method ranged between 0.8 and 9.4 ng L-1. The method was implemented on influent and effluent samples from Thessaloniki (N. Greece) wastewater treatment plant (WWTP), and it revealed the daily presence of benzoylecgonine (BEG) (84.0-202.2 ng L-1), methadone (12.3-17.5 ng L-1), 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) (80.3-171.9 ng L-1), morphine (144.2-264.3 ng L-1), and 6-monoacetylmorphine (6-MAM) (5.8-12.0 ng L-1) in the influent samples of WWTP. Clozapine (101.6-315.5 ng L-1), quetiapine (33.5-109.7 ng L-1), and fluoxetine (20.9-124.4 ng L-1) were pharmaceutical psychotics with the highest concentration in the influents. Back calculation estimated that the daily consumption of cocaine, heroin, cannabis, and methadone was 36-95, 86-164, 2300-5400, and 8-12 mg day-1 per 1000 inhabitants, respectively. The consumption was estimated between 7-16 and 15 mg day-1 per 1000 inhabitants for methyl diethanolamine (MDEA) and 3,4-methylenedioxymethamphetamine (MDMA), respectively.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , Cromatografía Liquida , Monitoreo del Ambiente , Grecia , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
2.
Ecotoxicol Environ Saf ; 214: 112092, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33690008

RESUMEN

Over the last two decades, effect-directed analysis (EDA) gained importance as a seminal screening tool for tracking biological effects of environmental organic micro-pollutants (MPs). As EDA using high-performance liquid chromatography and bioassays is costly and time consuming, recent implementations of this approach have combined high-performance thin-layer chromatography (HPTLC) with effect-based methods (EBMs) using cell-based bioassays, enabling the detection of estrogenic, androgenic, genotoxic, photosystem II (PSII)- inhibiting, and dioxin-like sample components on a HPTLC plate. In the present study, the developed methodologies were applied as a HPTLC-based bioassay battery, to investigate toxicant elimination efficiency of wastewater treatment plants (WWTPs), and to characterize the toxic potential of landfill leachates. Activity levels detected in untreated landfill leachates, expressed as reference compound equivalence (EQ) concentration, were up to 16.8 µg ß-naphthoflavone-EQ L-1 (indicating the degree of dioxin-like activity), 1.9 µg estradiol-EQ L-1 (estrogenicity) and 8.3 µg diuron-EQ L­1 (PSII-inhibition), dropping to maximal concentrations of 47 ng ß-naphthoflavone-EQ L-1, 0.7 µg estradiol-EQ L-1 and 53.1 ng diuron-EQ L-1 following treatment. Bisphenol A (BPA) is suggested to be the main contributor to estrogenic activity, with concentrations determined by the planar yeast estrogen screen corresponding well to results from chemical analysis. In the investigated WWTP samples, a decrease of estrogenic activity of 6-100% was observed following treatment for most of the active fractions, except of a 20% increase in one fraction (Rf = 0.568). In contrast, androgenicity with concentrations up to 640 ng dihydrotestosterone-EQ L-1 was completely removed by treatment. Interestingly, genotoxic activity increased over the WWTP processes, releasing genotoxic fractions into receiving waters. We propose this combined HPTLC and EBM battery to contribute to an efficient, cheap, fast and robust screening of environmental samples; such an assay panel would allow to gain an estimate of potential biological effects for prioritization prior to substance identification, and its routine application will support an inexpensive identification of the toxicity drivers as a first tier in an EDA strategy.


Asunto(s)
Bioensayo/métodos , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua , Compuestos de Bencidrilo , Cromatografía en Capa Delgada/métodos , Monitoreo del Ambiente/métodos , Estrógenos/toxicidad , Fenoles , Dibenzodioxinas Policloradas/análisis , Aguas Residuales/análisis , beta-naftoflavona
3.
Huan Jing Ke Xue ; 42(2): 850-859, 2021 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-33742879

RESUMEN

Four antibiotics[azithromycin (AZM), sulfamethoxazole (SMZ), ciprofloxacin (CIP), and tetracycline (TCY)], and the antibiotic resistance genes (ARGs)[sulfonamides (sul1 and sul2), tetracyclines (tetX and tetM), quinolones (qnrS and qnrD), macrolides (ermB), and 16S rDNA] were selected as target compounds. Artificial ecosystems were constructed with combinations of two emergent plants and Microcystis aeruginosa (Acorus calamus+Cordyceps, algae+Cordyceps, algae+Acorus calamus, and algae+Acorus calamus+Cordyceps) in an indoor-simulated river system. Throughout the artificial ecosystems, changes in antibiotic concentrations and other pollution indicators (i.e., COD, NH4+-N, TP, and TN) were monitored in different media (the aqueous phase, sediment phase, and in plants), and the distribution and removal of ARGs in aqueous and sediment phases were explored. Removal of the target compounds was calculated based on mass balance, and the correlation between ARG abundance and environmental factors in the aqueous and sediment phases was analyzed. The results showed that the constructed artificial ecosystem achieved removal rates of COD, NH4+-N, TP, and TN ranging from 60.2% to 74.8%, 63.4% to 77.4%, 64.0% to 73.2%, and 46.8% to 54.8%, respectively. The antibiotics in the aqueous phase were notably removed and the artificial ecosystem 'algae+Acorus calamus+Cordyceps' achieved the best removal efficiency for the four antibiotics. Removal rates of the antibiotics in the sediment phase were ranked in the order TCY>CIP>AZM>SMZ; the removal efficiency of TCY in the 'algae+Acorus calamus+Cordyceps' system reached up to 53.5%. The total removal rates of antibiotics obtained by the ecosystems were ranked in the following order:algae+Acorus calamus+Cordyceps > algae+Cordyceps > algae+Acorus calamus > Acorus calamus+Cordyceps. Removal of the four ARGs was very efficient and was higher in the aqueous phase than in the sediment phase. Correlations between the ARGs, the other pollution indicators, and the antibiotics were variable; tetX and environmental factors were correlated in the aqueous phase, while AZM and its corresponding ARGs were not significantly correlated in the sediment phase. The results showed that ARGs can be targeted under corresponding antibiotic pressure and other types of environmental pressure. In the study system, the concentrations of antibiotics did not directly affect the transmission of ARGs. Overall, this study shows that artificial ecosystems constructed with emergent plants and Microcystis aeruginosa can be effective at purifying water and reducing the environmental risks of antibiotics in urban rivers.


Asunto(s)
Antibacterianos , Ríos , Farmacorresistencia Microbiana/genética , Ecosistema , Genes Bacterianos/genética , Aguas Residuales/análisis
4.
Huan Jing Ke Xue ; 42(3): 1433-1442, 2021 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-33742940

RESUMEN

The loss of nitrogen (N) and phosphorus (P) from aquaculture has caused eutrophication of freshwater systems. Here, surface flow constructed wetland (SFCW) planted with Myriophyllum elatinoides were used to treat swine wastewater from a medium-sized hoggery in subtropical Central China. Inflow concentrations of NH4+-N, TN, TP, and COD ranged from 535.4 to 591.09, 682.09 to 766.96, 57.73 to 82.29, and 918.4 to 1940.43 mg·L-1, respectively. The mean removal efficiencies of NH4+-N, TN, TP, and COD were 97.4%, 97.1%, 91.0%, and 90.2%, respectively, and CW1 had the largest contributions of 37.3%, 38.4%, 43.3%, and 27.4%, respectively. Plant N and P uptake ranged 23.87-79.96 g·m-2 and 5.34-18.98 g·m-2, accounting for 19.1% and 20.2% of removal, respectively. Sediment N and P accumulation ranged 19.17-56.62 g·m-2 and 10.59-26.62 g·m-2, accounting for 19.8% and 61.7% of removal, respectively. Multiple linear regression showed that environmental factors explained 79.9% of the N removal and 70.1% of the P removal; DO was the main factor affecting N removal, and sediment adsorption was the key process in P removal. These results show that M. elatinoides constructed wetland can efficiently treat swine wastewater, thereby reduce the discharge of pollutants downstream.


Asunto(s)
Aguas Residuales , Humedales , Animales , China , Nitrógeno/análisis , Fósforo , Porcinos , Eliminación de Residuos Líquidos
5.
Huan Jing Ke Xue ; 42(3): 1488-1495, 2021 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-33742946

RESUMEN

Wastewater treatment plants (WWTPs) have different treatment effects during different seasons due to changes in water quality and temperature. To understand bacterial community structure and diversity dynamics in the WWTPs, this study employed high-throughput sequencing technology during winter and summer. A total of 60 activated sludge samples were collected in five WWTPs in Beijing with different treatment processes in summer (temperature=28℃±2℃, water temperature=24.9℃±1.1℃) and winter (temperature=0℃±3℃, water temperature=16.8℃±1.3℃). The relative abundances of dominant bacterial genera in activated sludge varied significantly between the WWTPs but microbial community structure was typically similar between different treatment units (i.e., the anaerobic tank, anoxic tank, and aerobic tank) at each WWTP. At the same time, different bacteria dominated in winter and summer, when the relative abundance of SJA-15, Ferruginibacter, and Blasocatellaceae was 6.07%, 4.50%, and 4.44% respectively, when the relative abundance of Nitrospira, Methylotenera, and RBG-13-54-9 in winter was 10.17%, 3.96%, and 3.28%, respectively. Correlation analysis showed that temperature, total nitrogen (TN), NH4+-N, total phosphorus (TP), and chemical oxygen demand (COD) were the main environmental factors affecting microbial community structure, of which temperature had the greatest effect on species composition followed by TN. Furthermore, a predictive analysis of functional enzymes indicated that the abundance of key enzymes involved in the nitrogen cycle in the activated sludge of WWTPs is higher in winter than that in summer. These results show that temperature, water quality, and treatment process affect bacterial community structure (i.e., dominance and abundance) in WWTP activated sludge.


Asunto(s)
Microbiota , Purificación del Agua , Beijing , Estaciones del Año , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
6.
Sci Total Environ ; 764: 142917, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33757240

RESUMEN

A full-scale sewage treatment plant in Xi'an city is discovered as the first mainstream anaerobic ammonia oxidation (anammox) treatment process in China. Whether its biological mechanism is the nitritation-anammox or partial denitrification (PD)-anammox brought violent controversy between two groups. As a third party, here we uncovered the mystery of the moving-bed biofilm reactor (MBBR) as a PD-anammox process by analyzing the diversity and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) of microbes in anoxic pond. Anammox bacteria was found in the MBBR anoxic tank, which abundance is 8.9 times of that in the common anaerobic-anoxic-oxic process, confirming the existence of anammox process. The denitrifying bacteria (DNB) content in the anoxic tank is 5.9 times of the content of ammonia oxidizing bacteria (AOB), thus the DNB-anammox system is proved at the microbial composition level. The PICRUSt analysis found that ammonium nitrogen is mainly derived from the deamination of urea. The functional genes NAR and AMO of DNB and AOB are 910.84 and 5.80 rpms, respectively. The NAR gene content is 157.0 times of the AMO gene content and it is proved at the genetic level that the nitrite in the anoxic pool is mainly derived from denitrification. This study demonstrated the feasibility and advantages of the PD-anammox in the anammox process, which is different from the traditional nitritation-anammox demonstrated in Strass Wastewater Treatment Plant, Austria and Changi Water Reclamation Plant, Singapore and provided an alternative option for the mainstream application of anammox.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Anaerobiosis , Austria , Biopelículas , Reactores Biológicos , China , Nitrógeno , Oxidación-Reducción , Filogenia , Aguas del Alcantarillado , Singapur , Aguas Residuales/análisis
7.
Sci Total Environ ; 764: 142907, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33757248

RESUMEN

Antibiotics are continuously released into aquatic environments and ecosystems where they accumulate, which increases risks from the transmission of antibiotic resistance genes (ARGs). However, it is difficult to completely remove antibiotics by conventional biological methods, and during such treatment, ARGs may spread via the activated sludge process. Easy-to-biodegrade food have been reported to improve the removal of toxic pollutants, and therefore, this study investigated whether such co-substrates may also decrease the abundance of ARGs and their transferal. This study investigated amoxicillin (AMO) degradation using 0-100 mg/L acetate sodium as co-substrate in a sequencing biological reactor. Proteobacteria, Bacteroidetes, and Actinobacteria were identified as dominant phyla for AMO removal and mineralization. Furthermore, acetate addition increased the abundances of adeF and mdsC as efflux resistance genes, which improved microbial resistance, the coping ability of AMO toxicity, and the repair of the damage from AMO. As a result, acetate addition contributed to almost 100% AMO removal and stabilized the chemical oxygen demand (~20 mg/L) in effluents when the influent AMO fluctuated from 20 to 100 mg/L. Moreover, the total abundance of ARGs decreased by approximately ~30%, and the proportion of the most dominant antibiotic resistance bacteria Proteobacteria decreased by ~9%. The total abundance of plasmids that encode ARGs decreased by as much as ~30%, implying that the ARG spreading risks were alleviated. In summary, easy-to-biodegrade food contributed to the simultaneous elimination of antibiotics and ARGs in an activated sludge process.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Amoxicilina , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Ecosistema , Genes Bacterianos , Aguas Residuales
8.
Chemosphere ; 270: 128640, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33757273

RESUMEN

This study assessed the convenience of using magnetic particles (MPs) to reduce phosphorus (P) concentration in treated wastewater. The working hypothesis is that MP addition increases P removal in artificial wastewater treatment ponds. Water samples were collected at the inlet and outlet of a semi-natural pond receiving secondary municipal effluent that is discharged in a Ramsar site (Fuente de Piedra, Málaga, Spain). Then, laboratory batch experiments were run to (i) assess the effect of adding MPs on the chemical composition of treated wastewater, (ii) identify the number of adsorption cycles (by reusing MPs) which are able to trap a high percentage of P (>50%) and (iii) select the optimum ratio between MP mass and initial dissolved inorganic P (DIP) concentration. The results show the suitability of using MPs to remove P in treated wastewater due to both their high equilibrium adsorption capacity (q) and P removal efficiency. Lastly, considering its practical and economical relevance, based on the advantages (P removal efficiency) and disadvantages (economic price), the optimum dose of MPs (0.16 g MP mg-1 P) to achieve a high P removal efficiency (>50%) was identified.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Fenómenos Magnéticos , Fosfatos , Fósforo/análisis , España , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Humedales
9.
Waste Manag ; 125: 293-302, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721702

RESUMEN

The recovery of valuable materials from waste fits the principle of circular economy and sustainable use of resources, but contaminants in the waste are still a major obstacle. This works proposes a novel approach to recover high-purity phosphorus (P) and nitrogen (N) from digestate of municipal solid waste based on the combination of two independent membrane processes: electrodialytic (ED) process to extract P, and gas permeable membranes (GPM) for N extraction. A laboratory ED cell was adapted to accommodate a GPM. The length of waste compartment (10 cm; 15 cm), current intensity (50 mA; 75 mA) and operation time (9 days; 12 days) were the variables tested. 81% of P in the waste was successfully extracted to the anolyte when an electric current of 75 mA was applied for 9 days, and 74% of NH4+ was extracted into an acid-trapping solution. The two purified nutrient solutions were subsequently used in the synthesis of a biofertilizer (secondary struvite) through precipitation, achieving an efficiency of 99.5%. The properties of the secondary struvite synthesized using N and P recovered from the waste were similar to secondary struvite formed using synthetic chemicals but the costs were higher due to the need to neutralize the acid-trapping solution, highlighting the need to further tune the process and make it economically more competitive. The high recycling rates of P and N achieved are encouraging and widen the possibility of replacing synthetic fertilizers, manufactured from finite sources, by secondary biofertilizers produced using nutrients extracted from wastes.


Asunto(s)
Fósforo , Eliminación de Residuos Líquidos , Nitrógeno , Nutrientes , Fosfatos , Estruvita , Aguas Residuales
10.
Water Sci Technol ; 83(6): 1315-1326, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33767038

RESUMEN

The aim of this study was to provide technical means and data support for enhancing the filtration pretreatment capacity of a recirculating aquaculture system. A continuous flow electrocoagulation (EC)-filtration system was designed and its application in the pretreatment of marine aquaculture wastewater was studied. The influences of anode combination modes, hydraulic retention times (HRTs) of the EC reactor and filter pore sizes on the water treatment capacity were investigated. Results showed that EC could significantly enhance the treatment efficiency of the filtration equipment used in subsequent steps. Al-Fe electrodes used as anode led to better processing capacity of this system, and the optimum anode was 3Al + Fe. With the increase of HRT and decrease of filter pore size, the enhanced effect of the EC process on the filter was more obvious. When the current density was 19.22 A/m2, the anode was 3Al + Fe, the HRT was 4.5 min and the filter pore size was 45 µm, the removal efficiency of the system for Vibrio, chemical oxygen demand, total ammonia nitrogen, nitrite nitrogen (NO2--N), nitrate nitrogen (NO3--N) and total nitrogen was 69.55 ± 0.93%, 48.99 ± 1.42%, 57.06 ± 1.28%, 34.09 ± 2.27%, 18.47 ± 1.88% and 55.26 ± 1.42%, respectively, and the energy consumption was (26.25 ± 4.95) × 10-3kWh/m3.


Asunto(s)
Aguas Residuales , Purificación del Agua , Acuicultura , Electrocoagulación , Electrodos , Filtración , Eliminación de Residuos Líquidos
11.
Water Sci Technol ; 83(6): 1369-1383, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33767043

RESUMEN

In the present work, Zeolite A was modified by using hexadecyltrimethylammonium bromide (HDTMABr) for adsorption of the Congo red (CR) dye from synthetic aqueous solutions. The Modified Zeolite A (MZA) was characterized by XRD, SEM, and FTIR. The influence of solution pH (in the 4-12 range), ionic strength (0.1-1 M), contact time (180 min), initial CR concentration (20-60 mg/L), temperature (24-36 °C), and an adsorbent dose (1-3 g m/L) on the % dye removal and adsorbent capacity were studied. A combined effect of the initial CR concentration and temperature on the CR removal % by MZA was also studied by applying response surface methodology (RSM). Experimental values were in a good agreement with those predicated by a second-order quartic model. A maximum of 99.24% dye removal and adsorbent capacity of 21.11 mg/g was achieved under the following conditions: pH = 7, initial CR concentration = 60 mg/L, temperature = 24 °C, ionic strength = 0.1 M, adsorbent dose = 3 g/L and 90 min contact time. The equilibrium data were subjected to the Langmuir, Freundlich and Temkin isotherms, with the latter providing the best fit while kinetic adsorption studies were conducted by applying three models. The results indicated that the removal process was best described by the pseudo-second-order model. The present study demonstrates that modified MZA can be utilized for the highly efficient CR dye removal.


Asunto(s)
Rojo Congo , Zeolitas , Adsorción , Rojo Congo/análisis , Concentración de Iones de Hidrógeno , Cinética , Aguas Residuales
12.
Water Sci Technol ; 83(6): 1407-1417, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33767046

RESUMEN

Slaughterhouse wastewater (SWW) contains high concentrations of phosphorus (P) and is considered as a principal industrial contaminant that causes eutrophication. This study developed two kinds of economical P removal adsorbents using flue gas desulfurization gypsum (FGDG) as the main raw material and bentonite, clay, steel slag and fly ash as the additives. The maximum adsorption capacity of the adsorbent composed of 60% FGDG, 20% steel slag, and 20% fly ash (DSGA2) was found to be 15.85 mg P/g, which was 19 times that of the adsorbent synthesized using 60% FGDG, 30% bentonite, and 10% clay (DSGA1) (0.82 mg P/g). Surface adsorption, internal diffusion, and ionic dissolution co-existed in the P removal process. The adsorption capacity of DSGA2 (2.50 mg P/g) was also evaluated in column experiments. The removal efficiency was determined to be higher than 92% in the first 5 days, while the corresponding effluent concentration was lower than the Chinese upcoming SWW discharge limit of 2 mg P/L. Compared with DSGA1, DSGA2 (synthesized from various industrial wastes) showed obvious advantages in improving adsorption capacity of P. The results showed that DSGA2 is a promising adsorbent for the advanced removal of P from SWW in practical applications.


Asunto(s)
Residuos Industriales , Aguas Residuales , Mataderos , Adsorción , Fósforo
13.
Water Sci Technol ; 83(6): 1459-1469, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33767050

RESUMEN

Several water treatment techniques have been combined using the sequencing batch reactor with the membrane bioreactor for addressing water pollution. However, cleaning of the membrane is dependent on the approach involved as well as the operating conditions. In the present study, the sequencing-batch membrane bioreactor was used to treat real mixed municipal wastewater. The pollutant removal and membrane filtration performances were examined. The results show that the average removal rates of chemical oxygen demand (COD), total nitrogen, NH3-N, total phosphorus, and turbidity were 90.75, 63.52, 92.85, 87.58, and 99.48%, respectively, when the system was in continuous operation for 95 days. The membrane had a significant effect on COD and turbidity removal and provided stable performances for nitrogen and phosphorus removal. By observing the appearance of the membrane modules before and after the cleaning operation, it was concluded that the deposited sludge and granular sediment on the membrane surface can be effectively removed by hydraulic cleaning. In addition, recovery of membrane filtration performance to 60% of that of a new membrane can be achieved. Furthermore, we found that different sequences and duration of cleaning have different effects on the recovery of membrane filtration performance.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Nitrógeno , Fósforo , Aguas del Alcantarillado
14.
Water Sci Technol ; 83(6): 1483-1498, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33767052

RESUMEN

In recent years, the use of microalgae as feedstock for many marketable products, such as animal/aqua feeds, bioplastics and fertilizers, has gained renewed interest due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrient content. An algal biorefinery at an industrial site has the potential to sustainably and profitably convert carbon dioxide emissions into microalgal biomass and concomitantly reduce nitrogen and phosphorus from wastewaters. Industrial wastewaters are a potential alternative to traditional media used for large-scale microalgal cultivation. Pulp and paper mills are major consumers of water resources and discharge a huge amount of water to nearby lakes or rivers. This study investigated whether pulp and paper mill waste water is suitable for microalgal cultivation with the aim of achieving significant biomass production. Six different process waters from one Canadian pulp and paper mill were tested with two freshwater green microalgae. All of these waters were unable to support growth of microalgae due to inadequate nutrient concentrations, colour, turbidity and possible toxicity issues.


Asunto(s)
Microalgas , Animales , Biocombustibles , Biomasa , Agua Dulce , Nitrógeno , Nueva Escocia , Aguas Residuales
15.
Water Sci Technol ; 83(6): 1499-1510, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33767053

RESUMEN

The present study aims to fill the data gap analysis in urban wastewaters characteristics in Benin and its statistical analysis. Physicochemical parameters such as pH, electrical conductivity (EC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), Total Kjeldahl Nitrogen (TKN), Total Phosphorus (TP) and UV Absorbance at 254 nm, were determined on domestic (greywater and blackwater) and industrial (hospital, pharmaceutical and commercial laundry) wastewater in Cotonou city. Analysis of variance showed a strong significant difference in the physico-chemistry of the various effluents. The pharmaceutical wastewater has the highest concentration of organic pollution (COD = 5,912 ± 1,026 mg/L, Abs.UV254 = 2.667 ± 0.327 cm-1). The organic load of blackwater is mainly in particulate and biodegradable form. Besides, the correlation study showed the limits of pH and EC as an indicator of organic load. Furthermore, the choice of COD or BOD5 as the main design parameter would be limited to blackwater treatment. Abs.UV254 was found to be the parameter having a strong relationship with other parameters of all effluents except blackwater. It then takes priority over COD for the treatment of greywater and industrial wastewater. For future wastewater treatment plant design, we recommend to consider Abs.UV254 as an important parameter.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Benin , Análisis de la Demanda Biológica de Oxígeno , Ciudades , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis
16.
J Environ Manage ; 286: 112255, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647672

RESUMEN

To date, the partial nitrification-Anammox (PN-A) granular sludge size has been exclusively analyzed in synthetic substrates. In this work, different ranges of granular size of PN-A sludge were studied at low oxygen concentration using real industrial wastewater as, well as a synthetic substrate. The granular sludge was characterized by the specific nitrification activity (SNA), specific anammox activity (SAA), and granule sedimentation rate. The relative abundance of the bacterial consortium was assessed for each range of diameters through the fluorescence in situ hybridization (FISH) technique. SNA exhibits a direct association with the specific surface of granules, which proves the importance of the outer layer in the nitrification process. Even more critical, the flocculent sludge allowed the stability of the nitrifying activity. The SAA showed different performances faced the real industrial and synthetic substrates. With the synthetic substrate, the SAA decreased at higher diameter ranges, whereas with the industrial substrate, the SAA increased at higher diameter ranges. This situation is explained by the oxygen protection in the sludge maintained with industrial wastewater. The relative abundance of heterotrophic bacteria increased from 9.6 to 22%, due to the presence of organic matter in the industrial substrate. The granular sedimentation rate increased with the diameter of the granules with a linear correlation (R2 > 0.98). Thus, granular sizes can be selected through sedimentation rate control. A linear correlation between SAA and granular sludge diameter ranges was observed. With this correlation, an error of less than 11% in the prediction of SAA was achieved. The use of diameter measurement and granular sedimentation rate as routine techniques could contribute to the control and start-up of PN-A reactors. In the same sense, organic matter present in defined concentrations, can be beneficial for the granular sludge stability, and thus, for nitrogen removal.


Asunto(s)
Nitrificación , Aguas Residuales , Reactores Biológicos , Hibridación Fluorescente in Situ , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado
17.
Bioresour Technol ; 329: 124870, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33652189

RESUMEN

The aim of this review is to provide insights into the upstream processing of microalgae, and to highlight the advantages of each step. This review discusses the most important steps of the upstream processing in microalgae research such as cultivation modes, photobioreactors design, preparation of culture medium, control of environmental factors, supply of microalgae seeds and monitoring of microalgal growth. An extensive list of bioreactors and their working volumes used, elemental composition of some well-known formulated cultivation media, different types of wastewater used for microalgal cultivation and environmental variables studied in microalgae research has been compiled in this review from the vast literature. This review also highlights existing challenges and knowledge gaps in upstream processing of microalgae and future research needs are suggested.


Asunto(s)
Microalgas , Biomasa , Medios de Cultivo , Fotobiorreactores , Aguas Residuales
18.
Bioresour Technol ; 329: 124890, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33662852

RESUMEN

This study investigated the influence of salinity on pollutant removal and bacterial community within a partially saturated vertical flow constructed wetland (PS-VFCW). High removal rates of NH4+-N (88.29 ± 4.97-100 ± 0%), total inorganic nitrogen (TIN) (50.00 ± 7.21-62.81 ± 7.21%) and COD (91.08 ± 2.66-100 ± 0%) were achieved at 0.4-2.4% salinity levels. The removal of ammonia, TIN and organic matter occurred mainly in unsaturated zone. Salt-adaptable microbes became the dominant bacteria with salinity elevated. The proportion of ammonia-oxidizing bacteria (AOB) in the 0-5 cm depth layer (unsaturated zone) decreased obviously as the salinity increased to 2.4%. Nitrite-oxidizing bacteria (NOB) in the 0-5 cm depth layer showed a decreasing trend with elevated salinity. Denitrifying bacteria (DNB) in the 0-5 cm depth layer maintained high abundance (27.70-53.60%) at 0.4-2.4% salinity levels. At 2.4% salinity, AOB, NOB and DNB were observed in the unsaturated zones and saturated zones, and showed higher abundance in the unsaturated zone.


Asunto(s)
Contaminantes Ambientales , Humedales , Amoníaco , Bacterias , Desnitrificación , Nitrificación , Nitrógeno/análisis , Salinidad , Aguas Residuales
19.
Bioresour Technol ; 329: 124906, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33662855

RESUMEN

In order to enhance nitrogen removal through anammox process in the full-scale swine wastewater treatment plant, an innovative regulation strategy of nitrate-based carbon dosage and intermittent aeration was developed to apply the combined biological nitrogen removal process in a full scale anaerobic-anoxic-oxic (A2/O) system. TN removal efficiency reached at 65.5 ± 6.0% in Phase 1 with decreasing external carbon dosage in influent due to the reduction of return nitrate concentration, and it increased to 83.5 ± 6.7% when intermittent aeration was adopted in oxic zone and external carbon source was stopped adding into influent in Phase 2. As a result, the energy consumption for the swine wastewater treatment decreased from 1.93 to 0.9 kW h/m3 and 4.18 to 2.57 kW h/kg N, respectively. Microbial community analysis revealed that the average abundances of Candidatus Brocadia increased from 0.76% to 2.43% and removal of TN through anammox increased from 39% to 77%.


Asunto(s)
Desnitrificación , Purificación del Agua , Animales , Reactores Biológicos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Porcinos , Aguas Residuales
20.
J Environ Manage ; 286: 112267, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667820

RESUMEN

Antibiotic pollution is becoming increasingly severe due to its extensive use. The potential application of the anaerobic ammonium oxidation (anammox) process in the treatment of wastewater containing antibiotics has attracted much attention. As common antibiotics, spiramycin (SPM) and streptomycin (STM) are widely used to treat human and animal diseases. However, their combined effects on the anammox process remain unknown. Therefore, this study systematically evaluated the response of the anammox process to both antibiotics. The half maximal inhibitory concentrations of SPM and STM were determined. The continuous-flow anammox system could adapt to SPM and STM at low concentrations, while antibiotics at high concentrations exhibited inhibitory effects. When the concentrations reached 5 mg L-1 SPM and 50 mg L-1 STM, the nitrogen removal efficiency dramatically decreased and then rapidly recovered within 8 days. Correspondingly, the abundances of dominant bacteria and genes also changed with antibiotic concentrations. In general, the anammox process showed a stable performance and a high resistance to SPM and STM, suggesting that acclimatization by elevating the concentrations was beneficial for the anammox process to obtain resistance to different antibiotics with high concentrations. This study provides guidance for the stable operation of anammox-based biological treatment of antibiotics containing wastewater.


Asunto(s)
Compuestos de Amonio , Macrólidos , Aminoglicósidos , Anaerobiosis , Animales , Antibacterianos , Reactores Biológicos , Humanos , Nitrógeno , Oxidación-Reducción , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...