Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341.228
Filtrar
1.
Med Oncol ; 41(8): 193, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955918

RESUMEN

Preclinical and clinical research showed that immune checkpoint blockade provides beneficial effects for many patients with liver cancer. This study aimed to assess the effect of CTLA-4-specific siRNA on the proliferation, cell cycle, migration, and apoptosis of HePG2 cells. Transfection of siRNA was performed by electroporation. The viability of cells was determined through MTT assay. Flow cytometry was performed to investigate the cell cycle and apoptosis rate, and the wound-healing assay was used to determine HepG2 cells migration. The expression levels of CTLA-4, c-Myc, Ki-67, BCL-2, BAX, caspase-9 (CAS9), and MMP-2,9,13 were measured by qRT-PCR. Transfection of specific CTLA-4-siRNA significantly inhibited the expression of the CTLA-4 gene. Also, our results revealed that CTLA-4 silencing diminished the proliferation and migration as well as induced the apoptosis of HePG2 cells. CTLA-4-siRNA transfection induced the cell cycle arrest in G2 phase. Moreover, CTLA-4-siRNA transfection reduced the expression levels of c-Myc, Ki-67, BCL-2, MMP-2,9,13, and elevated the expression levels of BAX and caspase-9. Our results suggest that silencing CTLA-4 through specific siRNA may be a promising strategy for future therapeutic interventions for treating liver cancer.


Asunto(s)
Apoptosis , Antígeno CTLA-4 , Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Neoplasias Hepáticas , ARN Interferente Pequeño , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Células Hep G2 , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/antagonistas & inhibidores , Movimiento Celular/genética , ARN Interferente Pequeño/genética , Silenciador del Gen
2.
Drug Dev Res ; 85(5): e22231, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38956926

RESUMEN

The close association between inflammation and cancer inspired the synthesis of a series of 1,3,4-oxadiazole derivatives (compounds H4-A-F) of 6-methoxynaphtalene. The chemical structures of the new compounds were validated utilizing Fourier-transform infrared, proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance spectroscopic techniques and CHN analysis. Computer-aided drug design methods were used to predict the compounds biological target, ADMET properties, toxicity, and to evaluate the molecular similarities between the design compounds and erlotinib, a standard epidermal growth factor receptor (EGFR) inhibitor. The antiproliferative effects of the new compounds were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, cell cycle analysis, apoptosis detection by microscopy, quantitative reverse transcription-polymerase chain reaction, and immunoblotting, and EGFR enzyme inhibition assay. In silico analysis of the new oxadiazole derivatives indicated that these compounds target EGFR, and that compounds H4-A, H4-B, H4-C, and H4-E show similar molecular properties to erlotinib. Additionally, the results indicated that none of the synthesized compounds are carcinogenic, and that compounds H4-A, H4-C, and H4-F are nontoxic. Compound H4-A showed the best-fit score against EGFR pharmacophore model, however, the in vitro studies indicated that compound H4-C was the most cytotoxic. Compound H4-C caused cytotoxicity in HCT-116 colorectal cancer cells by inducing both apoptosis and necrosis. Furthermore, compounds H4-D, H4-C, and H4-B had potent inhibitory effect on EGFR tyrosine kinase that was comparable to erlotinib. The findings of this inquiry offer a basis for further investigation into the differences between the synthesized compounds and erlotinib. However, additional testing will be needed to assess all of these differences and to identify the most promising compound for further research.


Asunto(s)
Antineoplásicos , Receptores ErbB , Simulación del Acoplamiento Molecular , Naproxeno , Oxadiazoles , Receptores ErbB/antagonistas & inhibidores , Humanos , Oxadiazoles/farmacología , Oxadiazoles/química , Oxadiazoles/síntesis química , Naproxeno/farmacología , Naproxeno/análogos & derivados , Naproxeno/química , Naproxeno/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proliferación Celular/efectos de los fármacos
3.
Drug Dev Res ; 85(5): e22229, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38958104

RESUMEN

Indole-based agents are frequently used in targeted or supportive therapy of several cancers. In this study, we investigated the anticancer properties of originally synthesized novel indolin-2-one derivatives (6a-d) against Malignant Mesothelioma, Breast cancer, and Colon Cancer cells. Our results revealed that all derivatives were effectively delayed cell proliferation by inhibiting the ERK1/2, AKT, and STAT3 signaling pathways in a concentration-dependent manner. Additionally, these variants induced cell cycle arrest in the S phase, accompanied by elevated levels of p21 and p27 expressions. Derivatives also initiated mitochondrial apoptosis through the upregulation of Bax and downregulation of Bcl-2 proteins, leading to the activation of caspase 3 and PARP cleavage in exposed cells. Remarkably, three of the indolin-2-one derivatives displayed significant selectivity towards Breast and Colon Cancer cells, with compound 6d promising as the most potent and wide spectral one for all cancer cell lines.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Indoles , Humanos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Indoles/farmacología , Indoles/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos
4.
FASEB J ; 38(13): e23769, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958951

RESUMEN

Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.


Asunto(s)
Apigenina , Glucuronatos , Sistema de Señalización de MAP Quinasas , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Ratones , Apigenina/farmacología , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Inflamación/patología
5.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 391-395, 2024 Apr 14.
Artículo en Chino | MEDLINE | ID: mdl-38951069

RESUMEN

The aim of this study was to investigate the effects of polyphyllin Ⅶ (PP Ⅶ) on proliferation, apoptosis, and cell cycle of diffuse large B-cell lymphoma (PLBCL) cell lines U2932 and SUDHL-4. The DLBCL cell lines were divided into a control group and a PPⅦ group, and experiments were conducted using MTT assay, flow cytometry, and Western blotting.Results showed that compared with the control group, PPⅦ significantly inhibited the proliferation of U2932 and SUDHL-4 cells (P<0.05). Apoptosis assays demonstrated that treatment with 0.50 and 1.00 µmol/L PP Ⅶ significantly increased the apoptosis rates of both cell lines (P<0.05), upregulated apoptosis-related proteins, and downregulated Bcl-2 protein level (P<0.05). Cell cycle analysis revealed that PPⅦ treatment led to an increase in G0/G1-phase cells (P<0.05) and a decrease in G2/M-phase cells (P<0.05), significantly downregulated cyclin D1, CDK4, CDK6, and survivin protein expression (P<0.05). In conclusion, PPⅦ exerted anti-lymphoma effects by inhibiting proliferation, promoting apoptosis, and inducing G0/G1 phase arrest in DLBCL cells.


Asunto(s)
Apoptosis , Ciclo Celular , Proliferación Celular , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ciclo Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Diosgenina/farmacología , Diosgenina/análogos & derivados , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo
8.
J Biochem Mol Toxicol ; 38(7): e23761, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952040

RESUMEN

Non-small cell cancer (NSCLC) is the most common cancer in the world, but its effective therapeutic methods are limited. Tilianin and sufentanil alleviate various human tumors. This research aimed to clarify the functions and mechanisms of Tilianin and sufentanil in NSCLC. The functions of Tilianin and sufentanil on NSCLC cell viability, apoptosis, mitochondrial dysfunction, and immunity in vitro were examined using Cell Counting Kit-8 assay, flow cytometry, reactive oxygen species level analysis, CD8+ T cell percentage analysis, Western blot, and enzyme-linked immunosorbent assay, respectively. The molecular mechanism regulated by Tilianin and sufentanil in NSCLC was assessed using Western blot, and immunofluorescence assays. Meanwhile, the roles of Tilianin and sufentanil in NSCLC tumor growth, apoptosis, and immunity in vivo were determined by establishing a tumor xenograft mouse model, immunohistochemistry, and Western blot assays. When sufentanil concentration was proximity 2 nM, the inhibition rate of NSCLC cell viability was 50%. The IC50 for A549 cells was 2.36 nM, and the IC50 for H1299 cells was 2.18 nM. The IC50 of Tilianin for A549 cells was 38.7 µM, and the IC50 of Tilianin for H1299 cells was 44.6 µM. Functionally, 0.5 nM sufentanil and 10 µM Tilianin reduced NSCLC cell (A549 and H1299) viability in a dose-dependent manner. Also, 0.5 nM sufentanil and 10 µM Tilianin enhanced NSCLC cell apoptosis, yet this impact was strengthened after a combination of Tilianin and Sufentanil. Furthermore, 0.5 nM sufentanil and 10 µM Tilianin repressed NSCLC cell mitochondrial dysfunction and immunity, and these impacts were enhanced after a combination of Tilianin and Sufentanil. Mechanistically, 0.5 nM sufentanil and 10 µM Tilianin repressed the NF-κB pathway in NSCLC cells, while this repression was strengthened after a combination of Tilianin and Sufentanil. In vivo experimental data further clarified that 1 µg/kg sufentanil and 10 mg/kg Tilianin reduced NSCLC growth, immunity, and NF-κB pathway-related protein levels, yet these trends were enhanced after a combination of Tilianin and Sufentanil. Tilianin strengthened the antitumor effect of sufentanil in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Sufentanilo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Sufentanilo/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Ratones , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Células A549 , Ratones Desnudos , Sinergismo Farmacológico , Línea Celular Tumoral , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Sulfatos de Condroitina/farmacología , Venenos de Anfibios
9.
PeerJ ; 12: e17672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952967

RESUMEN

Background: Mitochondrial creatine kinase (MtCK) plays a pivotal role in cellular energy metabolism, exhibiting enhanced expression in various tumors, including colorectal cancer (CRC). Creatine kinase mitochondrial 2 (CKMT2) is a subtype of MtCK; however, its clinical significance, biological functions, and underlying molecular mechanisms in CRC remain elusive. Methods: We employed immunohistochemical staining to discern the expression of CKMT2 in CRC and adjacent nontumor tissues of patients. The correlation between CKMT2 levels and clinical pathological factors was assessed. Additionally, we evaluated the association between CKMT2 and the prognosis of CRC patients using Kaplan-Meier survival curves and Cox regression analysis. Meanwhile, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression levels of CKMT2 in different CRC cell lines. Finally, we explored the biological functions and potential molecular mechanisms of CKMT2 in CRC cells through various techniques, including qRT-PCR, cell culture, cell transfection, western blot, Transwell chamber assays, flow cytometry, and co-immunoprecipitation. Results: We found that CKMT2 was significantly overexpressed in CRC tissues compared with adjacent nontumor tissues. The expression of CKMT2 is correlated with pathological types, tumor size, distant metastasis, and survival in CRC patients. Importantly, CKMT2 emerged as an independent prognostic factor through Cox regression analysis. Experimental downregulation of CKMT2 expression in CRC cell lines inhibited the migration and promoted apoptosis of these cells. Furthermore, we identified a novel role for CKMT2 in promoting aerobic glycolysis in CRC cells through interaction with lactate dehydrogenase B (LDHB). Conclusion: In this study, we found the elevated expression of CKMT2 in CRC, and it was a robust prognostic indicator in CRC patients. CKMT2 regulates glucose metabolism via amplifying the Warburg effect through interaction with LDHB, which promotes the growth and progression of CRC. These insights unveil a novel regulatory mechanism by which CKMT2 influences CRC and provide promising targets for future CRC therapeutic interventions.


Asunto(s)
Neoplasias Colorrectales , Efecto Warburg en Oncología , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Masculino , Femenino , Línea Celular Tumoral , Pronóstico , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/genética , Progresión de la Enfermedad , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Persona de Mediana Edad , Proliferación Celular , Apoptosis , Regulación Neoplásica de la Expresión Génica
10.
PeerJ ; 12: e17619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952980

RESUMEN

Background: Andrographolide (Andro), an extract of Andrographis paniculate (Burm.f.) Wall. ex Nees (Acanthaceae), possesses diverse biologically active properties. However, the precise mechanisms and effects of Andro on pancreatic cancer (PC) remain unclear. Methods: The cytotoxic potential of Andro and underlying mechanism towards PC cells was investigated through in vitro experiments and a xenograft mouse model. PC cells were first subjected to varying concentrations of Andro. The reactive oxygen species (ROS) was assessed using flow cytometry and DCFH-DA staining. The apoptosis rate was detected by flow cytometry. Additionally, western blot was applied to evaluate the expression levels of cleaved-caspase-3, DJ-1, LC3-I, LC3-II, and p62. To further elucidate the involvement of ROS accumulation and autophagy, we employed N-acetylcysteine as a scavenger of ROS and 3-Methyladenine as an inhibitor of autophagy. Results: Andro demonstrated potent anti-proliferative effects on PC cells and induced apoptosis, both in vitro and in vivo. The cytotoxicity of Andro on PC cells was counteracted by DJ-1 overexpression. The reduction in DJ-1 expression caused by Andro led to ROS accumulation, subsequently inhibiting the growth of PC cells. Furthermore, Andro stimulated cytoprotective autophagy, thus weakening the antitumor effect. Pharmacological blockade of autophagy further enhanced the antitumor efficacy of Andro. Conclusion: Our study indicated that ROS accumulation induced by the DJ-1 reduction played a key role in Andro-mediated PC cell inhibition. Furthermore, the protective autophagy induced by the Andro in PC cells is a mechanism that needs to be addressed in future studies.


Asunto(s)
Apoptosis , Autofagia , Diterpenos , Neoplasias Pancreáticas , Proteína Desglicasa DJ-1 , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Diterpenos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Autofagia/efectos de los fármacos , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Animales , Humanos , Ratones , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
11.
Front Immunol ; 15: 1372956, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953033

RESUMEN

Our study aimed to elucidate the role of Galectin-1 (Gal-1) role in the immunosuppressive tumor microenvironment (TME) of prostate cancer (PCa). Our previous findings demonstrated a correlation between elevated Gal-1 expression and advanced PCa stages. In this study, we also observed that Gal-1 is expressed around the tumor stroma and its expression level is associated with PCa progression. We identified that Gal-1 could be secreted by PCa cells, and secreted Gal-1 has the potential to induce T cell apoptosis. Gal-1 knockdown or inhibition of Gal-1 function by LLS30 suppresses T cell apoptosis resulting in increased intratumoral T cell infiltration. Importantly, LLS30 treatment significantly improved the antitumor efficacy of anti-PD-1 in vivo. Mechanistically, LLS30 binds to the carbohydrate recognition domain (CRD) of Gal-1, disrupting its binding to CD45 leading to the suppression of T cell apoptosis. In addition, RNA-seq analysis revealed a novel mechanism of action for LLS30, linking its tumor-intrinsic oncogenic effects to anti-tumor immunity. These findings suggested that tumor-derived Gal-1 contributes to the immunosuppressive TME in PCa by inducing apoptosis in effector T cells. Targeting Gal-1 with LLS30 may offer a strategy to enhance anti-tumor immunity and improve immunotherapy.


Asunto(s)
Apoptosis , Galectina 1 , Inmunoterapia , Neoplasias de la Próstata , Linfocitos T , Microambiente Tumoral , Masculino , Galectina 1/genética , Galectina 1/metabolismo , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Humanos , Animales , Microambiente Tumoral/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
12.
Int J Nanomedicine ; 19: 6463-6483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946882

RESUMEN

Purpose: Mitochondrial oxidative stress is an important factor in cell apoptosis. Cerium oxide nanomaterials show great potential for scavenging free radicals and simulating superoxide dismutase (SOD) and catalase (CAT) activities. To solve the problem of poor targeting of cerium oxide nanomaterials, we designed albumin-cerium oxide nanoclusters (TPP-PCNLs) that target the modification of mitochondria with triphenyl phosphate (TPP). TPP-PCNLs are expected to simulate the activity of superoxide dismutase, continuously remove reactive oxygen species, and play a lasting role in radiation protection. Methods: First, cerium dioxide nanoclusters (CNLs), polyethylene glycol cerium dioxide nanoclusters (PCNLs), and TPP-PCNLs were characterized in terms of their morphology and size, ultraviolet spectrum, dispersion stability and cellular uptake, and colocalization Subsequently, the anti-radiation effects of TPP-PCNLs were investigated using in vitro and in vivo experiments including cell viability, apoptosis, comet assays, histopathology, and dose reduction factor (DRF). Results: TPP-PCNLs exhibited good stability and biocompatibility. In vitro experiments indicated that TPP-PCNLs could not only target mitochondria excellently but also regulate reactive oxygen species (ROS)levels in whole cells. More importantly, TPP-PCNLs improved the integrity and functionality of mitochondria in irradiated L-02 cells, thereby indirectly eliminating the continuous damage to nuclear DNA caused by mitochondrial oxidative stress. TPP-PCNLs are mainly targeted to the liver, spleen, and other extramedullary hematopoietic organs with a radiation dose reduction factor of 1.30. In vivo experiments showed that TPP-PCNLs effectively improved the survival rate, weight change, hematopoietic function of irradiated animals. Western blot experiments have confirmed that TPP-PCNLs play a role in radiation protection by regulating the mitochondrial apoptotic pathway. Conclusion: TPP-PCNLs play a radiologically protective role by targeting extramedullary hematopoietic organ-liver cells and mitochondria to continuously clear ROS.


Asunto(s)
Apoptosis , Cerio , Hematopoyesis , Mitocondrias , Especies Reactivas de Oxígeno , Cerio/química , Cerio/farmacología , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Protectores contra Radiación/farmacología , Protectores contra Radiación/química , Humanos , Protección Radiológica/métodos , Línea Celular
13.
Front Immunol ; 15: 1359494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947328

RESUMEN

Sialic acids are found as terminal sugars on glycan structures on cellular surfaces. T cells carry these sialoglycans abundantly, and they are thought to serve multiple functions in cell adhesion, cell migration, and protection from complement attack. We studied the role of sialoglycans on T cells in a mouse model with a T cell-specific deletion of cytidine monophosphate-sialic acid synthase (CMAS), the enzyme that is crucial for the synthesis of sialoglycans. These mice showed a T-cell deficiency in peripheral lymphoid organs. Many T cells with an undeleted Cmas allele were found in the periphery, suggesting that they escaped the Cre-mediated deletion. The remaining peripheral T cells of T cell-specific Cmas KO mice had a memory-like phenotype. Additional depletion of the complement factor C3 could not rescue the phenotype, showing that the T-cell defect was not caused by a host complement activity. Cmas-deficient T cells showed a high level of activated caspase 3, indicating an ongoing apoptosis. In bone marrow chimeric cellular transfer experiments, we observed a strong competitive disadvantage of Cmas-deficient T cells compared to wild-type T cells. These results show that sialoglycans on the surface of T cells are crucial for T-cell survival and maintenance. This function has not been recognized before and is similar to the function of sialoglycans on B cells.


Asunto(s)
Ratones Noqueados , Ácidos Siálicos , Linfocitos T , Animales , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ácidos Siálicos/metabolismo , Supervivencia Celular , Ratones Endogámicos C57BL , Apoptosis , Complemento C3/metabolismo , Complemento C3/inmunología , Complemento C3/genética , Oxigenasas de Función Mixta
14.
J Biochem Mol Toxicol ; 38(7): e23758, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963134

RESUMEN

Glioma is a central nervous system (CNS) malignant tumor with high heterogeneity and mortality, which severely threatens the health of patients. The overall survival of glioma patients is relatively short and it is critical to identify new molecular targets for developing effective treatment strategies. UBE2K is a ubiquitin conjugating enzyme with oncogenic function in several malignant tumors. However, whether UBE2K participates in gliomas remains unknown. Herein, in glioma cells, UBE2K was found highly expressed in U87 and U251 cells. Subsequently, U87 and U251 cells were transfected with si-UBE2K to silence UBE2K, with the si-NC transfection as the negative control. In both U87 and U251 cells, the cell viability was sharply reduced by transfecting si-UBE2K for 48 and 72 h. Markedly decreased colony number, reduced number of migrated cells and invaded cells, and declined relative wound healing rate were observed in si-UBE2K transfected U87 and U251 cells. Moreover, the Bcl-2 level was markedly reduced, while the Bax and cleaved-caspase-3 levels were sharply increased in U87 and U251 cells after the si-UBE2K transfection. Furthermore, the p62 level was signally declined, while the Beclin-1 and LC-3 II/I levels were greatly increased in U87 and U251 cells by the si-UBE2K transfection. Furthermore, the facilitating effect of si-UBE2K on the apoptosis and autophagy in U87 and U251 cells was abolished by the coculture of 3-MA, an inhibitor of autophagy. Collectively, UBE2K facilitated the in vitro growth of glioma cells, possibly by inhibiting the autophagy-related apoptosis, which might be a promising target for treating glioma.


Asunto(s)
Apoptosis , Autofagia , Glioma , Enzimas Ubiquitina-Conjugadoras , Humanos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Glioma/patología , Glioma/metabolismo , Glioma/genética , Línea Celular Tumoral , Silenciador del Gen , Proliferación Celular , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
15.
FASEB J ; 38(13): e23772, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963337

RESUMEN

Ovarian cancer is one of the most common gynecologic malignancies that has a poor prognosis. THUMPD3-AS1 is an oncogenic long noncoding RNA (lncRNA) in several cancers. Moreover, miR-320d is downregulated and inhibited proliferation in ovarian cancer cells, whereas ARF1 was upregulated and promoted the malignant progression in epithelial ovarian cancer. Nevertheless, the role of THUMPD3-AS1 in ovarian cancer and the underlying mechanism has yet to be elucidated. Human normal ovarian epithelial cells (IOSE80) and ovarian cancer cell lines (CAVO3, A2780, SKOV3, OVCAR3, and HEY) were adopted for in vitro experiments. The functional roles of THUMPD3-AS1 in cell viability and apoptosis were determined using CCK-8, flow cytometry, and TUNEL assays. Western blot was performed to assess the protein levels of ARF1, Bax, Bcl-2, and caspase 3, whereas RT-qPCR was applied to measure ARF1 mRNA, THUMPD3-AS1, and miR-320d levels. The targeting relationship between miR-320d and THUMPD3-AS1 or ARF1 was validated with dual luciferase assay. THUMPD3-AS1 and ARF1 were highly expressed in ovarian cancer cells, whereas miR-320d level was lowly expressed. THUMPD3-AS1 knockdown was able to repress cell viability and accelerate apoptosis of OVCAR3 and SKOV3 cells. Also, THUMPD3-AS1 acted as a sponge of miR-320d, preventing the degradation of ARF1. MiR-320d downregulation reversed the tumor suppressive function induced by THUMPD3-AS1 depletion. Additionally, miR-320d overexpression inhibited ovarian cancer cell viability and accelerated apoptosis, which was overturned by overexpression of ARF1. THUMPD3-AS1 inhibited ovarian cancer cell apoptosis by modulation of miR-320d/ARF1 axis. The discoveries might provide a prospective target for ovarian cancer treatment.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Apoptosis , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Apoptosis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Proliferación Celular
16.
Nat Commun ; 15(1): 5565, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956062

RESUMEN

Long-term treatment of myocardial infarction is challenging despite medical advances. Tissue engineering shows promise for MI repair, but implantation complexity and uncertain outcomes pose obstacles. microRNAs regulate genes involved in apoptosis, angiogenesis, and myocardial contraction, making them valuable for long-term repair. In this study, we find downregulated miR-199a-5p expression in MI. Intramyocardial injection of miR-199a-5p into the infarcted region of male rats revealed its dual protective effects on the heart. Specifically, miR-199a-5p targets AGTR1, diminishing early oxidative damage post-myocardial infarction, and MARK4, which influences long-term myocardial contractility and enhances cardiac function. To deliver miR-199a-5p efficiently and specifically to ischemic myocardial tissue, we use CSTSMLKAC peptide to construct P-MSN/miR199a-5p nanoparticles. Intravenous administration of these nanoparticles reduces myocardial injury and protects cardiac function. Our findings demonstrate the effectiveness of P-MSN/miR199a-5p nanoparticles in repairing MI through enhanced contraction and anti-apoptosis. miR199a-5p holds significant therapeutic potential for long-term repair of myocardial infarction.


Asunto(s)
MicroARNs , Infarto del Miocardio , Nanopartículas , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/administración & dosificación , Animales , Infarto del Miocardio/genética , Masculino , Ratas , Nanopartículas/administración & dosificación , Nanopartículas/química , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Modelos Animales de Enfermedad , Contracción Miocárdica/efectos de los fármacos , Administración Intravenosa , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia , Isquemia Miocárdica/metabolismo
17.
Sci Rep ; 14(1): 15242, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956131

RESUMEN

The cold tolerance of Litopenaeus vannamei is important for breeding in specific areas. To explore the cold tolerance mechanism of L. vannamei, this study analyzed biochemical indicators, cell apoptosis, and metabolomic responses in cold-tolerant (Lv-T) and common (Lv-C) L. vannamei under low-temperature stress (18 °C and 10 °C). TUNEL analysis showed a significant increase in apoptosis of hepatopancreatic duct cells in L. vannamei under low-temperature stress. Biochemical analysis showed that Lv-T had significantly increased levels of superoxide dismutase (SOD) and triglycerides (TG), while alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH-L), and uric acid (UA) levels were significantly decreased compared to Lv-C (p < 0.05). Metabolomic analysis displayed significant increases in metabolites such as LysoPC (P-16:0), 11beta-Hydroxy-3,20-dioxopregn-4-en-21-oic acid, and Pirbuterol, while metabolites such as 4-Hydroxystachydrine, Oxolan-3-one, and 3-Methyldioxyindole were significantly decreased in Lv-T compared to Lv-C. The differentially regulated metabolites were mainly enriched in pathways such as Protein digestion and absorption, Central carbon metabolism in cancer and ABC transporters. Our study indicate that low temperature induces damage to the hepatopancreatic duct of shrimp, thereby affecting its metabolic function. The cold resistance mechanism of Lv-T L. vannamei may be due to the enhancement of antioxidant enzymes and lipid metabolism.


Asunto(s)
Apoptosis , Frío , Respuesta al Choque por Frío , Metabolómica , Penaeidae , Animales , Penaeidae/metabolismo , Penaeidae/fisiología , Metabolómica/métodos , Metaboloma , Superóxido Dismutasa/metabolismo
18.
Sci Rep ; 14(1): 15174, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956161

RESUMEN

Coronary artery bypass surgery can result in endothelial dysfunction due to ischemia/reperfusion (IR) injury. Previous studies have demonstrated that DuraGraft helps maintain endothelial integrity of saphenous vein grafts during ischemic conditions. In this study, we investigated the potential of DuraGraft to mitigate endothelial dysfunction in arterial grafts after IR injury using an aortic transplantation model. Lewis rats (n = 7-9/group) were divided in three groups. Aortic arches from the control group were prepared and rings were immediately placed in organ baths, while the aortic arches of IR and IR + DuraGraft rats were preserved in saline or DuraGraft, respectively, for 1 h before being transplanted heterotopically. After 1 h after reperfusion, the grafts were explanted, rings were prepared, and mounted in organ baths. Our results demonstrated that the maximum endothelium-dependent vasorelaxation to acetylcholine was significantly impaired in the IR group compared to the control group, but DuraGraft improved it (control: 89 ± 2%; IR: 24 ± 1%; IR + DuraGraft: 48 ± 1%, p < 0.05). Immunohistochemical analysis revealed decreased intercellular adhesion molecule-1, 4-hydroxy-2-nonenal, caspase-3 and caspase-8 expression, while endothelial cell adhesion molecule-1 immunoreactivity was increased in the IR + DuraGraft grafts compared to the IR-group. DuraGraft mitigates endothelial dysfunction following IR injury in a rat bypass model. Its protective effect may be attributed, at least in part, to its ability to reduce the inflammatory response, oxidative stress, and apoptosis.


Asunto(s)
Endotelio Vascular , Ratas Endogámicas Lew , Daño por Reperfusión , Animales , Ratas , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Daño por Reperfusión/metabolismo , Masculino , Puente de Arteria Coronaria/métodos , Puente de Arteria Coronaria/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Modelos Animales de Enfermedad , Aldehídos/metabolismo , Aldehídos/farmacología , Caspasa 3/metabolismo , Vasodilatación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Acetilcolina/farmacología
19.
Sci Rep ; 14(1): 15175, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956251

RESUMEN

In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.


Asunto(s)
Cobre , Disulfiram , Homeostasis , Inflamación , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Disulfiram/farmacología , Ratones , Cobre/metabolismo , Homeostasis/efectos de los fármacos , Masculino , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Regulación hacia Abajo/efectos de los fármacos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Modelos Animales de Enfermedad , Proteínas Hierro-Azufre/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptor Toll-Like 4/metabolismo
20.
Sci Rep ; 14(1): 15142, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956267

RESUMEN

Multiple myeloma (MM) is an incurable hematological malignancy with poor survival. Accumulating evidence reveals that lactylation modification plays a vital role in tumorigenesis. However, research on lactylation-related genes (LRGs) in predicting the prognosis of MM remains limited. Differentially expressed LRGs (DELRGs) between MM and normal samples were investigated from the Gene Expression Omnibus database. Univariate Cox regression and LASSO Cox regression analysis were applied to construct gene signature associated with overall survival. The signature was validated in two external datasets. A nomogram was further constructed and evaluated. Additionally, Enrichment analysis, immune analysis, and drug chemosensitivity analysis between the two groups were investigated. qPCR and immunofluorescence staining were performed to validate the expression and localization of PFN1. CCK-8 and flow cytometry were performed to validate biological function. A total of 9 LRGs (TRIM28, PPIA, SOD1, RRP1B, IARS2, RB1, PFN1, PRCC, and FABP5) were selected to establish the prognostic signature. Kaplan-Meier survival curves showed that high-risk group patients had a remarkably worse prognosis in the training and validation cohorts. A nomogram was constructed based on LRGs signature and clinical characteristics, and showed excellent predictive power by calibration curve and C-index. Moreover, biological pathways, immunologic status, as well as sensitivity to chemotherapy drugs were different between high- and low-risk groups. Additionally, the hub gene PFN1 is highly expressed in MM, knocking down PFN1 induces cell cycle arrest, suppresses cell proliferation and promotes cell apoptosis. In conclusion, our study revealed that LRGs signature is a promising biomarker for MM that can effectively early distinguish high-risk patients and predict prognosis.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple , Profilinas , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/mortalidad , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/patología , Pronóstico , Profilinas/genética , Profilinas/metabolismo , Biomarcadores de Tumor/genética , Masculino , Femenino , Nomogramas , Proliferación Celular/genética , Perfilación de la Expresión Génica , Estimación de Kaplan-Meier , Línea Celular Tumoral , Transcriptoma , Apoptosis/genética , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA