Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.072
Filtrar
1.
Nat Commun ; 12(1): 1337, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637727

RESUMEN

Identification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Análisis de la Célula Individual/métodos , Animales , Cromatina , Biología Computacional , Epigenómica , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Motora , Análisis de Secuencia de ADN/métodos
2.
Nat Methods ; 18(2): 170-175, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526886

RESUMEN

Haplotype-resolved de novo assembly is the ultimate solution to the study of sequence variations in a genome. However, existing algorithms either collapse heterozygous alleles into one consensus copy or fail to cleanly separate the haplotypes to produce high-quality phased assemblies. Here we describe hifiasm, a de novo assembler that takes advantage of long high-fidelity sequence reads to faithfully represent the haplotype information in a phased assembly graph. Unlike other graph-based assemblers that only aim to maintain the contiguity of one haplotype, hifiasm strives to preserve the contiguity of all haplotypes. This feature enables the development of a graph trio binning algorithm that greatly advances over standard trio binning. On three human and five nonhuman datasets, including California redwood with a ~30-Gb hexaploid genome, we show that hifiasm frequently delivers better assemblies than existing tools and consistently outperforms others on haplotype-resolved assembly.


Asunto(s)
Genoma , Haplotipos , Análisis de Secuencia de ADN/métodos , Algoritmos
5.
Methods Mol Biol ; 2243: 95-105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606254

RESUMEN

High-throughput sequencing machines can read millions of DNA molecules in parallel in a short time and at a relatively low cost. As a consequence, researchers have access to databases with millions of genomic samples. Searching and analyzing these large amounts of data require efficient algorithms.Universal hitting sets are sets of words that must be present in any long enough string. Using small universal hitting sets, it is possible to increase the efficiency of many high-throughput sequencing data analyses. But, generating minimum-size universal hitting sets is a hard problem. In this chapter, we cover our algorithmic developments to produce compact universal hitting sets and some of their potential applications.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , ADN/genética , Humanos , Programas Informáticos
6.
Methods Mol Biol ; 2243: 107-122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606255

RESUMEN

Microbial communities are found across diverse environments, including within and across the human body. As many microbes are unculturable in the lab, much of what is known about a microbiome-a collection of bacteria, fungi, archaea, and viruses inhabiting an environment--is from the sequencing of DNA from within the constituent community. Here, we provide an introduction to whole-metagenome shotgun sequencing studies, a ubiquitous approach for characterizing microbial communities, by reviewing three major research areas in metagenomics: assembly, community profiling, and functional profiling. Though not exhaustive, these areas encompass a large component of the metagenomics literature. We discuss each area in depth, the challenges posed by whole-metagenome shotgun sequencing, and approaches fundamental to the solutions of each. We conclude by discussing promising areas for future research. Though our emphasis is on the human microbiome, the methods discussed are broadly applicable across study systems.


Asunto(s)
Metagenoma/genética , Microbiota/genética , Archaea/genética , Bacterias/genética , Humanos , Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Virus/genética
7.
Methods Mol Biol ; 2243: 183-226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606259

RESUMEN

The ATAC-seq assay has emerged as the most useful, versatile, and widely adaptable method for profiling accessible chromatin regions and tracking the activity of cis-regulatory elements (cREs) in eukaryotes. Thanks to its great utility, it is now being applied to map active chromatin in the context of a very wide diversity of biological systems and questions. In the course of these studies, considerable experience working with ATAC-seq data has accumulated and a standard set of computational tasks that need to be carried for most ATAC-seq analyses has emerged. Here, we review and provide examples of common such analytical procedures (including data processing, quality control, peak calling, identifying differentially accessible open chromatin regions, and variable transcription factor (TF) motif accessibility) and discuss recommended optimal practices.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Cromatina/genética , Eucariontes/genética , Animales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/genética
8.
Methods Mol Biol ; 2243: 283-296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606263

RESUMEN

Multiregion sequencing can advance our understanding of the intratumor heterogeneity and the clonal evolution. Here, we introduced multiple aspects of multiregion sequencing and its analysis, including the study design and sampling strategy, current understanding of the tumor evolution model, and a protocol for multiregion sequencing analysis of DNA-sequencing data.


Asunto(s)
Evolución Clonal/genética , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Estudios Transversales , Exoma/genética , Heterogeneidad Genética , Humanos , Mutación/genética
9.
Methods Mol Biol ; 2218: 355-365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606245

RESUMEN

The stability of RNA transcripts is regulated by signals within their sequences, but the identity of those signals still remain elusive in many biological systems. Recently introduced massively parallel tools for the analysis of regulatory RNA sequences provide the ability to detect functional cis-regulatory sequences of post-transcriptional RNA regulation at a much larger scale and resolution than before. Their application formulates the underlying sequence-based rules and predicts the impact of genetic variations. Here, we describe the application of UTR-Seq, as a strategy to uncover cis-regulatory signals of RNA stability during early zebrafish embryogenesis. The method combines massively parallel reporter assays (MPRA) with computational regression models. It surveys the effect of tens of thousands of regulatory sequences on RNA stability and analyzes the results via regression models to identify sequence signals that impact RNA stability and to predict the in vivo effect of sequence variations.


Asunto(s)
Secuencias Reguladoras de Ácido Ribonucleico/genética , Análisis de Secuencia de ADN/métodos , Animales , Secuencia de Bases , Desarrollo Embrionario/genética , Variación Genética/genética , Estabilidad del ARN/genética , Pez Cebra/genética
10.
Gene ; 777: 145476, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33549716

RESUMEN

Soil bacteria can rapidly adapt to environmental perturbations through horizontal gene transfer. Acidobacteria is one of the most persistent dominant phyla in the soil. However, the role of these organisms in terrestrial ecosystems remains elusive. Here we identified and describe the integrative and conjugative elements (ICEs) in the published complete genomes of Acidobacteria. In total, ten novel ICEs were identified, in which nine were found integrated as three separated monopartite ICEs in the single chromosome sequences of three Acidobacteria. These ICEs carry a repertoire of genes with potential environmental roles, including heavy metal resistance, iron uptake, secondary metabolism, and antibiotic resistance. To our knowledge, these are the first evidence of three monopartite ICEs identified in the single chromosome, and this might be due to the absence of recognizable entry exclusion systems. We hypothesis that the coexistence of multiples ICEs in the chromosome of Acidobacteria might reflect a major advantage for the survival, resistance, and persistence of phylum in the environment.


Asunto(s)
Acidobacteria/genética , Elementos Transponibles de ADN/genética , Genoma Bacteriano/genética , Conjugación Genética/genética , ADN Bacteriano/genética , Bases de Datos Genéticas , Transferencia de Gen Horizontal/genética , Filogenia , Análisis de Secuencia de ADN/métodos
11.
Methods Mol Biol ; 2229: 167-174, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33405221

RESUMEN

Restriction digest analysis and Sanger sequencing are among the most commonly used techniques to check the sequence of synthetic DNA constructs. However, both require careful preparation to select restriction enzymes or DNA primers adapted to the expected constructs sequences. In projects involving manufacturing of large batches of synthetic constructs, the task can be tedious and error-prone. This chapter demonstrates the use of two free and open-source web applications providing fast and automated selection of enzymes and sequencing primers for DNA construct verification.


Asunto(s)
Biología Computacional/métodos , ADN/genética , Análisis de Secuencia de ADN/métodos , Diseño Asistido por Computadora , Enzimas de Restricción del ADN/metabolismo , Programas Informáticos , Biología Sintética , Navegador Web
12.
Nat Methods ; 18(2): 144-155, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398189

RESUMEN

Subclonal reconstruction from bulk tumor DNA sequencing has become a pillar of cancer evolution studies, providing insight into the clonality and relative ordering of mutations and mutational processes. We provide an outline of the complex computational approaches used for subclonal reconstruction from single and multiple tumor samples. We identify the underlying assumptions and uncertainties in each step and suggest best practices for analysis and quality assessment. This guide provides a pragmatic resource for the growing user community of subclonal reconstruction methods.


Asunto(s)
ADN de Neoplasias/genética , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Algoritmos , Humanos , Polimorfismo de Nucleótido Simple
13.
Neuron ; 109(1): 11-26, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33412093

RESUMEN

Single-cell sequencing technologies, including transcriptomic and epigenomic assays, are transforming our understanding of the cellular building blocks of neural circuits. By directly measuring multiple molecular signatures in thousands to millions of individual cells, single-cell sequencing methods can comprehensively characterize the diversity of brain cell types. These measurements uncover gene regulatory mechanisms that shape cellular identity and provide insight into developmental and evolutionary relationships between brain cell populations. Single-cell sequencing data can aid the design of tools for targeted functional studies of brain circuit components, linking molecular signatures with anatomy, connectivity, morphology, and physiology. Here, we discuss the fundamental principles of single-cell transcriptome and epigenome sequencing, integrative computational analysis of the data, and key applications in neuroscience.


Asunto(s)
Encéfalo/metabolismo , Epigenoma/fisiología , Análisis de la Célula Individual/métodos , Transcriptoma/fisiología , Metilación de ADN/fisiología , Epigenómica/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos
14.
Mol Genet Genomics ; 296(2): 313-330, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398500

RESUMEN

The main stem node number (MSN) is a trait related to geographic adaptation, plant architecture and yield potential of soybean. The QTL-allele constitution of the Chinese Cultivated Soybean Population (CCSP) was identified using the RTM-GWAS (restricted two-stage multi-locus genome-wide association study) procedure, from which a QTL-allele matrix was established and then separated into submatrices to explore the genetic structure, evolutionary differentiation, breeding potential and candidate genes of MSN in CCSP. The MSN of 821 accessions varied from 8.8 to 31.1, with an average of 16.3 in Nanjing, China (32.07° N, 118.62° E), where the MSNs of all the materials could be evaluated in a standardized manner. Among the six geo-seasonal subpopulations, the MSN varied from 21.7 in a southern summer-autumn-sowing subpopulation (SA-IV) down to 13.5 in a northeastern spring-sowing subpopulation (SP-I). The materials were genotyped with restriction site-associated DNA-sequencing. Totally 142 main-effect QTLs (73.24% new) with 560 alleles contributing 72.98% to the phenotypic variance were identified. The evolutionary QTL-allele changes in MSN from SA-IV through SP-I showed that inheritance (78.93% of alleles) was the primary factor influencing the evolution of this trait, followed by allele emergence (19.64% alleles), allele exclusion (1.43% alleles), and recombination among retained alleles. In the evolutionary changes, 70 QTLs, including 12 newly emerged QTLs, with 118 alleles were involved. An increase potential of 2-8 nodes was predicted and 112 candidate genes were annotated and preliminarily verified with χ2-tests in the CCSP. The RTM-GWAS showed powerful in detecting QTL-allele system, assessing evolution factors, predicting optimal crosses and identifying candidate genes in a germplasm population.


Asunto(s)
Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN/métodos , Soja/crecimiento & desarrollo , Adaptación Fisiológica , Agricultura , China , Evolución Molecular , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/genética , Estaciones del Año , Soja/genética
15.
Mol Genet Genomics ; 296(2): 457-471, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33469716

RESUMEN

Next-generation sequencing technologies have opened a new era of research in population genetics. Following these new sequencing opportunities, the use of restriction enzyme-based genotyping techniques, such as restriction site-associated DNA sequencing (RAD-seq) or double-digest RAD-sequencing (ddRAD-seq), has dramatically increased in the last decade. From DNA sampling to SNP calling, the laboratory and bioinformatic parameters of enzyme-based techniques have been investigated in the literature. However, the impact of those parameters on downstream analyses and biological results remains less documented. In this study, we investigated the effects of sevral pre- and post-sequencing settings on ddRAD-seq results for two biological systems: a complex of butterfly species (Coenonympha sp.) and several populations of common beech (Fagus sylvatica). Our results suggest that pre-sequencing parameters (i.e., DNA quantity, number of PCR cycles during library preparation) have a significant impact on the number of recovered reads and SNPs, on the number of unique alleles and on individual heterozygosity. In the same way, we found that post-sequencing settings (i.e., clustering and minimum coverage thresholds) influenced loci reconstruction (e.g., number of loci, mean coverage) and SNP calling (e.g., number of SNPs; heterozygosity) but had only a marginal impact on downstream analyses (e.g., measure of genetic differentiation, estimation of individual admixture, and demographic inferences). In addition, replication analyses confirmed the reproducibility of the ddRAD-seq procedure. Overall, this study assesses the degree of sensitivity of ddRAD-seq data to pre- and post-sequencing protocols, and illustrates its robustness when studying population genetics.


Asunto(s)
Mariposas Diurnas/genética , Fagus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Alelos , Animales , Biología Computacional/métodos , Enzimas de Restricción del ADN/metabolismo , Genética de Población , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
16.
Plant Mol Biol ; 105(4-5): 497-511, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33415608

RESUMEN

KEY MESSAGE: The study shows the biochemical and enzymatic divergence between the two aldehyde-alcohol dehydrogenases of the alga Polytomella sp., shedding light on novel aspects of the enzyme evolution amid unicellular eukaryotes. Aldehyde-alcohol dehydrogenases (ADHEs) are large metalloenzymes that typically perform the two-step reduction of acetyl-CoA into ethanol. These enzymes consist of an N-terminal acetylating aldehyde dehydrogenase domain (ALDH) and a C-terminal alcohol dehydrogenase (ADH) domain. ADHEs are present in various bacterial phyla as well as in some unicellular eukaryotes. Here we focus on ADHEs in microalgae, a diverse and polyphyletic group of plastid-bearing unicellular eukaryotes. Genome survey shows the uneven distribution of the ADHE gene among free-living algae, and the presence of two distinct genes in various species. We show that the non-photosynthetic Chlorophyte alga Polytomella sp. SAG 198.80 harbors two genes for ADHE-like enzymes with divergent C-terminal ADH domains. Immunoblots indicate that both ADHEs accumulate in Polytomella cells growing aerobically on acetate or ethanol. ADHE1 of ~ 105-kDa is found in particulate fractions, whereas ADHE2 of ~ 95-kDa is mostly soluble. The study of the recombinant enzymes revealed that ADHE1 has both the ALDH and ADH activities, while ADHE2 has only the ALDH activity. Phylogeny shows that the divergence occurred close to the root of the Polytomella genus within a clade formed by the majority of the Chlorophyte ADHE sequences, next to the cyanobacterial clade. The potential diversification of function in Polytomella spp. unveiled here likely took place after the loss of photosynthesis. Overall, our study provides a glimpse at the complex evolutionary history of the ADHE in microalgae which includes (i) acquisition via different gene donors, (ii) gene duplication and (iii) independent evolution of one of the two enzymatic domains.


Asunto(s)
Alcohol Deshidrogenasa/genética , Aldehído Deshidrogenasa/genética , Chlorophyta/genética , Variación Genética , Microalgas/genética , Filogenia , Alcohol Deshidrogenasa/clasificación , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/clasificación , Aldehído Deshidrogenasa/metabolismo , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Chlorophyta/enzimología , Espectrometría de Masas/métodos , Microalgas/enzimología , Proteómica/métodos , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de Aminoácido
17.
Arch Virol ; 166(2): 389-402, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33385245

RESUMEN

Recombination is an important phenomenon that accelerates evolution and enriches the genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV). Recombinant PRRSV isolates sometimes have different genetic backgrounds. In this study, we report a recombinant PRRSV (SD-YL1712) isolated from a pig farm. The genome of SD-YL1712 is 15,014 nucleotides in length, and its nucleotide and amino acid sequence conservation is higher than that of PRRSV strain JXA1 except within the NSP2 region. The NSP2 region of SDYL1712 shares the highest nucleotide (85.9%) and amino acid (84.1%) sequence identity with PRRSV strain NADC30. SD-YL1712 was found to contain a characteristic 131-amino-acid deletion in the NSP2 region. Two recombination breakpoints were detected at nt 2134 and nt 3958 within the NSP2 region, which revealed that SD-YL1712 originated from a recombination event between NADC30-like and HP-PRRSV-derived MLV-like strains. Interestingly, SD-YL1712 had an additional deletion at position 586, similar to that found in strain TJnh1501. Moreover, the pathogenicity of strain SD-YL1712 was found to be similar to that of HP-PRRSV JXA1, which was higher than that of the CH1a strain. Further analysis indicated that SD-YL1712 might be a transitional intermediate in the evolution of TJbd1401 to TJnh1501.


Asunto(s)
Genoma Viral/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Recombinación Genética/genética , Secuencia de Aminoácidos , Animales , China , Evolución Molecular , Granjas , Variación Genética/genética , Genómica , Filogenia , Análisis de Secuencia de ADN/métodos , Porcinos , Proteínas no Estructurales Virales/genética , Virulencia/genética
18.
Arch Virol ; 166(2): 645-649, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33386489

RESUMEN

Pleioblastus mosaic virus (PleMV) is a tentative member of the genus Potyvirus in the family Potyviridae and was discovered in bamboo with mosaic symptoms in Tokyo, Japan. Since no information on the genome sequence of PleMV has been reported, its taxonomic position has long been uncertain. Here, we report the first complete genome sequences of two distinct PleMV isolates. Excluding the 3'-terminal poly(A) tail, their genomic RNA sequences consist of 9,634 and 9,643 nucleotides (nt); both contain a large open reading frame (ORF) encoding a polyprotein and a small ORF termed PIPO. The large ORFs of the two isolates share 79.2% and 87.6% sequence identity at the nucleotide (nt) and amino acid (aa) level, respectively, and were found to have the highest nt and aa sequence identity (69.0% and 69.9%) to the potyvirus johnsongrass mosaic virus (JGMV). Phylogenetic analysis showed that PleMV is most closely related to JGMV but forms its own clade. These results suggest that PleMV is a distinct member of the genus Potyvirus.


Asunto(s)
Genoma Viral/genética , Potyvirus/genética , Secuencia de Aminoácidos , Secuencia de Bases , Genómica/métodos , Japón , Sistemas de Lectura Abierta/genética , Filogenia , Poliproteínas/genética , ARN Viral/genética , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos
19.
Arch Virol ; 166(2): 439-449, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33389105

RESUMEN

Chicken infectious anemia (CIA), caused by chicken anemia virus (CAV), is an important immunosuppressive disease that seriously threatens the global poultry industry. Here, we isolated and identified 30 new CAV strains from CAV-positive flocks. The VP1 genes of these strains were sequenced and analyzed at the nucleotide and amino acid levels and were found to have very similar nucleotide sequences (> 97% identity); however, they showed 93.9-100.0% sequence identity to the VP1 genes of 55 reference strains. Furthermore, alignment of the deduced amino acid sequences revealed some unique mutations. Phylogenetic analysis indicated the division of VP1 amino acid sequences into two groups (A and B) and four subgroups (A1, A2, A3 and A4). Interestingly, 22 of the newly isolated strains and some Asian reference strains belonged to the A1 group, whereas the remaining eight new isolates belonged to the A3 group. To evaluate the pathogenicity of the epidemic CAV strains from China, the representative strains CAV-JL16/8901 and CAV-HeN19/3001 and the reference strain Cux-1 were selected for animal experiments. Chickens infected with the isolates and reference strain all showed thymus atrophy and bone marrow yellowing. The mortality rates for CAV-JL16/8901, CAV-HeN19/3001, and the reference strain was 30%, 20%, and 0%, respectively, indicating that the epidemic strains pose a more serious threat to chickens. We not only analyzed the molecular evolution of the epidemic strains but also showed for the first time that the epidemic strains in China are more pathogenic than reference strain Cux-1. Effective measures should be established to prevent the spread of CIA in China.


Asunto(s)
Virus de la Anemia del Pollo/genética , Virus de la Anemia del Pollo/patogenicidad , Pollos/virología , Animales , China , Infecciones por Circoviridae/virología , ADN Viral/genética , Evolución Molecular , Genotipo , Epidemiología Molecular/métodos , Filogenia , Enfermedades de las Aves de Corral/virología , Análisis de Secuencia de ADN/métodos , Virulencia/genética
20.
Arch Virol ; 166(2): 601-606, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33392816

RESUMEN

Bacteriophage 8P was isolated with a Pseudomonas stutzeri strain isolated from an oil reservoir as its host bacterium. The phage genome comprises 63,753 base pairs with a G+C content of 64.35. The phage encodes 63 predicted proteins, and 27 of them were functionally assigned. No tRNA genes were found. Comparative genomics analysis showed that 8P displayed some relatedness to F116-like phages (78% identity, 20% query coverage). The genome has very low sequence similarity to the other phage genomes in the GenBank database and Viral Sequence Database. Based on whole-genome analysis and transmission electron microscopy imaging, 8P is proposed to be a member of a new species in the genus Hollowayvirus, family Podoviridae.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Fagos Pseudomonas/genética , Fagos Pseudomonas/aislamiento & purificación , Pseudomonas stutzeri/virología , Composición de Base/genética , ADN Viral/genética , Genoma Viral/genética , Genómica/métodos , Especificidad del Huésped/genética , Filogenia , Podoviridae/genética , Podoviridae/aislamiento & purificación , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...