Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.182
Filtrar
1.
BMC Anesthesiol ; 24(1): 216, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956472

RESUMEN

BACKGROUND: Tracheal tube cuff pressure will increase after pneumoperitoneum when the cuff is inflated with air, high pressure can cause tracheal mucosal damage. This prospective trial aimed to assess if inflating with normal saline or lidocaine can prevent increase of tracheal tube cuff pressure and tracheal mucosal damage in laparoscopic surgeries with general anesthesia. Whether changes of tracheal tube cuff transverse diameter (CD) can predict changes of tracheal tube cuff pressure. METHODS: Ninety patients scheduled for laparoscopic resection of colorectal neoplasms under general anesthesia were randomly assigned to groups air (A), saline (S) or lidocaine (L). Endotracheal tube cuff was inflated with room-temperature air in group A (n = 30), normal saline in group S (n = 30), 2% lidocaine hydrochloride injection in group L (n = 30). After intubation, tracheal tube cuff pressure was monitored by a calibrated pressure transducers, cuff pressure was adjusted to 25 cmH2O (T0.5). Tracheal tube cuff pressure at 15 min after pneumoperitoneum (T1) and 15 min after exsufflation (T2) were accessed. CD were measured by ultrasound at T0.5 and T1, the ability of ΔCD (T1-0.5) to predict cuff pressure was accessed. Tracheal mucous injury at the end of surgery were also recorded. RESULTS: Tracheal tube cuff pressure had no significant difference among the three groups at T1 and T2. ΔCD had prediction value (AUC: 0.92 [95% CI: 0.81-1.02]; sensitivity: 0.99; specificity: 0.82) for cuff pressure. Tracheal mucous injury at the end of surgery were 0 (0, 1.0) in group A, 0 (0, 1.0) in group S, 0 (0, 0) in group L (p = 0.02, group L was lower than group A and S, p = 0.03 and p = 0.04). CONCLUSIONS: Compared to inflation with air, normal saline and 2% lidocaine cannot ameliorate the increase of tracheal tube cuff pressure during the pneumoperitoneum period under general anesthesia, but lidocaine can decrease postoperative tracheal mucosa injury. ΔCD measured by ultrasound is a predictor for changes of tracheal tube cuff pressure. TRIAL REGISTRATION: Chinese Clinical Trial Registry, identifier: ChiCTR2100054089, Date: 08/12/2021.


Asunto(s)
Neoplasias Colorrectales , Intubación Intratraqueal , Laparoscopía , Lidocaína , Presión , Solución Salina , Humanos , Neoplasias Colorrectales/cirugía , Masculino , Persona de Mediana Edad , Lidocaína/administración & dosificación , Intubación Intratraqueal/métodos , Intubación Intratraqueal/instrumentación , Femenino , Laparoscopía/métodos , Estudios Prospectivos , Solución Salina/administración & dosificación , Aire , Anciano , Anestésicos Locales/administración & dosificación , Anestesia General/métodos , Adulto , Neumoperitoneo Artificial/métodos
2.
Am J Case Rep ; 25: e944517, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042594

RESUMEN

BACKGROUND Acute corneal hydrops, a rare complication of keratoconus, is characterized by sudden onset of corneal stroma edema. It typically manifests as an acute decrease in visual acuity, accompanied by pain and photophobia. Prompt recognition and interventions are critical for effective resolution of hydrops and prevention of corneal vascularization. Herein, we present a case of a patient with keratoconus who developed corneal hydrops, successfully managed using full-thickness compression sutures and intracameral air injection. CASE REPORT A woman in her early 30s, with a history of keratoconus, presented with symptoms of acute hydrops in her left eye. On presentation, best corrected visual acuity was hand motion. Slit-lamp examination revealed marked corneal edema with multiple stromal clefts. The decision was made to perform full-thickness compression sutures combined with intracameral air injection to expedite edema resolution and prevent neovascularization. Three full-thickness sutures were placed across Descemet membrane breaks, and an air bubble was left, filling 50% of the anterior chamber. At 3-month follow-up, a clear, compact cornea was noted, with no evidence of vascularization. The patient was scheduled for penetrating keratoplasty for visual rehabilitation. CONCLUSIONS The combination of full-thickness compression sutures and intracameral air seems to be an effective and safe method for preventing corneal angiogenesis following hydrops. As corneal scaring is often an inevitable complication of acute corneal hydrops, keratoplasty is necessary for improving visual acuity. Hence, the prevention of corneal vascularization should be the major aim in the management of corneal hydrops to ensure successful keratoplasty.


Asunto(s)
Aire , Edema Corneal , Queratocono , Técnicas de Sutura , Humanos , Femenino , Edema Corneal/etiología , Adulto , Queratocono/cirugía , Enfermedad Aguda , Agudeza Visual
4.
Neurol India ; 72(3): 514-519, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-39041966

RESUMEN

BACKGROUND AND OBJECTIVES: Stereotactic biopsies are a relatively safe and reliable way of tissue diagnosis and characterization of eloquent area lesions/neoplasm. However, predicting the accuracy of the site of biopsy with the desired/planned site is not always possible. We describe a technique to identify the precise location of the biopsy site in the post-operative computed tomography (CT) scan using the injection of a low volume of air into the biopsy cannula. METHODS: Hundred consecutive biopsies were performed in 80 adults/20 children (59 males/41 females, median age 51 years) over 3 years, consisting of 75 frameless and 25 frame-based stereotactic biopsies. After the biopsy specimens had been collected, a small volume of air (median 1 cc) was injected into the site. Post-operative CT was done within 4 hours of the biopsy to see the site of the air bubble, and the same was correlated with the histopathological accuracy. RESULTS: Intra-cranial air in the selected target was present in 95 patients (Grade 1 and 2), while the air was seen in the track (Grade 3) in 3% and at an unrelated site (Grade 4) in 2% of cases. Both Grade 4 biopsies were negative on histopathology (diagnostic yield = 98%). Two negative biopsies were reported, which were both predicted with the Grade 4 biopsy. The grading allowed uniform reporting across series and eliminated the chance of upgrading/downgrading the report due to wrong site sampling within the lesion/neoplasm. CONCLUSION: The air-injection manoeuvre proposed for use in stereotactic biopsies of intra-cranial mass lesions is a safe and reliable technique that allows the exact biopsy site to be located without any related complications.


Asunto(s)
Aire , Técnicas Estereotáxicas , Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Persona de Mediana Edad , Biopsia/métodos , Niño , Adulto , Preescolar , Anciano , Adolescente , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico , Adulto Joven
5.
Ultrason Sonochem ; 108: 106978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971086

RESUMEN

Drying, as a critical step in the production of air-dried beef, has a direct impact on the quality of the final product. Innovatively, a composite system incorporating contact ultrasound (CU) and infrared radiation (IR) as auxiliary measures within a hot air drying (HAD) framework was built in this research, and the effects of these techniques on the drying kinetics, protein denaturation, and moisture transformation of air-dried beef were investigated. In comparison to HAD treatment, the integrated CU and IR (CU-IRD) system displayed marked enhancements in heat and moisture transport efficiency, thereby saving 36.84% of time expenditure and contributing favorably to the improved moisture distribution of the end-product. This was mainly ascribed to the denaturation of myosin induced by IR thermal effect and the micro-channel produced by CU sponge effect, thus increasing T2 relaxation time and the proportion of free water. In conclusion, the composite system solved the problem of surface hardening and reduces hardness and chewiness of air-dried beef by 40.42% and 45.25% respectively, but inevitably increased the energy burden by 41.60%.


Asunto(s)
Aire , Desecación , Rayos Infrarrojos , Agua , Agua/química , Cinética , Desecación/métodos , Bovinos , Animales , Ondas Ultrasónicas , Calor , Carne Roja , Fenómenos Físicos
6.
Ultrason Sonochem ; 108: 106986, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002226

RESUMEN

This study employed segmented variable-frequency ultrasound synergistic hot-air drying (SVFU-HAD) for Rhubarb slices, selected two sets of time nodes for frequency conversion (60 min, 120 min, and 90 min, 150 min), and two sequences of frequency conversion (high-frequency to low-frequency, and low-frequency to high-frequency). It aimed to investigate the effects of SVFU-HAD on the drying characteristics, quality, and heat transfer of Rhubarb slices. The findings indicated that segmented variable-frequency ultrasound has advantages in increasing drying rate and improving uniformity of cavitation effects compared to constant-frequency ultrasound. Analysis of physical properties revealed that the rehydration performance of dried products subjected to ultrasonic variable-frequency treatment (90 min, 150 min) according to the drying rate was better (RR > 3.3). The transition mode from high-frequency to low-frequency in variable-frequency ultrasonic treatment contributes to maintaining the overall color of Rhubarb. Analysis of chemical properties unveiled that Rhubarb treated with 40 kHz (0 min)-28 kHz (60 min)-25 kHz (120 min) segmented variable-frequency ultrasound contained overall higher levels of tannins, dianthrones and free anthraquinones content, which exceeded the average values by 3.24%, 26.65%, and 14.42%, respectively. In addition, thermal analysis results based on ANSYS Workbench software demonstrated that the drying uniformity of SVFU-HAD is superior to that of hot-air drying and constant-frequency ultrasound synergistic hot-air drying (CFU-HAD). Overall, the SVFU-HAD method employed in this study presents an innovative approach to ultrasound synergistic hot-air drying research with promising potential for enhancing the efficiency and quality characteristics of Rhubarb slices.


Asunto(s)
Desecación , Calor , Rheum , Rheum/química , Desecación/métodos , Aire , Ondas Ultrasónicas
7.
Sud Med Ekspert ; 67(3): 29-33, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38887068

RESUMEN

Death from general hypothermia is one of the leading causes in the structure of violent death in the Russian Federation. OBJECTIVE: To clarify and supplement the complex of differential diagnostic macro- and microscopic signs of a fatal acute general cold trauma received when person is in the air and water. MATERIAL AND METHODS: The conclusions of forensic medical experts on the bodies of people who died from hypothermia in the air and in water (by 150 observations) were analyzed. Methods of descriptive statistics, calculation of the frequency ratio of signs' occurrence were used. RESULTS: The article provides quantitative assessment of occurrence (detection) rate of diagnostically significant signs established with the help of traditional methods of expert examination. A new classification of diagnostic death signs from hypothermia taking into account their differential diagnostic significance and reflecting the conditions of a person's stay in the air and water in the pre-mortem and post-mortem periods, as well as terminal period mechanisms is proposed. CONCLUSION: The established complexes of signs provide an objective basis for determining death cause in non-obvious conditions when cold exposure is expected to be one of the most damaging factors.


Asunto(s)
Hipotermia , Humanos , Hipotermia/diagnóstico , Hipotermia/mortalidad , Causas de Muerte , Federación de Rusia/epidemiología , Patologia Forense/métodos , Testimonio de Experto/métodos , Autopsia/métodos , Frío , Diagnóstico Diferencial , Medicina Legal/métodos , Aire/análisis , Agua
8.
Methods Mol Biol ; 2813: 137-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38888776

RESUMEN

Air-liquid interface (ALI) airway culture models serve as a powerful tool to emulate the characteristic features of the respiratory tract in vitro. These models are particularly valuable for studying emerging respiratory viral and bacterial infections. Here, we describe an optimized protocol to obtain the ALI airway culture models using normal human bronchial epithelial cells (NHBECs). The protocol outlined below enables the generation of differentiated mucociliary airway epithelial cultures by day 28 following exposure to air.


Asunto(s)
Técnicas de Cultivo de Célula , Células Epiteliales , Humanos , Técnicas de Cultivo de Célula/métodos , Células Epiteliales/microbiología , Células Epiteliales/virología , Células Epiteliales/citología , Bronquios/citología , Mucosa Respiratoria/citología , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/virología , Aire , Células Cultivadas , Enfermedades Transmisibles/microbiología
9.
Methods Mol Biol ; 2817: 45-56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38907146

RESUMEN

Single-cell proteomic analyses are of fundamental importance in order to capture biological heterogeneity within complex cell systems' heterogeneous populations. Mass spectrometry (MS)-based proteomics is a promising alternative for quantitative single-cell proteomics. Various techniques are continually evolving to address the challenges of limited sample material, detection sensitivity, and throughput constraints. In this chapter, we describe a nanoliter-scale glass-oil-air-droplet (gOAD) chip engineered for heat tolerance, which combines droplet-based microfluidics and shotgun proteomic analysis techniques to enable multistep sample pretreatment.


Asunto(s)
Vidrio , Proteómica , Análisis de la Célula Individual , Proteómica/métodos , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/instrumentación , Vidrio/química , Humanos , Aceites/química , Espectrometría de Masas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Laboratorio en un Chip , Aire , Proteoma/análisis , Nanotecnología/métodos , Nanotecnología/instrumentación , Microfluídica/métodos , Microfluídica/instrumentación
10.
Langmuir ; 40(25): 13042-13059, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38874554

RESUMEN

While few prior studies examined the air-entraining properties of proteins in cementitious materials, the underlying mechanisms of proteins' air entraining and the interactions between proteins and cement have not been studied in the past. The significance of this article is to address this knowledge gap by investigating the effect of proteins on relevant factors that affect air entraining in cement paste and establishing an understanding of the mechanism of air entrainment with proteins. These factors include the surface tension of pore solution, protein adsorption on cement particles, cement paste hydrophobization, and flow of fresh paste. Thirteen different proteins were used to investigate the effect of a wide range of protein characteristics on air entraining. Proteins decreased the pore solution surface tension to different degrees. At low concentrations, the adsorption of proteins on cement particles slightly affected the pore solution surface tension. Protein adsorption on cement particles showed a wide range of adsorption isotherms. Proteins generally increased the flow of paste due to electrostatic repulsion between cement particles because of the adsorption of negatively charged proteins on cement particles, as well as the ball-bearing effect of bubbles in fresh paste. The surface hydrophobicity was increased in pastes with proteins. A detailed microcomputed tomography (micro-CT) analysis showed very different air void microstructures in pastes with various proteins. While a relatively strong correlation was observed between air void porosity and surface hydrophobicity, the correlation between air void porosity and the surface tension of pore solution was weak. This indicates that the accumulation of hydrophobized cement particles on the air bubble in the fresh paste, refered to as the Pickering effect, is the main mechanism of air entraining of proteins in the paste. It was shown that a high air void porosity occurs in an intermediate range of flow.


Asunto(s)
Aire , Proteínas , Tensión Superficial , Proteínas/química , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Materiales de Construcción/análisis , Porosidad , Propiedades de Superficie
11.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(6): 320-334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38866479

RESUMEN

Carbon nanotubes are a telecom band emitter compatible with silicon photonics, and when coupled to microcavities, they present opportunities for exploiting quantum electrodynamical effects. Microdisk resonators demonstrate the feasibility of integration into the silicon platform. Efficient coupling is achieved using photonic crystal air-mode nanobeam cavities. The molecular screening effect on nanotube emission allows for spectral tuning of the coupling. The Purcell effect of the coupled cavity-exciton system reveals near-unity radiative quantum efficiencies of the excitons in carbon nanotubes.


Asunto(s)
Nanotubos de Carbono , Silicio , Nanotubos de Carbono/química , Silicio/química , Aire , Fenómenos Ópticos
12.
J Environ Manage ; 362: 121228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823304

RESUMEN

The advent of air nanobubbles (ANBs) has opened up a wide range of commercial applications spanning industries including wastewater treatment, food processing, biomedical engineering, and agriculture. The implementation of electric field-based air nanobubbles (EF-ANBs) irrigation presents a promising approach to enhance agricultural crop efficiency, concurrently promoting environmentally sustainable practices through reducing fertilizer usage. This study investigated the impact of EF-ANBs on the germination and overall growth of agricultural crops in soil. Results indicate a substantial enhancement in both germination rates and plant growth upon the application of EF-ANBs. Notably, the introduction of ANBs led to a significant enhancement in the germination rate of lettuce and basil, increasing from approximately 20% to 96% and from 16% to 53%, respectively over two days. Moreover, the presence of EF-ANBs facilitates superior hypocotyl elongation, exhibiting a 2.8- and a 1.6-fold increase in the elongation of lettuce and basil, respectively, over a six-day observation period. The enriched oxygen levels within the air nanobubbles expedite aerobic respiration, amplifying electron leakage from the electron transport chain (ETC) and resulting in heightened reactive oxygen species (ROS) production, playing a pivotal role in stimulating growth signaling. Furthermore, the application of EF-ANBs in irrigation surpasses the impact of traditional fertilizers, demonstrating a robust catalytic effect on the shoot, stem, and root length, as well as the leaf count of lettuce plants. Considering these parameters, a single fertilizer treatment (at various concentrations) during EF-ANBs administration, demonstrates superior plant growth compared to regular water combined with fertilizer. The findings underscore the synergistic interaction between aerobic respiration and the generation of ROS in promoting plant growth, particularly in the context of reduced fertilizer levels facilitated by the presence of EF-ANBs. This promising correlation holds significant potential in establishing more sustainability for ever-increasing environmentally conscious agriculture.


Asunto(s)
Riego Agrícola , Productos Agrícolas , Fertilizantes , Productos Agrícolas/crecimiento & desarrollo , Riego Agrícola/métodos , Lactuca/crecimiento & desarrollo , Germinación/efectos de los fármacos , Suelo/química , Agricultura/métodos , Aire
13.
J Contam Hydrol ; 265: 104382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861839

RESUMEN

Some Per- and polyfluoroalkyl substances (PFAS) are strongly retained in the vadose zone due to their sorption to both soils and air-water interfaces. While significant research has been dedicated to understanding equilibrium behavior for these multi-phase retention processes, leaching and desorption from aqueous film-forming foam (AFFF) impacted soils under field relevant conditions can exhibit significant deviations from equilibrium. Herein, laboratory column studies using field collected AFFF-impacted soils were employed to examine the leaching of perfluoroalkyl acids (PFAAs) under simulated rainfall conditions. The HYDRUS 1-D model was calibrated to estimate the unsaturated hydraulic properties of the soil in a layered system using multiple boundary condtions. Forward simulations of equilibrium PFAS partitioning using the HYDRUS model and simplified mass balance calculations showed good agreement with the net PFAS mass flux out of the column. However, neither were able to predict the PFAS concentrations in the leached porewater. To better understand the mechanisms controlling the leaching behavior, the HYDRUS 1-D two-site leaching model incorporating solid phase rate limitation and equilibrium air-water interfacial partitioning was employed. Three variations of the novel model incorporating different forms of equilibrium air-water interfacial partitioning were considered using built-in numerical inversion. Results of numerical inversion show that a combination of air-water interfacial collapse and rate-limited desorption from soils can better predict the unique leaching behavior exhibited by PFAAs in AFFF-impacted soils. A sensitivity analysis of the initial conditions and rate-limited desorption terms was conducted to assess the agreement of the model with measured data. The models demonstrated herein show that, under some circumstances, laboratory equilibrium partitioning data can provide a reasonable estimation of total mass leaching, but fail to account for the significant rate-limited, non-Fickian transport which affect PFAA leaching to groundwater in unsaturated soils.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes del Suelo , Contaminantes Químicos del Agua , Fluorocarburos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Suelo/química , Modelos Teóricos , Adsorción , Aire , Modelos Químicos
14.
Phys Med ; 123: 103401, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852367

RESUMEN

BACKGROUND AND PURPOSE: This study aimed to investigate the reproducibility of a novel approach using 3D printed brachytherapy applicators for the treatment of skin cancer. Specifically, we aimed to assess the accuracy of applicator placement and to minimize the existence of air gap pockets between the applicator and the patient's skin. MATERIALS AND METHODS: A total of 20 patients plans diagnosed with skin cancer were enrolled in this study. All patients underwent high dose rate (HDR) brachytherapy. To ensure precise applicator placement, patient-specific 3D printed applicators were designed based on individual body and tumor topography, utilizing data obtained from computer tomography (CT) scans. All applicators were fabricated using fused deposition modeling technology. RESULTS: The error in applicator placement was measured and found to be less than 1.0 mm on average, with a standard deviation of 0.9 mm. Additionally, the average error in air gap pockets between the applicator and the patient's skin was 0.4 mm (standard deviation was 0.5 mm). The study demonstrated that the personalized approach of 3D printed brachytherapy applicator placement in skin cancer treatment yielded highly accurate results. The average error of less than 1.0 mm in applicator positioning and the minimal air gap pockets demonstrated the reproducibility and precision of this technique. CONCLUSION: Our study establishes the reproducibility and accuracy of 3D-printed brachytherapy applicator placement in the treatment of skin cancer. This personalized treatment approach offers a highly precise method for delivering radiation therapy, minimizing the risk to adjacent healthy tissues, and enhancing overall patient outcomes.


Asunto(s)
Braquiterapia , Impresión Tridimensional , Dosificación Radioterapéutica , Neoplasias Cutáneas , Braquiterapia/métodos , Braquiterapia/instrumentación , Humanos , Neoplasias Cutáneas/radioterapia , Reproducibilidad de los Resultados , Planificación de la Radioterapia Asistida por Computador/métodos , Aire , Dosis de Radiación , Tomografía Computarizada por Rayos X , Masculino
15.
Nature ; 630(8017): 654-659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839965

RESUMEN

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Asunto(s)
Dióxido de Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Adsorción , Electrodos , Hidróxidos/química , Atmósfera/química , Carbonatos/química , Aire , Temperatura , Carbón Orgánico/química , Porosidad , Carbono/química
16.
BMC Genomics ; 25(1): 446, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714962

RESUMEN

BACKGROUND: Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS: The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION: In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.


Asunto(s)
Encéfalo , Redes Reguladoras de Genes , Inflamación , MicroARNs , Estrés Oxidativo , ARN Mensajero , Salinidad , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Encéfalo/metabolismo , Animales , Inflamación/genética , Inflamación/metabolismo , Perfilación de la Expresión Génica , Aire , Transcriptoma
17.
J Chem Inf Model ; 64(11): 4426-4435, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804973

RESUMEN

The polarization of periodically repeating systems is a discontinuous function of the atomic positions, a fact which seems at first to stymie attempts at their statistical learning. Two approaches to build models for bulk polarizations are compared: one in which a simple point charge model is used to preprocess the raw polarization to give a learning target that is a smooth function of atomic positions and the total polarization is learned as a sum of atom-centered dipoles and one in which instead the average position of Wannier centers around atoms is predicted. For a range of bulk aqueous systems, both of these methods perform perform comparatively well, with the former being slightly better but often requiring an extra effort to find a suitable point charge model. As a challenging test, we also analyze the performance of the models at the air-water interface. In this case, while the Wannier center approach delivers accurate predictions without further modifications, the preprocessing method requires augmentation with information from isolated water molecules to reach similar accuracy. Finally, we present a simple protocol to preprocess the polarizations in a data-driven way using a small number of derivatives calculated at a much lower level of theory, thus overcoming the need to find point charge models without appreciably increasing the computation cost. We believe that the training strategies presented here help the construction of accurate polarization models required for the study of the dielectric properties of realistic complex bulk systems and interfaces with ab initio accuracy.


Asunto(s)
Agua , Agua/química , Aprendizaje Automático , Modelos Moleculares , Electrones , Aire , Modelos Químicos
18.
Biofabrication ; 16(3)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38788705

RESUMEN

Fabrication of engineered intestinal tissues with the structures and functions as humans is crucial and promising as the tools for developing drugs and functional foods. The aim of this study is to fabricate an engineered intestinal tissue from Caco-2 cells by air-liquid interface culture using a paper-based dual-layer scaffold and analyze its structure and functions. Just by simply placing on a folded paper soaked in the medium, the electrospun gelatin microfiber mesh as the upper cell adhesion layer of the dual-layer scaffold was exposed to the air, while the lower paper layer worked to preserve and supply the cell culture medium to achieve stable culture over several weeks. Unlike the flat tissue produced using the conventional commercial cultureware, Transwell, the engineered intestinal tissue fabricated in this study formed three-dimensional villous architectures. Microvilli and tight junction structures characteristic of epithelial tissue were also formed at the apical side. Furthermore, compared to the tissue prepared by Transwell, mucus production was significantly larger, and the enzymatic activities of drug metabolism and digestion were almost equivalent. In conclusion, the air-liquid interface culture using the paper-based dual-layer scaffold developed in this study was simple but effective in fabricating the engineered intestinal tissue with superior structures and functions.


Asunto(s)
Moco , Papel , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Humanos , Células CACO-2 , Moco/metabolismo , Intestinos/citología , Intestinos/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Aire , Técnicas de Cultivo de Célula/métodos
19.
Indian J Ophthalmol ; 72(6): 916-918, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767550

RESUMEN

Phacoemulsification in hard cataracts is a challenge. The use of dispersive ophthalmic viscosurgical devices (OVDs) to protect the endothelium is a routine step in such scenarios. However, as OVD is transparent, it is difficult to spot within the anterior chamber. Therefore, surgeons may not be aware when the OVD coating of the endothelium disappears during surgery. Consequently, there may be too frequent OVD injections, resulting in a waste of resources. On the contrary, the surgeon may fail to inject OVD at an appropriate time, leading to greater endothelial damage. We propose a novel technique of using an air bubble as a guide that helps in identifying the time when OVD disappears from the anterior chamber, thereby suggesting the surgeon to reinject before proceeding further.


Asunto(s)
Aire , Facoemulsificación , Viscosuplementos , Humanos , Facoemulsificación/métodos , Viscosuplementos/administración & dosificación , Ácido Hialurónico/administración & dosificación , Endotelio Corneal/patología , Cámara Anterior
20.
Nat Commun ; 15(1): 4151, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755154

RESUMEN

Atmospheric methane oxidizing bacteria (atmMOB) constitute the sole biological sink for atmospheric methane. Still, the physiological basis allowing atmMOB to grow on air is not well understood. Here we assess the ability and strategies of seven methanotrophic species to grow with air as sole energy, carbon, and nitrogen source. Four species, including three outside the canonical atmMOB group USCα, enduringly oxidized atmospheric methane, carbon monoxide, and hydrogen during 12 months of growth on air. These four species exhibited distinct substrate preferences implying the existence of multiple metabolic strategies to grow on air. The estimated energy yields of the atmMOB were substantially lower than previously assumed necessary for cellular maintenance in atmMOB and other aerobic microorganisms. Moreover, the atmMOB also covered their nitrogen requirements from air. During growth on air, the atmMOB decreased investments in biosynthesis while increasing investments in trace gas oxidation. Furthermore, we confirm that a high apparent specific affinity for methane is a key characteristic of atmMOB. Our work shows that atmMOB grow on the trace concentrations of methane, carbon monoxide, and hydrogen present in air and outlines the metabolic strategies that enable atmMOB to mitigate greenhouse gases.


Asunto(s)
Monóxido de Carbono , Hidrógeno , Metano , Oxidación-Reducción , Metano/metabolismo , Monóxido de Carbono/metabolismo , Hidrógeno/metabolismo , Atmósfera/química , Aire , Nitrógeno/metabolismo , Gases de Efecto Invernadero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA