Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317.009
Filtrar
1.
Braz. j. biol ; 84: e251336, 2024. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1355879

RESUMEN

Abstract Bulbine natalensis and Chorophytum comosum are potential medicinal source for the treatment of cancers. Chronic myeloid leukaemia is a hematopoietic stem cells disorder treated by tyrosine kinase inhibitors but often cause recurrence of the leukaemia after cessation of therapy, hence require alternative treatment. This study determines the anti-cancer effect of leaf, root and bulb methanolic and aqueous extracts of B. natalensis and C. comosum in chronic human myelogenous leukaemia (K562) cell line by MTT, Hoechst bis-benzimide nuclear and annexin V stain assays. The root methanolic extract of B. natalensis and C. comosum showed a high cytotoxicity of 8.6% and 16.7% respectively on the K562 cell line at 1,000 μg/ml concentration. Morphological loss of cell membrane integrity causing degradation of the cell and fragmentation were observed in the root methanolic extract of both plants. A high apoptosis (p < 0.0001) was induced in the K562 cells by both leaf and root extracts of the C. comosum compared to the B. natalensis. This study shows both plants possess apoptotic effect against in vitro myelogenous leukaemia which contributes to the overall anti-cancer properties of B. natalensis and C. comosum to justify future therapeutic applications against chronic myelogenous leukaemia blood cancer.


Resumo Bulbine natalensis Baker e Chorophytum comosum (Thunb.) Jacques são potenciais fontes medicinais para o tratamento de cânceres. A Leucemia Mieloide Crônica (LMC) é um distúrbio das células-tronco hematopoiéticas que é tratado com inibidores da tirosina quinase, mas frequentemente, causa recorrência da leucemia após a interrupção da terapia, portanto, requer um tratamento alternativo. Este estudo determinou o efeito anticancerígeno de extratos metanólicos e aquosos de folha, raiz e bulbo de B. natalensis e C. comosum na linhagem celular de leucemia mieloide humana crônica (K562) por ensaios de MTT, Hoechst bis-benzimida nuclear e anexina V. O extrato metanólico da raiz de B. natalensis e C. comosum apresentou alta citotoxidade de 8,6% e 16,7% respectivamente, na linhagem celular K562 com a concentração de 1,000 μg / ml. Perda morfológica da integridade da membrana celular causando degradação dos núcleos, citoplasma e encolhimento celular foi observada no extrato metanólico da raiz de ambas as plantas. Uma alta apoptose (p <0,0001) foi induzida nas células K562 por extratos de folhas e raízes de C. comosum em comparação com B. natalensis. Este estudo mostrou que ambas as plantas possuem efeito apoptótico contra leucemia mieloide in vitro que contribui para as propriedades anticâncer gerais de B. natalensis e C. comosum para justificar futuras aplicações terapêuticas contra câncer de sangue de LMC.


Asunto(s)
Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Xanthorrhoeaceae , Apoptosis , Células K562
2.
J Integr Neurosci ; 22(1): 19, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36722234

RESUMEN

Ferroptosis is distinct from other apoptotic forms of programmed cell death and is characterized by the accumulation of iron and lipid peroxidation. Iron plays a crucial role in the oxidation of lipids via the Fenton reaction with oxygen. Hence, iron accumulation causes phospholipid peroxidation which induces ferroptosis. Moreover, detoxification by glutathione is disrupted during ferroptosis. A growing number of studies have implicated ferroptosis in nervous system disorders such as depression, neurodegenerative disease, stroke, traumatic brain injury, and sepsis-associated encephalopathy. This review summarizes the pathogenesis of ferroptosis and its relationship with various nervous system disorders.


Asunto(s)
Ferroptosis , Enfermedades Neurodegenerativas , Accidente Cerebrovascular , Humanos , Apoptosis , Hierro
3.
Front Biosci (Landmark Ed) ; 28(1): 12, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36722265

RESUMEN

BACKGROUND: Artemis belongs to the SNM1 gene family, and plays a role in repairing ionizing-radiation-induced DNA double-strand breaks and variable (diversity) joining recombination. S534, S538, S516, S645 represent four most rapid phosphorylation sites in Artemis, and serine phosphorylation at amino acid 516 is closely associated with activation. Artemis mutation is perceived as contributing to Omenn syndrome, which manifest features of severe combined immunodeficiency disease, associated with lymphadenopathy, hepatosplenomegaly, erythroderma and baldness. In addition, Artemis phosphorylated at serine 516 (Artemis S516-P) was expressed in scalp hair follicles (HF) as well as other skin appendages, and its expression level is important to mouse hair cycling. However, whether Artemis participated in the regulation of HF growth still unclear. METHODS: Using immunofluorescence double-staining, we assessed the association between Artemis S516-P with proliferation, apoptosis, and differentiation markers in normal adult anagen scalp HF. RESULTS: The results of double-staining immunofluorescence revealed overlapping expression pattern for Artemis S516-P and keratin16, similar pattern for c-myc and p21, while presenting opposite trends for keratin 10, phospho-p53, Bax, Bcl-2 and keratin 14. CONCLUSIONS: Our study provides the clues that Artemis may play roles in regulation of differentiation, proliferation, apoptosis and cell cycling during HF growth and development.


Asunto(s)
Folículo Piloso , Serina , Adulto , Animales , Ratones , Humanos , Fosforilación , Diferenciación Celular , Apoptosis , Proliferación Celular
4.
BMC Neurosci ; 24(1): 10, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721107

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant intracranial tumor with a low survival rate. However, only few drugs responsible for GBM therpies, hence new drug development for it is highly required. The natural product Cudraflavone B (CUB) has been reported to potentially kill a variety of tumor cells. Currently, its anit-cancer effect on GBM still remains unknown. Herein, we investigated whether CUB could affect the proliferation and apoptosis of GBM cells to show anti-GBM potential. RESULTS: CUB selectively inhibited cell viability and induced cell apoptosis by activating the endoplasmic reticulum stress (ER stress) related pathway, as well as harnessing the autophagy-related PI3K/mTOR/LC3B signaling pathway. Typical morphological changes of autophagy were also observed in CUB treated cells by microscope and scanning electron microscope (SEM) examination. 4-Phenylbutyric acid (4-PBA), an ER stress inhibitor, restored the CUB-caused alteration in signaling pathway and morphological change. CONCLUSIONS: Our finding suggests that CUB impaired cell growth and induced cell apoptosis of glioblastoma through ER stress and autophagy-related signaling pathways, and it might be an attractive drug for treatment of GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Autofagia , Apoptosis , Estrés del Retículo Endoplásmico
5.
Biol Pharm Bull ; 46(2): 187-193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724947

RESUMEN

Endoplasmic reticulum (ER) dysfunction is characterized by ER stress, which can be triggered by sepsis. Recent studies have reported that lessening ER stress is a promising therapeutic approach to improving the outcome of sepsis. Genipin is derived from gardenia fruit, which is a traditional Chinese medicinal herb for anti-inflammation. Here, mice were treated with genipin (2.5 mg/kg) intravenously to assess its biological effects and underlying mechanism against polymicrobial sepsis. Furthermore, the present study focused on detecting the levels of ER stress-related proteins, including protein kinase R-like ER kinase (PERK), glucose-regulated protein of 78 kDa (GRP78), phosphorylated-eukaryotic initiation factor 2α (p-eIF2α), and CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP). The results demonstrated that genipin significantly decreased the serum concentrations of tumor necrosis factor-α and interleukin-6, alleviated histopathological damage to the lungs, livers and spleens, and even improved the survival rates of septic mice. Moreover, sepsis significantly upregulated the protein expression levels of splenic GRP78, PERK, p-eIF2α and CHOP, but their levels were significantly suppressed by genipin. Furthermore, genipin also significantly downregulated cleaved caspase-3 expression levels and reduced sepsis-induced splenocyte apoptosis. In conclusion, genipin potentially improved the survival rate of sepsis and attenuated sepsis-induced organ injury and an excessive inflammatory response in mice. The effects of genipin against sepsis were potentially associated with decreased splenocyte apoptosis via the attenuation of sepsis-induced ER stress to further inhibit ER stress-induced apoptosis.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Sepsis , Ratones , Animales , Bazo/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Factor de Transcripción CHOP/metabolismo
6.
Biol Pharm Bull ; 46(2): 245-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724952

RESUMEN

Hepatocellular carcinoma (HCC) causes 830000 deaths every year and is becoming the third malignant tumor worldwide. One of the primary reasons is the lack of effective drugs. Hernandezine (HER), a bisbenzylisoquinoline alkaloid of Thalictrum simplex, has been confirmed to have antitumor activity. But there are few reports about its effect on HCC and the underlying mechanisms still remain unclear. Therefore, the antitumor effects and mechanisms of HER on HCC were evaluated in HepG2 and Hep3B cells. The in vitro experiments demonstrated that HER significantly induced G0/G1 phase arrest, inhibited the proliferation and promoted cell apoptosis in liver cancer cell lines. In the mechanisms, the antitumor effects of HER on liver cancer cells were mediated by phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) pathway and reactive oxygen species (ROS), simultaneously. In one way, HER inhibited the activities of PI3K-AKT pathway, which interrupt the dimer formation of cyclin-dependent kinase 4 (CDK4) and cyclin D1 (CCND1) and result to G0/G1 phase arrest. In another way, after HER treatment, ROS accumulated in liver cancer cells and caused mitochondria injury which further influenced the expression of apoptosis-related proteins and eventually resulted to HepG2 and Hep3B cell apoptosis. In addition, HER showed a tumor restrain function in HepG2 and Hep3B bearing nude mice. Overall, these findings indicated that HER is a promising antitumor drug, which may provide a new direction for clinical HCC treatment.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Especies Reactivas de Oxígeno , Proliferación Celular , Línea Celular Tumoral , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Reguladoras de la Apoptosis , Apoptosis
7.
J Adv Res ; 44: 173-183, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725188

RESUMEN

INTRODUCTION: Lenvatinib has recently become available as the first-line therapy for advanced hepatocellular carcinoma (HCC), but its molecular mechanism in HCC remains largely unknown. OBJECTIVES: The current study aims to identify the molecular mechanisms of lenvatinib in HCC. METHODS: Gene expression microarrays, flow cytometry, western blot, qRT-PCR, immunohistochemistry and immunofluorescence were used to study the response of HCC cells to lenvatinib. Xenograft tumor of Huh7 cells was also established to detect the effect of lenvatinib in vivo. RESULTS: Herein, we found that lenvatinib could induce apoptosis via increasing reactive oxygen species (ROS) levels in HCC cells. Then, microarray analysis and qRT-PCR results confirmed that GPX2 was a vital target for lenvatinib against HCC. Loss and gain function of experiment showed that regulating GPX2 levels markedly affected the lenvatinib-induced ROS levels and apoptosis in HCC cells. In addition, analyses of The Cancer Genome Atlas database and the qRT-PCR results in our cohort both showed that GPX2 markedly overexpressed in tumor tissues and correlated with poor overall survival in HCC. Mechanistically, our findings further demonstrated that GPX2 was a downstream gene regulated by ß-catenin, while lenvatinib could prevent nuclear translocation of ß-catenin and further inhibit GPX2 expression in HCC cells. More importantly, the correlation of GPX2 expression with lenvatinib response was further analyzed in 22 HCC patients who received lenvatinib therapy, and the results showed that the objective response rate (ORR) in patients with low GPX2 expression was 44.4% (4/9), while the ORR in patients with high GPX2 levels was only 7.7% (1/13). CONCLUSION: Our findings indicated that GPX2 plays an important role in lenvatinib-induced HCC cell apoptosis, which might serve as a biomarker for instruction of lenvatinib therapy in HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , beta Catenina/farmacología , beta Catenina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Apoptosis , Glutatión Peroxidasa/farmacología , Glutatión Peroxidasa/uso terapéutico
8.
Zhongguo Zhong Yao Za Zhi ; 48(2): 455-464, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725235

RESUMEN

This study explores the effect of total flavonoids of Rhododendra simsii(TFR) on middle cerebral artery occlusion(MCAO)-induced cerebral injury in rats and oxygen-glucose deprivation/reoxygenation(OGD/R) injury in PC12 cells and the underlying mechanism. The MCAO method was used to induce focal ischemic cerebral injury in rats. Male SD rats were randomized into sham group, model group, and TFR group. After MCAO, TFR(60 mg·kg~(-1)) was administered for 3 days. The content of tumor necrosis factor-α(TNF-α), interleukin-1(IL-1), and interleukin-6(IL-6) in serum was detected by enzyme-linked immunosorbent assay(ELISA). The pathological changes of brain tissue and cerebral infarction were observed based on hematoxylin and eosin(HE) staining and 2,3,5-triphenyltetrazolium chloride(TTC) staining. RT-qPCR and Western blot were used to detect the mRNA and protein levels of calcium release-activated calcium channel modulator 1(ORAI1), stromal interaction molecule 1(STIM1), stromal intera-ction molecule 2(STIM2), protein kinase B(PKB), and cysteinyl aspartate specific proteinase 3(caspase-3) in brain tissues. The OGD/R method was employed to induce injury in PC12 cells. Cells were randomized into the normal group, model group, gene silencing group, TFR(30 µg·mL~(-1)) group, and TFR(30 µg·mL~(-1))+gene overexpression plasmid group. Intracellular Ca~(2+) concentration and apoptosis rate of PC12 cells were measured by laser scanning confocal microscopy and flow cytometry. The effect of STIM-ORAI-regulated store-operated calcium entry(SOCE) pathway on TFR was explored based on gene silencing and gene overexpression techniques. The results showed that TFR significantly alleviated the histopathological damage of brains in MCAO rats after 3 days of admini-stration, reduced the contents of TNF-α, IL-1, and IL-6 in the serum, down-regulated the expression of ORAI1, STIM1, STIM2, and caspase-3 genes, and up-regulated the expression of PKB gene in brain tissues of MCAO rats. TFR significantly decreased OGD/R induced Ca~(2+) overload and apoptosis in PC12 cells. However, it induced TFR-like effect by ORAI1, STIM1 and STIM2 genes silencing. However, overexpression of these genes significantly blocked the effect of TFR in reducing Ca~(2+) overload and apoptosis in PC12 cells. In summary, in the early stage of focal cerebral ischemia-reperfusion injury and OGD/R-induced injury in PC12 cells TFR attenuates ischemic brain injury by inhibiting the STIM-ORAI-regulated SOCE pathway and reducing Ca~(2+) overload and inflammatory factor expression, and apoptosis.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Daño por Reperfusión , Ratas , Masculino , Animales , Caspasa 3 , Factor de Necrosis Tumoral alfa/genética , Ratas Sprague-Dawley , Interleucina-6 , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Interleucina-1 , Daño por Reperfusión/metabolismo , Apoptosis
9.
Zhongguo Zhong Yao Za Zhi ; 48(1): 140-147, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725266

RESUMEN

This study used the zebrafish model to explore the hepatotoxicity of Rhododendri Mollis Flos(RMF). The mortality was calculated according to the number of the survival of zebrafish larvae 4 days after fertilization under different concentration of RMF, and the dose-toxicity curve was fitted to preliminarily evaluate the toxicity of RMF. The liver phenotypes under the sublethal concentration of RMF in the treatment group and the blank control group were observed by hematoxylin-eosin(HE) staining and acridine orange(AO) staining. Meanwhile, the activities of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were determined to confirm the hepatotoxicity of RMF. Real-time quantitative polymerase chain reaction(real-time PCR) and Western blot were used to determine the expressions of genes and proteins in zebrafish larvae. Gas chromatography time-of-flight mass spectrometry(GC-TOF-MS) was used to conduct untargeted metabolomics testing to explore the mechanism. The results showed that the toxicity of RMF to zebrafish larvae was dose-dependent, with 1 100 µg·mL~(-1) of the absolute lethal concentration and 448 µg·mL~(-1) of sublethal concentration. The hepatocyte apoptosis and degeneration appeared in the zebrafish larvae under the sublethal concentration of RMF. The content of ALT and AST in zebrafish larvae at the end of the experiment was significantly increased in a dose-dependent manner. Under the sublethal concentration, the expressions of genes and proteins related to apoptosis in zebrafish larvae were significantly increased as compared with the blank control group. The results of untargeted metabolomics showed that the important metabolites related to the he-patotoxicity of RMF were mainly enriched in alanine, aspartic acid, glutamic acid, and other pathways. In conclusion, it is inferred that RMF has certain hepatotoxicity to zebrafish larvae, and its mechanism may be related to apoptosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Pez Cebra , Animales , Pez Cebra/genética , Apoptosis , Larva
10.
Zhongguo Zhong Yao Za Zhi ; 48(1): 211-219, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725273

RESUMEN

Glioblastoma is the most common primary cranial malignancy, and chemotherapy remains an important tool for its treatment. Sanggenon C(San C), a class of natural flavonoids extracted from Morus plants, is a potential antitumor herbal monomer. In this study, the effect of San C on the growth and proliferation of glioblastoma cells was examined by methyl thiazolyl tetrazolium(MTT) assay and 5-bromodeoxyuridinc(BrdU) labeling assay. The effect of San C on the tumor cell cycle was examined by flow cytometry, and the effect of San C on clone formation and self-renewal ability of tumor cells was examined by soft agar assay. Western blot and bioinformatics analysis were used to investigate the mechanism of the antitumor activity of San C. In the presence of San C, the MTT assay showed that San C significantly inhibited the growth and proliferation of tumor cells in a dose and time-dependent manner. BrdU labeling assay showed that San C significantly attenuated the DNA replication activity in the nucleus of tumor cells. Flow cytometry confirmed that San C blocked the cell cycle of tumor cells in G_0/G_1 phase. The soft agar clone formation assay revealed that San C significantly attenuated the clone formation and self-renewal ability of tumor cells. The gene set enrichment analysis(GSEA) implied that San C inhibited the tumor cell division cycle by affecting the myelocytomatosis viral oncogene(MYC) signaling pathway. Western blot assay revealed that San C inhibited the expression of cyclin through the regulation of the MYC signaling pathway by lysine demethylase 4B(KDM4B), which ultimately inhibited the growth and proliferation of glioblastoma cells and self-renewal. In conclusion, San C exhibits the potential antitumor activity by targeting the KDM4B-MYC axis to inhibit glioblastoma cell growth, proliferation, and self-renewal.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Bromodesoxiuridina/farmacología , Bromodesoxiuridina/uso terapéutico , Transducción de Señal , Proteínas Proto-Oncogénicas c-myc/metabolismo , Agar , Proliferación Celular , Línea Celular Tumoral , Apoptosis , Histona Demetilasas con Dominio de Jumonji/metabolismo
11.
Zhongguo Zhong Yao Za Zhi ; 48(1): 220-225, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725274

RESUMEN

This paper aimed to investigate the effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/ß-catenin/peroxisome proliferator-activated receptor γ(PPARγ) pathway in arrhythmic rats. SD rats were randomly divided into a control group, a model group, a low-dose(20 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a medium-dose(40 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a high-dose(80 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a propranolol hydrochloride(2 mg·kg~(-1)) group, with 12 rats in each group. Except the control group, rats in other groups were prepared as models of arrhythmia by sublingual injection of 1 mL·kg~(-1) of 0.002% aconitine. After grouping and intervention with drugs, the arrhythmia, myocardial cells apoptosis, myocardial tissue glutathione peroxidase(GSH-Px), catalase(CAT), malondialdehyde(MDA), serum interleukin-6(IL-6), prostaglandin E2(PGE2) levels, myocardial tissue apoptosis, and Wnt/ß-catenin/PPARγ pathway-related protein expression of rats in each group were measured. As compared with the control group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA levels in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and ß-catenin protein expression levels increased significantly in the model group, whereas the GSH-Px and CAT levels, and Bcl-2 and PPARγ protein expression levels in myocardial tissues reduced significantly. As compared with the model group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA leve in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and ß-catenin protein expression levels reduced in the drug intervention groups, whereas the GSH-Px and CAT levels and Bcl-2 and PPARγ protein expression levels in myocardial tissues increased. The groups of total flavonoids of buckwheat flower and leaf were in a dose-dependent manner. There was no significant difference in the levels of each index in rats between the propranolol hydrochloride group and the high-dose group of total flavonoids of buckwheat flower and leaf. The total flavonoids of buckwheat flower and leaf inhibit the activation of Wnt/ß-catenin pathway, up-regulate the expression of PPARγ, reduce oxidative stress and inflammatory damage in myocardial tissues of arrhythmic rats, reduce myocardial cell apoptosis, and improve the symptoms of arrhythmia in rats.


Asunto(s)
Fagopyrum , PPAR gamma , Ratas , Animales , PPAR gamma/metabolismo , Fagopyrum/genética , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2 , beta Catenina/genética , beta Catenina/metabolismo , Interleucina-6 , Flavonoides/farmacología , Propranolol/farmacología , Fibrilación Ventricular , Dinoprostona , Vía de Señalización Wnt , Hojas de la Planta/metabolismo , Flores/metabolismo , Apoptosis , Complejos Cardíacos Prematuros
12.
Arch Immunol Ther Exp (Warsz) ; 71(1): 4, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725744

RESUMEN

Ly-6A, a member of the Ly-6/uPAR supergene family of proteins, is a cell adhesion and cell signaling protein. Signaling through Ly-6A activates the cell-intrinsic apoptotic cell death pathway in CD4+ T cell lines, as indicated by the release of cytochrome C, and activation of caspases 9 and 3. In addition, Ly-6A induces cytokine production and growth inhibition. The mechanism underlying the distinct cellular responses that are triggered by engaging Ly-6A protein has remained unknown. To examine the relatedness of these distinct responses, we have quantified the production of pro-apoptotic, growth inhibitory and tumor suppressive cytokines, such as TNF-α, TGF-ß and a related protein GDF-10, in response to Ly-6A signaling. Anti-Ly-6A monoclonal antibody-induced activation of YH16.33 CD4+ T cell line generated low levels of TGF-ß and GDF-10 but elevated levels of TNF-α. Blocking the biological activity of TNF-α resulted in reduced Ly-6A-induced apoptosis in T cells. The Ly-6A-induced response in the T cell line was distinct, as signaling through the antigen receptor complex did not cause growth inhibition and apoptosis despite high levels of TGF-ß and GDF-10 that were detected in these cultures. Additionally, in response to antigen receptor complex signaling, lower amount of TNF-α was detected. These results indicate the contribution of TNF-α in the observed Ly-6A-induced growth inhibition and apoptosis and provide a mechanistic explanation for the biologically distinct responses observed in CD4+ T cells after engaging Ly-6A protein. Additionally, the findings reported here will aid in the understanding of inhibitory signaling initiated by Ly-6A protein, especially in the context of its potential immune checkpoint inhibitory role in T cells.


Asunto(s)
Linfocitos T , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Factor 10 de Diferenciación de Crecimiento/metabolismo , Activación de Linfocitos , Línea Celular , Antígenos/metabolismo , Apoptosis , Linfocitos T CD4-Positivos , Factor de Crecimiento Transformador beta/metabolismo
13.
Free Radic Biol Med ; 195: 219-230, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36587924

RESUMEN

The function of mitochondrial fusion and fission is one of the important factors causing ischemia-reperfusion (I/R) injury in diabetic myocardium. Aldehyde dehydrogenase 2 (ALDH2) is abundantly expressed in heart, which involved in the regulation of cellular energy metabolism and stress response. However, the mechanism of ALDH2 regulating mitochondrial fusion and fission in diabetic myocardial I/R injury has not been elucidated. In the present study, we found that the expression of ALDH2 was downregulated in rat diabetic myocardial I/R model. Functionally, the activation of ALDH2 resulted in the improvement of cardiac hemodynamic parameters and myocardial injury, which were abolished by the treatment of Daidzin, a specific inhibitor of ALDH2. In H9C2 cardiomyocyte hypoxia-reoxygenation model, ALDH2 regulated the dynamic balance of mitochondrial fusion and fission and maintained mitochondrial morphology stability. Meanwhile, ALDH2 reduced mitochondrial ROS levels, and apoptotic protein expression in cardiomyocytes, which was associated with the upregulation of phosphorylation (p-PI3KTyr458, p-AKTSer473, p-mTOR). Moreover, ALDH2 suppressed the mitoPTP opening through reducing 4-HNE. Therefore, our results demonstrated that ALDH2 alleviated the ischemia and reperfusion injury in diabetic cardiomyopathy through inhibition of mitoPTP opening and activation of PI3K/AKT/mTOR pathway.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Daño por Reperfusión Miocárdica , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Dinámicas Mitocondriales/genética , Miocitos Cardíacos/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Isquemia/metabolismo , Apoptosis , Diabetes Mellitus/metabolismo
14.
Free Radic Biol Med ; 195: 309-328, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592660

RESUMEN

This study depicted the effect of IL-13 and 13(S)HpODE (the endogenous product during IL-13 activation) in the process of cancer cell apoptosis. We examined the role of both IL-13 and 13(S)HpODE in mediating apoptotic pathway in three different in vitro cellular models namely A549 lung cancer, HCT116 colorectal cancer and CCF52 GBM cells. Our data showed that IL-13 promotes apoptosis of A549 lung carcinoma cells through the involvement of 15-LO, PPARγ and MAO-A. Our observations demonstrated that IL-13/13(S)HpODE stimulate MAO-A-mediated intracellular ROS production and p53 as well as p21 induction which play a crucial role in IL-13-stimulated A549 cell apoptosis. We further showed that 13(S)HpODE promotes apoptosis of HCT116 and CCF52 cells through the up-regulation of p53 and p21 expression. Our data delineated that IL-13 stimulates p53 and p21 induction which is mediated through 15-LO and MAO-A in A549 cells. In addition, we observed that PPARγ plays a vital role in apoptosis as well as in p53 and p21 expression in A549 cells in the presence of IL-13. We validated our observations in case of an in vivo colon cancer tumorigenic study using syngeneic mice model and demonstrated that 13(S)HpODE significantly reduces solid tumor growth through the activation of apoptosis. These data thus confirmed that IL-13 > 15-LO>13(S)HpODE > PPARγ>MAO-A > ROS > p53>p21 axis has a major contribution in regulating cancer cell apoptosis and further identified 13(S)HpODE as a potential chemo-preventive agent which can improve the efficacy of cancer treatment as a combination compound.


Asunto(s)
Apoptosis , Interleucina-13 , Neoplasias Pulmonares , Proteína p53 Supresora de Tumor , Animales , Ratones , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Interleucina-13/farmacología , Neoplasias Pulmonares/patología , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Humanos , Células A549
15.
J Reprod Immunol ; 155: 103789, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603466

RESUMEN

Follicular atresia was initiated with the apoptosis of granulosa cells (GCs) mostly mediated by oxidative stress (OS). Our previous studies found that the number of CD8+ T cells and proportion of CD8+/CD4+ T cells increased in the follicles of diminished ovary reserve (DOR). However, the mechanism was still poorly explored. Herein, our results showed that the level of H2O2 in follicular fluid (FF) and reactive oxygen species (ROS) in GCs were increased, while the expression of SOD1, SOD2 and GPX1 was down-regulated in GCs with DOR. In addition, we found that OS within a certain range promoted the expression of CCL5 in GCs, which facilitated the infiltration of CD8+ T cells to the follicles. In vitro co-culture experiment showed that CD8+ T cells inhibited GCs proliferation and promoted their apoptosis through intrinsic apoptosis pathway. Maraviroc, the CCR5 antagonist, alleviated CCL5-induced immune attack of CD8+ T cells. Our results indicated that ROS-CCL5 axis recruited CD8+ T cells into FF resulting in the apoptosis of GCs in DOR. This has further implications for the understanding of the pathology of DOR and searching for the therapeutic management of this disease.


Asunto(s)
Linfocitos T CD8-positivos , Ovario , Humanos , Femenino , Especies Reactivas de Oxígeno/metabolismo , Ovario/metabolismo , Linfocitos T CD8-positivos/metabolismo , Peróxido de Hidrógeno/metabolismo , Atresia Folicular , Células de la Granulosa/metabolismo , Apoptosis , Quimiocina CCL5/metabolismo
16.
Oral Oncol ; 137: 106304, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608459

RESUMEN

OBJECTIVES: In head and neck squamous cell carcinoma (HNSCC), poor prognosis and low survival rates are associated with downregulated calprotectin. Calprotectin (S100A8/A9) inhibits cancer cell migration and invasion and facilitates G2/M cell cycle arrest. We investigated whether S100A8/A9 regulates DNA damage responses (DDR) and apoptosis in HNSCC after chemoradiation. MATERIALS AND METHODS: Human HNSCC cases in TCGA were analyzed for relationships between S100A8/A9 and expression of apoptosis-related genes. Next, S100A8/A9-expressing and non-expressing carcinoma lines (two different lineages) were exposed to genotoxic agents and assessed for 53BP1 and γH2AX expression and percent of viable/dead cells. Finally, S100A8/A9-wild-type and S100A8/A9null C57BL/6j mice were treated with 4-NQO to induce oral dysplastic and carcinomatous lesions, which were compared for levels of 53BP1. RESULTS: In S100A8/A9-high HNSCC tumors, apoptosis-related caspase family member genes were upregulated, whereas genes limiting apoptosis were significantly downregulated based on TCGA analyses. After X-irradiation or camptothecin treatment, S100A8/A9-expressing carcinoma cells (i.e., TR146 and KB-S100A8/A9) showed significantly higher 53BP1 and γH2AX expression, DNA fragmentation, proportions of dead cells, and greater sensitivity to cisplatin than wild-type KB or TR146-S100A8/A9-KD cells. Interestingly, KB-S100A8/A9Δ113-114 cells showed similar 53BP1 and γH2AX levels to S100A8/A9-negative KB and KB-EGFP cells. After 4-NQO treatment, 53BP1 expression in oral lesions was significantly greater in calprotectin+/+ than S100A8/A9null mice. CONCLUSIONS: In HNSCC cells, intracellular calprotectin is strongly suggested to potentiate DDR and promote apoptosis in response to genotoxic agents. Hence, patients with S100A8/A9-high HNSCC may encounter more favorable outcomes because more tumor cells enter apoptosis with increased sensitivity to chemoradiation therapy.


Asunto(s)
Carcinoma , Neoplasias de Cabeza y Cuello , Animales , Humanos , Ratones , Apoptosis , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias de Cabeza y Cuello/genética , Complejo de Antígeno L1 de Leucocito/metabolismo , Ratones Endogámicos C57BL , Carcinoma de Células Escamosas de Cabeza y Cuello
17.
Mol Cancer ; 22(1): 5, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627693

RESUMEN

BACKGROUND: Accumulated evidence highlights the significance of the crosstalk between epigenetic and epitranscriptomic mechanisms, notably 5-methylcytosine (5mC) and N6-methyladenosine (m6A). Herein, we conducted a widespread analysis regarding the crosstalk between 5mC and m6A regulators in hepatocellular carcinoma (HCC). METHODS: Pan-cancer genomic analysis of the crosstalk between 5mC and m6A regulators was presented at transcriptomic, genomic, epigenetic, and other multi-omics levels. Hub 5mC and m6A regulators were summarized to define an epigenetic and epitranscriptomic module eigengene (EME), which reflected both the pre- and post-transcriptional modifications. RESULTS: 5mC and m6A regulators interacted with one another at the multi-omic levels across pan-cancer, including HCC. The EME scoring system enabled to greatly optimize risk stratification and accurately predict HCC patients' clinical outcomes and progression. Additionally, the EME accurately predicted the responses to mainstream therapies (TACE and sorafenib) and immunotherapy as well as hyper-progression. In vitro, 5mC and m6A regulators cooperatively weakened apoptosis and facilitated proliferation, DNA damage repair, G2/M arrest, migration, invasion and epithelial-to-mesenchymal transition (EMT) in HCC cells. The EME scoring system was remarkably linked to potential extrinsic and intrinsic immune escape mechanisms, and the high EME might contribute to a reduced copy number gain/loss frequency. Finally, we determined potential therapeutic compounds and druggable targets (TUBB1 and P2RY4) for HCC patients with high EME. CONCLUSIONS: Our findings suggest that HCC may result from a unique synergistic combination of 5mC-epigenetic mechanism mixed with m6A-epitranscriptomic mechanism, and their crosstalk defines therapeutic response and pharmacogenomic landscape.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , 5-Metilcitosina , Apoptosis , Farmacogenética , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Progresión de la Enfermedad
18.
J Phys Chem B ; 127(1): 104-120, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36594702

RESUMEN

Elucidation of the photophysical and biochemical properties of small molecules can facilitate their applications as prospective therapeutic imaging (theragnostic) agents. Herein, we demonstrate the luminescence behavior of a strategically designed potential therapeutic thiosemicarbazone derivative, (E)-1-(4-(diethylamino)-2-hydroxybenzylidene)-4,4-dimethylthiosemicarbazide (DAHTS), accompanied by the illustration of its solvation and solvation dynamics using spectroscopic techniques and exploring its promising antitumor activities by adopting the necessary biochemical assays. Solvent-dependent photophysical properties, namely UV-vis absorption, fluorescence emission, and excitation profiles, concentration-dependent studies, and time-resolved fluorescence decays, serve as footprints to explain the existence of DAHTS monomers, its excited-state intramolecular proton transfer (ESIPT) product, and dimeric and aggregated forms. The emission intensity progressively intensifies with increasing polarity and proticity of the solvents up to MeOH, but in water, a sudden dip is seen. Solvent polarity and H-bonding modulate the fluorescence behavior of the primary emission peak and significantly influence the formation of the dimer and DAHTS aggregates. The designed luminophore (DAHTS) exhibits significant antiproliferative activity against the human lung cancer (A549) cell lines with inhibitory concentrations (IC50) of 16.88 and 11.92 µM for 24 and 48 h, respectively. DAHTS effectively reduces the cell viability and induces cytotoxicity with extensive morphological changes in A549 cells in the form of spikes when compared to the normal HEK cell lines. More importantly, it increases the p53 expression at the mRNA level that consolidates its potential therapeutic activity. The effect of DAHTS on apoptotic pathways against the A549 cell line has been investigated to determine its probable mechanism of cell death. Thus, the all-inclusive understanding of the photophysical properties and the necessary biochemical assays put forward important steps toward tailoring the thiosemicarbazone core structure for favorable cancer theragnostic applications in academic and pharmaceutical research.


Asunto(s)
Neoplasias Pulmonares , Tiosemicarbazonas , Humanos , Tiosemicarbazonas/farmacología , Solventes/química , Línea Celular , Apoptosis , Neoplasias Pulmonares/tratamiento farmacológico
19.
Immunotherapy ; 15(1): 43-56, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36597707

RESUMEN

RIPK1 is a global cellular sensor that can determine the survival of cells. Generally, RIPK1 can induce cell apoptosis and necroptosis through TNF, Fas and lipopolysaccharide stimulation, while its scaffold function can sense the fluctuation of cellular energy and promote cell survival. Sepsis is a nonspecific disease that seriously threatens human health. There is some dispute in the literature about the role of RIPK1 in sepsis. In this review, the authors attempt to comprehensively discuss the differential results for RIPK1 in sepsis by summarizing the underlying molecular mechanism and putting forward a tentative idea as to whether RIPK1 can serve as a biomarker for the monitoring of treatment and progression in sepsis.


Sepsis is a syndrome that poses a serious threat to human life and health and is classified as a medical emergency by the WHO. RIPK1 can regulate the onset of apoptosis and necrosis in several ways and is known as a sensor of cell survival status. A series of clinical trials of RIPK1 drugs has been conducted this year and have demonstrated promising efficacy in inflammatory diseases, in particular. In this paper, the authors summarize recent studies on the function and mechanism of RIPK1 in sepsis and combine them with the progress in RIPK1 drug development to provide information for the study of RIPK1 in sepsis.


Asunto(s)
Apoptosis , Sepsis , Humanos , Sepsis/terapia , Factor de Necrosis Tumoral alfa/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores
20.
Proc Natl Acad Sci U S A ; 120(4): e2216531120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669100

RESUMEN

Executioner-caspase activation has been considered a point-of-no-return in apoptosis. However, numerous studies report survival from caspase activation after treatment with drugs or radiation. An open question is whether cells can recover from direct caspase activation without pro-survival stress responses induced by drugs. To address this question, we engineered a HeLa cell line to express caspase-3 inducibly and combined it with a quantitative caspase activity reporter. While high caspase activity levels killed all cells and very low levels allowed all cells to live, doses of caspase activity sufficient to kill 15 to 30% of cells nevertheless allowed 70 to 85% to survive. At these doses, neither the rate, nor the peak level, nor the total amount of caspase activity could accurately predict cell death versus survival. Thus, cells can survive direct executioner-caspase activation, and variations in cellular state modify the outcome of potentially lethal caspase activity. Such heterogeneities may underlie incomplete tumor cell killing in response to apoptosis-inducing cancer treatments.


Asunto(s)
Apoptosis , Humanos , Supervivencia Celular/fisiología , Células HeLa , Muerte Celular , Apoptosis/fisiología , Caspasa 3/genética , Caspasa 3/metabolismo , Proteolisis , Caspasa 8/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...