Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.943
Filtrar
1.
Talanta ; 236: 122856, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34635240

RESUMEN

In this study, a first attempt for isolating and determining (characterising) background levels of titanium dioxide nanoparticles (TiO2 NPs) in seaweed has been developed by using single particle inductively coupled plasma - mass spectrometry (SP-ICP-MS). Seaweeds were processed using an optimised ultrasound assisted extraction (UAE) procedure based on tetramethylammonium hydroxide (TMAH) before dilution and SP-ICP-MS analysis. The effect of the TMAH percentage in the extracting solution, as well as the volume of extracting solution and sonication (extraction) time, has been fully assessed. Additional experiments also showed that TiO2 NPs were quantitatively released from the seaweed matrix in one UAE step since the analysis of residues gave TiO2 NPs concentrations lower than the limit of quantification (LOQ) of the method. Validation of the method with 50 and 100 nm TiO2 NPs (10 µg L-1 as Ti) showed good analytical recovery (115% and 112% for 50 and 100 nm TiO2 NPs, respectively), and good reproducibility (2% for size and 16% for number of TiO2 NPs). Experiments regarding TiO2 NPs stability showed that the extracted NPs are stable since there were not changes on the number of TiO2 NPs and TiO2 NPs size distributions when exposing TiO2 NPs standards to the optimised extractive conditions.


Asunto(s)
Nanopartículas , Algas Marinas , Espectrometría de Masas , Reproducibilidad de los Resultados , Titanio
2.
Food Chem ; 369: 130949, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34488133

RESUMEN

Alaria esculenta is one of the most abundant edible brown seaweeds in Irelandandisconsidered an excellent source of nutrients, sought after by the food, nutraceutical and pharmaceutical industries. Seaweed is typically blanched and dried prior to consumption to enhance the end-product quality attributes and shelf life. Three blanching techniques were examined in this work; conventional hot water blanching, novel ultrasound blanching and microwave blanching. The L* and b*colour metrics were affected significantly (P < 0.01) by the processing methods. There were 76 volatile compounds detected in blanched and dehydrated Alaria esculenta. Freeze-dried samples after treatment with microwave alone (at 1000 W) and microwave (800 W) combined with ultrasound (at 50% amplitude) had the highest retention rate of volatile compounds (up to 98.61%). Regarding mineral content, drying methods significantly affected (P < 0.05) the content of Ca, Co, Cu and Fe, while blanching treatments significantly affected (P < 0.05) the content of Na, Cu, Fe and Mn.


Asunto(s)
Phaeophyta , Algas Marinas , Desecación , Liofilización , Verduras
3.
Food Chem ; 368: 130770, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34399181

RESUMEN

Amino acids and sulfonic acid derivatives (Taurine-Tau; Hypotaurine-HypTau; Homotaurine-HTau) of 26 different species of commercial macroalgae, microalgae and 10 algae-enriched food products from the market were quantified in a single chromatographic run. Tau and analogues were predominantly distributed in red species followed by green and brown species. Palmaria palmata, Gracilaria longissima and Porphyra sp. were the species with the highest content of Tau and total sulfonic acid derivatives (TAD). Notwithstanding, relatively high concentrations of HTau were found in green algae Ulva lactuca and G. vermicullophyla as well as in the brown algae Undaria pinnatifida. HTau and HypTau were found at lower concentrations than Tau in all species, except in Ulva lactuca. The samples with the highest protein content were the green species Chlorella vulgaris, Nannochloropsis, and Afanizomenon-flos aquae, followed by the red algae Gracilaria longissima and Gracilaria vermicullophyla. Samples of pasta formulated with algae ingredients contained the highest levels of sulfonic acid derivatives, evidencing that these products can provide levels of TAD comparable to those found in foods of animal origin. This study provides, for the first time, quantitative information regarding the distribution of sulfonic acid derivatives and total amino acids in multiple algae species as well as the nutritional impact of the inclusion of algae ingredients in commercial food matrices.


Asunto(s)
Chlorella vulgaris , Microalgas , Rhodophyta , Algas Marinas , Aminoácidos , Animales , Alimentos Fortificados , Taurina/análogos & derivados
4.
Environ Pollut ; 292(Pt A): 118365, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34656678

RESUMEN

Marine ecosystems in the Arctic and Antarctica were once thought pristine and away from important human influence. Today, it is known that global processes as atmospheric transport, local activities related with scientific research bases, military and touristic maritime traffic, among others, are a potential source of pollutants. Macroalgae have been recognized as reliable metal-biomonitoring organisms due to their accumulation capacity and physiological responses. Metal accumulation (Al, Cd, Cu, Fe, Pb, Zn, Se, and Hg) and photosynthetic parameters (associated with in vivo chlorophyll a fluorescence) were assessed in 77 samples from 13 different macroalgal species (Phaeophyta; Chlorophyta; Rhodophyta) from areas with high human influence, nearby research and sometimes military bases and a control area, King George Island, Antarctic Peninsula. Most metals in macroalgae followed a pattern influenced by rather algal lineage than site, with green seaweeds displaying trends of higher levels of metals as Al, Cu, Cr and Fe. Photosynthesis was also not affected by site, showing healthy organisms, especially in brown macroalgae, likely due to their great dimensions and morphological complexity. Finally, data did not demonstrate a relationship between metal accumulation and photosynthetic performance, evidencing low anthropogenic-derived impacts associated with metal excess in the area. Green macroalgae, especially Monostroma hariotti, are highlighted as reliable for further metal biomonitoring assessments. In the most ambitious to date seaweed biomonitoring effort conducted towards the Austral pole, this study improved by 91% the overall knowledge on metal accumulation in macroalgae from Antarctica, being the first report in species as Sarcopeltis antarctica and Plocamium cartilagineum. These findings may suggest that human short- and long-range metal influence on Antarctic coastal ecosystems still remains under control.


Asunto(s)
Algas Marinas , Contaminantes Químicos del Agua , Regiones Antárticas , Monitoreo Biológico , Clorofila A , Ecosistema , Monitoreo del Ambiente , Humanos , Contaminantes Químicos del Agua/análisis
5.
Chemosphere ; 286(Pt 3): 131885, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34411930

RESUMEN

In Istanbul, which is surrounded by the sea on 3 sides, thousands of tons of seaweed that have formed naturally every year are washed ashore. In this study, the usability of these seaweeds which are landfilling already in fertilizer production was discussed. Liquid fertilizer production was carried out using 3 different physical and 4 different biological methods, and the produced fertilizers were diluted in 5 different ratios (1%, 10%, 25%, 50%, and 100%) and applied to cress seed. The effect of each fertilizer and its concentration on seed germination, plant length, number of leaves, and soil moisture-holding capacity was studied. The data obtained were analyzed using Response Surface Methodology (RSM). The results showed that if seaweed was fermented with anaerobic seed sludge for 15 days and applied to the plant by diluting it to 15-25%, plant growth will be supported at an optimum level. It has also been shown that if the seaweed was fermented with yeast culture for 18 days and fed with a concentration of >90%, the moisture-holding capacity of the soil could be increased by up to 27%.


Asunto(s)
Algas Marinas , Contaminantes del Suelo , Fertilizantes/análisis , Aguas del Alcantarillado , Suelo
6.
Bioresour Technol ; 343: 126017, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34628243

RESUMEN

The search of sustainable and environmentally friendly alternatives to obtain compounds for different industrial sectors has grown exponentially. Following the principles of biorefinery and circular bioeconomy, processes in which the use of natural resources such as macroalgae biomass is prioritized are required. This review focuses on a description of the relevance, application and engineering platforms of hydrothermal systems and the operational conditions depending on the target as an innovative technology and bio-based solution for macroalgae fractionation in order to recover profitable products for industries and investors. In this sense, hydrothermal treatments represent a promising alternative for obtaining different high value-added compounds from this biomass; since, the different variations in terms of operating conditions, gives great versatility to this technology compared to other types of processing, allowing it to be adapted depending on the objective, whether it is working under sub/super critical conditions, thus expanding its field of application.


Asunto(s)
Algas Marinas , Biocombustibles , Biomasa , Fraccionamiento Químico , Ingeniería , Tecnología
7.
Carbohydr Polym ; 275: 118779, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34742404

RESUMEN

Previous researches suggested that polysaccharides from brown algae had anti-virus activity. We hypothesized that nature polysaccharide from marine plants might have the effect on anti-SARS-CoV-2 activity. By high throughput screening to target 3CLpro enzyme using polysaccharides library, we discover a crude polysaccharide 375 from seaweed Ecklonia kurome blocked 3CLpro enzymatic activity and shows good anti-SARS-CoV-2 infection activity in cell. Further, we show that homogeneous polysaccharide 37502 from the 375 may bind to 3CLpro well and disturb spike protein binding to ACE2 receptor. The structure characterization uncovers that 37502 is alginate. These results imply that the bioactivities of 375 on SARS-CoV-2 may target multiple key molecules implicated in the virus infection and replication. The above results suggest that 375 may be a potential drug candidate against SARS-CoV-2.


Asunto(s)
COVID-19 , Polisacáridos , Humanos , Simulación del Acoplamiento Molecular , Algas Marinas/química , Internalización del Virus/efectos de los fármacos
8.
Food Chem ; 370: 131352, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34788963

RESUMEN

Assessing the umami taste of seaweed on a chemical level can inform the use and selection of seaweed in European cuisine. Accordingly, we developed a method for the simultaneous extraction, separate clean-up and analysis of 21 free amino acids and 10 free nucleotides by reversed phase and mixed-mode HPLC respectively. Of multiple mouth emulating solvents, extracting in Milli-Q at 35 °C was found most suitable. This method showed good linearity (R2 > 0.9996), resolution (Rs ≥ 1.5) and picomole detection limits, and was successfully applied to determine the Equivalent Umami Concentration (EUC) and Taste Activity Values (TAV) of seven Dutch seaweed species. Phaeophyceae showed the highest EUC, followed by Chlorophyceae and Rhodophyceae (≈ 9.5, 3.7 and 1.1 g/100 g respectively). Glutamic acid always exceeded the TAV, while other umami compounds were species specific. Our method can accurately predict umami intensity and therefore contributes towards species selection for the European palette.


Asunto(s)
Nucleótidos , Algas Marinas , Aminoácidos , Ácido Glutámico , Gusto
9.
Bioresour Technol ; 343: 126152, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34699961

RESUMEN

This work assesses scale effects in designing a biorefinery from Sargassum muticum seaweed by applying a detailed process modeling methodology. Two process conversion units were simulated: one considering anaerobic digestion steps for producing biogas and generating electricity (base project), and the other with residual seaweed solids sold as fertilizer (alternative project). A comprehensive economic analysis was performed to estimate the minimum selling price of the process's main product (fucoidan extract). Results indicated that capital expenditures are up to 12.7% times higher in the base project. Minimum selling prices of the fucoidan extract product demonstrate the biorefinery's economies of scale for both projects. Seaweed's low methane potential reduces the economic attractiveness of electricity generation from biogas in the base project. Conversely, organic fertilizer price was more influential in the alternative project. Nonetheless, risk analyses show similar results for both scenarios, mainly due to fucoidan extract selling price and CAPEX estimates uncertainties.


Asunto(s)
Sargassum , Algas Marinas , Biocombustibles , Fertilizantes , Metano
10.
Sci Total Environ ; 802: 149776, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525751

RESUMEN

Macroalgae can cycle arsenic (As) in the environment. In this study, the role of iron (Fe) plaque manipulation at active sites in the As biotransformation mechanism was investigated. The strain of marine macroalgal species, Pyrophia yezoensis, was inoculated in association with arsenate (As(V)) (1.0 µmol L-1) and phosphate (10 µmol L-1) in the medium for 7 days under laboratory-controlled conditions. The Fe plaque was removed by washing the Ti(III)-citrate-EDTA solution before inoculation. The limitation of Fe plaque did not significantly (p > 0.05) affect the chlorophyll fluorescence due to cellular regeneration, which was initiated immediately after washing. However, the speciation and uptake rate of As(V) increased significantly and reduced the inhibitory effect of P on the intracellular uptake of As(V) by P. yezoensis. In the culture medium without Fe plaque, approximately 66% of As(V) was removed with Vmax = 0.32 and Km = 1.92. In the absence of Fe plaque, methylated As species, such as dimethylarsinate (DMAA(V)), was recorded 0.28 µmol L-1, while in the presence of Fe plaque, the value was 0.16 µmol L-1. Inorganic trivalent As (As(III)) was absent in the washed samples; however, 0.53 µmol L-1 concentration of As(III) was still found in the presence of Fe plaque on day 7 of incubation. The results indicated that the absence of Fe plaque promoted higher intracellular uptake of As species, reduced the inhibitory effect of P, mitigated the co-precipitation bond between AsFe plaque and enhanced the detoxification process by DMAA excretion from the cell.


Asunto(s)
Arsénico , Arsenicales , Algas Marinas , Biotransformación , Ácido Cacodílico
11.
J Agric Food Chem ; 69(40): 11753-11772, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34597023

RESUMEN

As a result of their nutritive values, algae have been used as a food resource for centuries, and there is a growing interest to use them as enrichment ingredients in food products. However, food product acceptance by consumers is strongly linked to their organoleptic properties, especially the aroma, taste, and a combination of the two, flavor. With regard to edible algae, "fresh seashore", "seafood-like", "cucumber green", and "earthy" are descriptors commonly used to define their aromas. Several families of molecules participate in the diversity and peculiarities of algal aromas: pungent sulfur compounds and marine halogenated components but also herbaceous fatty acid derivatives and fruity-floral terpenoids. In both macroalgae (seaweeds) and microalgae, these compounds are studied from a chemistry point of view (identification and quantification) and a sensorial point of view, involving sensorial evaluation by panelists. As a whole food, a food ingredient, or a feed, algae are valued for their nutritional composition and their health benefits. However, because the acceptance of food by consumers is so strongly linked to its sensorial features, studies have been performed to explore the aromas of algae, their impact on food, their evolution through processing, and their ability to produce selected aromas using biotechnology. This review aims at highlighting algal aromas from seaweed and microalgae as well as their use, their handling, and their processing in the food industry.


Asunto(s)
Algas Marinas , Gusto , Aromatizantes , Odorantes/análisis , Verduras
12.
Microbiome ; 9(1): 201, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641951

RESUMEN

BACKGROUND: Although considered as holobionts, macroalgae and their surface microbiota share intimate interactions that are still poorly understood. Little is known on the effect of environmental parameters on the close relationships between the host and its surface-associated microbiota, and even more in a context of coastal pollutions. Therefore, the main objective of this study was to decipher the impact of local environmental parameters, especially trace metal concentrations, on an algal holobiont dynamics using the Phaeophyta Taonia atomaria as a model. Through a multidisciplinary multi-omics approach combining metabarcoding and untargeted LC-MS-based metabolomics, the epibacterial communities and the surface metabolome of T. atomaria were monitored along a spatio-temporal gradient in the bay of Toulon (Northwestern Mediterranean coast) and its surrounding. Indeed, this geographical area displays a well-described trace metal gradient particularly relevant to investigate the effect of such pollutants on marine organisms. RESULTS: Epibacterial communities of T. atomaria exhibited a high specificity whatever the five environmentally contrasted collecting sites investigated on the NW Mediterranean coast. By integrating metabarcoding and metabolomics analyses, the holobiont dynamics varied as a whole. During the occurrence period of T. atomaria, epibacterial densities and α-diversity increased while the relative proportion of core communities decreased. Pioneer bacterial colonizers constituted a large part of the specific and core taxa, and their decrease might be linked to biofilm maturation through time. Then, the temporal increase of the Roseobacter was proposed to result from the higher temperature conditions, but also the increased production of dimethylsulfoniopropionate (DMSP) at the algal surface which could constitute of the source of carbon and sulfur for the catabolism pathways of these taxa. Finally, as a major result of this study, copper concentration constituted a key factor shaping the holobiont system. Thus, the higher expression of carotenoids suggested an oxidative stress which might result from an adaptation of the algal surface metabolome to high copper levels. In turn, this change in the surface metabolome composition could result in the selection of particular epibacterial taxa. CONCLUSION: We showed that associated epibacterial communities were highly specific to the algal host and that the holobiont dynamics varied as a whole. While temperature increase was confirmed to be one of the main parameters associated to Taonia dynamics, the originality of this study was highlighting copper-stress as a major driver of seaweed-epibacterial interactions. In a context of global change, this study brought new insights on the dynamics of a Mediterranean algal holobiont submitted to heavy anthropic pressures. Video abstract.


Asunto(s)
Microbiota , Algas Marinas , Bacterias/genética , Cobre , Metaboloma , Microbiota/genética
13.
Syst Appl Microbiol ; 44(6): 126269, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34673434

RESUMEN

The flavobacterial genus Zobellia is considered as a model to study macroalgal polysaccharide degradation. The lack of data regarding its prevalence and abundance in coastal habitats constitutes a bottleneck to assess its ecological strategies. To overcome this issue, real-time quantitative PCR (qPCR) and fluorescence in situ hybridization (FISH) methods targeting the 16S rRNA gene were optimized to specifically detect and quantify Zobellia on the surface of diverse macroalgae. The newly designed qPCR primers and FISH probes targeted 98 and 100% of the Zobellia strains in silico and their specificity was confirmed using pure bacterial cultures. The dynamic range of the qPCR assay spanned 8 orders of magnitude from 10 to 108 16S rRNA gene copies and the detection limit was 0.01% relative abundance of Zobellia in environmental samples. Zobellia-16S rRNA gene copies were detected on all surveyed brown, green and red macroalgae, in proportion varying between 0.1 and 0.9% of the total bacterial copies. The absolute and relative abundance of Zobellia varied with tissue aging on the kelp Laminaria digitata. Zobellia cells were successfully visualized in Ulva lactuca and stranded Palmaria palmata surface biofilm using CARD-FISH, representing in the latter 105Zobellia cells·cm-2 and 0.43% of total bacterial cells. Overall, qPCR and CARD-FISH assays enabled robust detection, quantification and localization of Zobellia representatives in complex samples, underlining their ecological relevance as primary biomass degraders potentially cross-feeding other microorganisms.


Asunto(s)
Flavobacteriaceae , Algas Marinas , Flavobacteriaceae/genética , Hibridación Fluorescente in Situ , ARN Ribosómico 16S/genética , Agua de Mar
14.
Future Microbiol ; 16: 1289-1301, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34689597

RESUMEN

COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/tratamiento farmacológico , Océanos y Mares , SARS-CoV-2/efectos de los fármacos , Alcaloides/farmacología , Antiinflamatorios , Antivirales/química , Depsipéptidos , Clorhidrato de Fingolimod/química , Clorhidrato de Fingolimod/farmacología , Humanos , Lectinas , Biología Marina , Simulación del Acoplamiento Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Ficocianina/farmacología , Fitoquímicos , Lectinas de Plantas/química , Lectinas de Plantas/farmacología , Polifenoles/farmacología , Polisacáridos/farmacología , Algas Marinas , Sesquiterpenos/farmacología
15.
Mar Environ Res ; 172: 105508, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34710739

RESUMEN

Temperate reefs are being tropicalized worldwide. In temperate Western Australia, a marine heatwave led to a regime shift from kelp (Ecklonia radiata) dominated to canopy-free reefs, together with an increase in tropical herbivorous fishes that contribute to keeping low kelp abundances and even prevent kelp reestablishment in northern regions. However, whether tropical herbivorous fishes prefer kelps over other seaweeds and/or whether this preference changes with latitude remains untested. Multiple-choice experiments (young kelp vs. other seaweeds) with tropical, subtropical and temperate herbivorous fishes show shifting species-specific preferences and fish-to-fish interference shifting with latitude (assays replicated in two regions four degrees of latitude apart). Against expectations, only the temperate Kyphosus sydneyanus preferred kelp over other seaweeds, but only in the lower latitude region. Siganus fuscescens, the most abundant tropical herbivore in both regions, preferred grazing on turf, suggesting that tropical fish might reduce kelp recruitment by consuming microscopic sporophytes in turf matrix.


Asunto(s)
Kelp , Algas Marinas , Animales , Arrecifes de Coral , Ecosistema , Peces , Herbivoria
16.
Antonie Van Leeuwenhoek ; 114(12): 2189-2203, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34674103

RESUMEN

This work introduces Waterburya agarophytonicola Bonthond and Shalygin gen. nov., sp. nov, a baeocyte producing cyanobacterium that was isolated from the rhodophyte Agarophyton vermiculophyllum (Ohmi) Gurgel et al., an invasive seaweed that has spread across the northern hemisphere. The new species genome reveals a diverse repertoire of chemotaxis and adhesion related genes, including genes coding for type IV pili assembly proteins and a high number of genes coding for filamentous hemagglutinin family (FHA) proteins. Among a genetic basis for the synthesis of siderophores, carotenoids and numerous vitamins, W. agarophytonicola is potentially capable of producing cobalamin (vitamin B12), for which A. vermiculophyllum is an auxotroph. With a taxonomic description of the genus and species and a draft genome, this study provides as a basis for future research, to uncover the nature of this geographically independent association between seaweed and cyanobiont.


Asunto(s)
Cianobacterias , Rhodophyta , Algas Marinas , Cianobacterias/genética , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN
17.
Molecules ; 26(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34641350

RESUMEN

Due to the high consumption of fat-rich processed foods, efforts are being done to reduce their saturated fat (SFA) contents and replace it with polyunsaturated fatty acids (PUFA), creating a necessity to find alternative PUFA sources. Macroalgae, being a promising natural source of healthy food, may be such an alternative. The fatty acid (FA) profile of Fucus spiralis, Bifurcaria bifurcata, Ulva lactuca, and Saccorhiza polyschides were determined through direct transesterification and their seasonal variation was studied. F. spiralis showed the highest FA content overall, B. bifurcata presented the higher PUFA amounts, and U. lactuca and S. polyschides the higher SFA. The production of FA was shown to be influenced by the seasons. Spring and summer seemed to induce the FA production in F. spiralis and B. bifurcata while in U. lactuca the same was verified in winter. U. lactuca presented a ω6/ω3 ratio between 0.59 and 1.38 while B. bifurcata presented a ratio around 1.31. The study on the seasonal variations of the macroalgal FA profile can be helpful to understand the best season to yield FA of interest, such as ALA, EPA, and DHA. It may also provide valuable information on the best culturing conditions for the production of desired FAs.


Asunto(s)
Ácidos Grasos/análisis , Estaciones del Año , Algas Marinas/clasificación , Algas Marinas/metabolismo , Especificidad de la Especie
18.
Antonie Van Leeuwenhoek ; 114(12): 2205-2217, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34661815

RESUMEN

Pseudomonas aeruginosa strain SW1 is an aerobic, motile, Gram-negative, and rod-shaped bacterium isolated from degraded seaweeds. Based on the 16S rRNA gene sequence and MALDI TOF analysis, strain SW1 exhibits 100% similarity to P. aeruginosa DSM 50,071, its closest phylogenetic neighbor. The complete genome of strain SW1 consists of a single circular chromosome with 23,258,857 bp (G + C content of 66%), including 6734 protein-coding sequences, 8 rRNA, and 63 tRNA sequences. The genome of the P. aeruginosa SW1 contains at least 27 genes for the biosynthesis of alginate and other exopolysaccharide involved in biofilm formation. KAAS and GO analysis and functional annotation by COG and CAZymes are consistent with the biosynthesis of alginate. In addition, the presence of antimicrobial resistance, multi-efflux operon, and antibiotic inactivation genes indicate a pathogenic potential similar to strain DSM50071. The high-quality genome and associated annotation provide a starting point to exploit the potential for P. aeruginosa to produce alginate.


Asunto(s)
Pseudomonas aeruginosa , Algas Marinas , Alginatos , Filogenia , Pseudomonas aeruginosa/genética , ARN Ribosómico 16S
19.
Mar Biotechnol (NY) ; 23(5): 809-820, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34595592

RESUMEN

Viewing the considerable potential of marine agar as a source for the sustainable production of energy as well as nature-derived pharmaceutics, this work investigated the catalytic activity of three novel GH50 agarases from the mesophilic marine bacterium Microbulbifer elongatus PORT2 isolated from Indonesian coastal seawaters. The GH50 agarases AgaA50, AgaB50, and AgaC50 were identified through genome analysis; the corresponding genes were cloned and expressed in Escherichia coli BL21 (DE3). All recombinant agarases hydrolyzed ß-p-nitrophenyl galactopyranoside, indicating ß-glycosidase characteristics. AgaA50 and AgaB50 were able to cleave diverse natural agar species derived from Indonesian agarophytes, indicating a promising tolerance of these enzymes for substrate modifications. All three GH50 agarases degraded agarose, albeit with remarkable diversity in their catalytic activity and mode of action. AgaA50 and AgaC50 exerted exolytic activity releasing differently sized neoagarobioses, while AgaB50 showed additional endolytic activity in dependence on the substrate size. Surprisingly, AgaA50 and AgaB50 revealed considerable thermostability, retaining over 75% activity after 1-h incubation at 50 °C. Considering the thermal properties of agar, this makes these enzymes promising candidates for industrial processing.


Asunto(s)
Gammaproteobacteria/química , Glicósido Hidrolasas/aislamiento & purificación , Agar/metabolismo , Proteínas Bacterianas/genética , Escherichia coli , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Algas Marinas/química
20.
Molecules ; 26(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500650

RESUMEN

Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.


Asunto(s)
Nutrientes/química , Phaeophyta/química , Fitoquímicos/química , Sargassum/química , Algas Marinas/química , Antioxidantes/química , Carotenoides/química , Clorofila A/química , Fibras de la Dieta , Humanos , Malasia , Minerales/química , Extractos Vegetales/química , Verduras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...