Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.203
Filtrar
1.
Molecules ; 26(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668914

RESUMEN

Probing protein surfaces to accurately predict the binding site and conformation of a small molecule is a challenge currently addressed through mainly two different approaches: blind docking and cavity detection-guided docking. Although cavity detection-guided blind docking has yielded high success rates, it is less practical when a large number of molecules must be screened against many detected binding sites. On the other hand, blind docking allows for simultaneous search of the whole protein surface, which however entails the loss of accuracy and speed. To bridge this gap, in this study, we developed and tested BLinDPyPr, an automated pipeline which uses FTMap and DOCK6 to perform a hybrid blind docking strategy. Through our algorithm, FTMap docked probe clusters are converted into DOCK6 spheres for determining binding regions. Because these spheres are solely derived from FTMap probes, their locations are contained in and specific to multiple potential binding pockets, which become the regions that are simultaneously probed and chosen by the search algorithm based on the properties of each candidate ligand. This method yields pose prediction results (45.2-54.3% success rates) comparable to those of site-specific docking with the classic DOCK6 workflow (49.7-54.3%) and is half as time-consuming as the conventional blind docking method with DOCK6.


Asunto(s)
Algoritmos , Automatización , Diseño Asistido por Computadora , Factores de Intercambio de Guanina Nucleótido/química , Simulación del Acoplamiento Molecular , Humanos
2.
J Vis Exp ; (168)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33682853

RESUMEN

The vast majority of dietary and eating behavior assessment methods are based on self-reports. They are burdensome and also prone to measurement errors. Recent technological innovations allow for the development of more accurate and precise dietary and eating behavior assessment tools that require less effort for both the user and the researcher. Therefore, a new sensor-based device to assess food intake and eating behavior was developed. The device is a regular dining tray equipped with a video camera and three separate built-in weighing stations. The weighing stations measure the weight of the bowl, plate, and drinking cup continuously over the course of a meal. The video camera positioned to the face records eating behavior characteristics (chews, bites), which are analyzed using artificial intelligence (AI)-based automatic facial expression software. The tray weight and the video data are transported at real-time to a personal computer (PC) using a wireless receiver. The outcomes of interest, such as the amount eaten, eating rate and bite size, can be calculated by subtracting the data of these measures at the timepoints of interest. The information obtained by the current version of the tray can be used for research purposes, an upgraded version of the device would also facilitate the provision of more personalized advice on dietary intake and eating behavior. Contrary to the conventional dietary assessment methods, this dietary assessment device measures food intake directly within a meal and is not dependent on memory or the portion size estimation. Ultimately, this device is therefore suited for daily main meal food intake and eating behavior measures. In the future, this technology based dietary assessment method can be linked to health applications or smart watches to obtain a complete overview of exercise, energy intake, and eating behavior.


Asunto(s)
Ingestión de Energía , Conducta Alimentaria , Inteligencia Artificial , Automatización , Recolección de Datos , Femenino , Alimentos , Humanos , Masculino , Masticación , Comidas
4.
J Vis Exp ; (168)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33645556

RESUMEN

Formalin-fixed paraffin-embedded (FFPE) tissues represent a valuable source for molecular analyses and clinical genomic studies. These tissues are often poor in cells or difficult to process. Therefore, nucleic acids need to be carefully isolated. In recent years, various methods for DNA isolation have been established for tissues from many diseases, mostly cancer. Unfortunately, genomic DNA extracted from FFPE tissues is highly degraded due to the cross-linking between nucleic acid strands and proteins, as well as random breakings in sequence. Therefore, DNA quality from these samples is markedly reduced, making it a challenge for further molecular downstream analyses. Other problems with difficult tissues are, for example, the lack of cells in calcified human atherosclerotic lesions and fatty tissue, small skin biopsies, and consequently low availability of the desired nucleic acids as it is also the case in old or fixed tissues. In our laboratories, we have established a method for DNA extraction from formalin-fixed atherosclerotic lesions, using a semi-automated isolation system. We compared this method to other commercially available extraction protocols and focused on further downstream analyses. Purity and concentration of the DNA were measured by spectrometry and fluorometry. The degree of fragmentation and overall quality were assessed. The highest DNA quantity and quality was obtained with the modified blood DNA protocol for the automated extraction system, instead of the commercial FFPE protocol. With this step-by-step protocol, DNA yields from FFPE samples were in average four times higher and fewer specimens failed the extraction process, which is critical when dealing with small-vessel biopsies. Amplicon sizes from 200-800 bp could be detected by PCR. This study shows that although DNA obtained from our FFPE tissue is highly fragmented, it can still be used for successful amplification and sequencing of shorter products. In conclusion, in our hands, the automated technology appears to be the best system for DNA extraction, especially for small FFPE tissue specimen.


Asunto(s)
Aterosclerosis/genética , ADN/aislamiento & purificación , Formaldehído/química , Adhesión en Parafina , Fijación del Tejido , Automatización , Fraccionamiento Celular , ADN/genética , Fragmentación del ADN , Humanos , Reacción en Cadena de la Polimerasa
6.
J Vis Exp ; (167)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33554975

RESUMEN

A central question in developmental neurobiology is how neural stem and progenitor cells form the brain. To answer this question, one needs to label, manipulate, and follow single cells in the brain tissue with high resolution over time. This task is extremely challenging due to the complexity of tissues in the brain. We have recently developed a robot, that guide a microinjection needle into brain tissue upon utilizing images acquired from a microscope to deliver femtoliter volumes of solution into single cells. The robotic operation increases resulting an overall yield that is an order of magnitude greater than manual microinjection and allows for precise labeling and flexible manipulation of single cells in living tissue. With this, one can microinject hundreds of cells within a single organotypic slice. This article demonstrates the use of the microinjection robot for automated microinjection of neural progenitor cells and neurons in the brain tissue slices. More broadly, it can be used on any epithelial tissue featuring a surface that can be reached by the pipette. Once set up, the microinjection robot can execute 15 or more microinjections per minute. The microinjection robot because of its throughput and versality will make microinjection a broadly straightforward high-performance cell manipulation technique to be used in bioengineering, biotechnology, and biophysics for performing single-cell analyses in organotypic brain slices.


Asunto(s)
Encéfalo/citología , Microinyecciones , Células-Madre Neurales/citología , Neuronas/citología , Robótica , Análisis de la Célula Individual , Animales , Automatización , Técnica del Anticuerpo Fluorescente , Ratones Endogámicos C57BL , Técnicas de Cultivo de Tejidos
7.
Neurology ; 96(13): e1761-e1769, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33568548

RESUMEN

OBJECTIVE: We developed and investigated the feasibility of a machine learning-based automated rating for the 2 cardinal symptoms of Parkinson disease (PD): resting tremor and bradykinesia. METHODS: Using OpenPose, a deep learning-based human pose estimation program, we analyzed video clips for resting tremor and finger tapping of the bilateral upper limbs of 55 patients with PD (110 arms). Key motion parameters, including resting tremor amplitude and finger tapping speed, amplitude, and fatigue, were extracted to develop a machine learning-based automatic Unified Parkinson's Disease Rating Scale (UPDRS) rating using support vector machine (SVM) method. To evaluate the performance of this model, we calculated weighted κ and intraclass correlation coefficients (ICCs) between the model and the gold standard rating by a movement disorder specialist who is trained and certified by the Movement Disorder Society for UPDRS rating. These values were compared to weighted κ and ICC between a nontrained human rater and the gold standard rating. RESULTS: For resting tremors, the SVM model showed a very good to excellent reliability range with the gold standard rating (κ 0.791; ICC 0.927), with both values higher than that of nontrained human rater (κ 0.662; ICC 0.861). For finger tapping, the SVM model showed a very good reliability range with the gold standard rating (κ 0.700 and ICC 0.793), which was comparable to that for nontrained human raters (κ 0.627; ICC 0.797). CONCLUSION: Machine learning-based algorithms that automatically rate PD cardinal symptoms are feasible, with more accurate results than nontrained human ratings. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that machine learning-based automated rating of resting tremor and bradykinesia in people with PD has very good reliability compared to a rating by a movement disorder specialist.


Asunto(s)
Aprendizaje Profundo , Hipocinesia/fisiopatología , Enfermedad de Parkinson/fisiopatología , Temblor/fisiopatología , Grabación en Video , Anciano , Automatización , Diagnóstico por Computador , Femenino , Humanos , Hipocinesia/diagnóstico , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Índice de Severidad de la Enfermedad , Máquina de Vectores de Soporte , Temblor/diagnóstico
8.
JAMA Netw Open ; 4(2): e2037739, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33616663

RESUMEN

Importance: A cornerstone of precision medicine is the identification and use of biomarkers that help subtype patients for targeted treatment. Such an approach requires the development and subsequent interrogation of large-scale biobanks linked to well-annotated clinical data. Traditional means of creating these data-linked biobanks are costly and lengthy, especially in acute conditions that require time-sensitive clinical data and biospecimens. Objectives: To develop a virtually enabled biorepository and electronic health record (EHR)-embedded, scalable cohort for precision medicine (VESPRE) and compare the feasibility, enrollment, and costs of VESPRE with those of a traditional study design in acute care. Design, Setting, and Participants: In a prospective cohort study, the EHR-embedded screening alert was generated for 3428 patients, and 2199 patients (64%) were eligible and screened. Of these, 1027 patients (30%) were enrolled. VESPRE was developed for regulatory compliance, feasibility, internal validity, and cost in a prospective cohort of 1027 patients (aged ≥18 years) with sepsis-3 within 6 hours of presentation to the emergency department. The VESPRE infrastructure included (1) automated EHR screening, (2) remnant blood collection for creation of a virtually enabled biorepository, and (3) automated clinical data abstraction. The study was conducted at an academic institution in southwestern Pennsylvania from October 17, 2017, to June 6, 2019. Main Outcomes and Measures: Regulatory compliance, enrollment, internal validity of automated screening, biorepository acquisition, and costs. Results: Of the 1027 patients enrolled in the study, 549 were included in the proof-of-concept analysis (305 [56%] men); median (SD) age was 59 (17) years. VESPRE collected 12 963 remnant blood and urine samples and demonstrated adequate feasibility for clinical, biomarker, and microbiome analyses. Over the 20-month test, the total cost beyond the existing operations infrastructure was $39 417.50 ($14 880.00 project management, $22 717.50 laboratory supplies/staff, and $1820.00 data management)-approximately $39 per enrolled patient vs $239 per patient for a traditional cohort study. Conclusions and Relevance: Results of this study suggest that, in a large US health system that collects data using a common EHR platform and centralized laboratory system, VESPRE, a large-scale, inexpensive EHR-embedded infrastructure for precision medicine can be used. Tested in the sepsis setting, VESPRE appeared to capture a high proportion of eligible patients at low incremental cost.


Asunto(s)
Recolección de Datos/métodos , Registros Electrónicos de Salud , Medicina de Precisión , Sepsis/sangre , Manejo de Especímenes/métodos , Adulto , Anciano , Automatización , Bancos de Muestras Biológicas/economía , Biomarcadores/sangre , Estudios de Cohortes , Recolección de Datos/economía , Estudios de Factibilidad , Femenino , Humanos , Almacenamiento y Recuperación de la Información/economía , Almacenamiento y Recuperación de la Información/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Sepsis/orina , Manejo de Especímenes/economía
9.
J Vis Exp ; (167)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33554960

RESUMEN

Modern approaches in quantitative live cell imaging have become an essential tool for exploring cell biology, by enabling the use of statistics and computational modeling to classify and compare biological processes. Although cell culture model systems are great for high content imaging, high throughput studies of cell morphology suggest that ex vivo cultures are limited in recapitulating the morphological complexity found in cells within living organisms. As such, there is a need for a scalable high throughput model system to image living cells within an intact organism. Described here is a protocol for using a high content image analyzer to simultaneously acquire multiple time-lapse videos of embryonic Drosophila melanogaster development during the syncytial blastoderm stage. The syncytial blastoderm has traditionally served as a great in vivo model for imaging biological events; however, obtaining a significant number of experimental replicates for quantitative and high-throughput approaches has been labor intensive and limited by the imaging of a single embryo per experimental repeat. Presented here is a method to adapt imaging and microinjection approaches to suit a high content imaging system, or any inverted microscope capable of automated multipoint acquisition. This approach enables the simultaneous acquisition of 6-12 embryos, depending on desired acquisition factors, within a single imaging session.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Procesamiento de Imagen Asistido por Computador , Microinyecciones , Microscopía/métodos , Animales , Automatización , Desecación
10.
J Vis Exp ; (167)2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33586707

RESUMEN

Described is an experimental procedure that enables high-power laser irradiation of microfabricated targets. Targets are brought to the laser focus by a closed feedback loop that operates between the target manipulator and a ranging sensor. The target fabrication process is explained in detail. Representative results of MeV-level proton beams generated by irradiation of 600 nm thick gold foils at a rate of 0.2 Hz are given. The method is compared with other replenishable target systems and the prospects of increasing the shot rates to above 10 Hz are discussed.


Asunto(s)
Rayos Láser , Microtecnología , Automatización , Iones
11.
J Vis Exp ; (167)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33586710

RESUMEN

The ease of genetic manipulation and the strong evolutionary conservation of eukaryotic cellular machinery in the budding yeast Saccharomyces cerevisiae has made it a pre-eminent genetic model organism. However, since efficient protein isolation depends upon optimal disruption of cells, the use of yeast for biochemical analysis of cellular proteins is hampered by its cell wall which is expensive to digest enzymatically (using lyticase or zymolyase), and difficult to disrupt mechanically (using a traditional bead beater, a French press or a coffee grinder) without causing heating of samples, which in turn causes protein denaturation and degradation. Although manual grinding of yeast cells under liquid nitrogen (LN2) using a mortar and pestle avoids overheating of samples, it is labor intensive and subject to variability in cell lysis between operators. For many years, we have been successfully preparing high quality yeast extracts using cryogrinding of cells in an automated freezer mill. The temperature of -196 °C achieved with the use of LN2 protects the biological material from degradation by proteases and nucleases, allowing the retrieval of intact proteins, nucleic acids and other macromolecules. Here we describe this technique in detail for budding yeast cells which involves first freezing a suspension of cells in a lysis buffer through its dropwise addition into LN2 to generate frozen droplets of cells known as "popcorn". This popcorn is then pulverized under LN2 in a freezer mill to generate a frozen "powdered" extract which is thawed slowly and clarified by centrifugation to remove insoluble debris. The resulting extracts are ready for downstream applications, such as protein or nucleic acid purification, proteomic analyses, or co-immunoprecipitation studies. This technique is widely applicable for cell extract preparation from a variety of microorganisms, plant and animal tissues, marine specimens including corals, as well as isolating DNA/RNA from forensic and permafrost fossil specimens.


Asunto(s)
Extractos Celulares/química , Congelación , Animales , Automatización , Centrifugación , Inmunoprecipitación , Proteómica , Saccharomyces cerevisiae/metabolismo , Temperatura
12.
Methods Mol Biol ; 2246: 17-33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33576980

RESUMEN

FISH has gained an irreplaceable place in microbiology because of its ability to detect and locate a microorganism, or a group of organisms, within complex samples. However, FISH role has evolved drastically in the last few decades and its value has been boosted by several advances in signal intensity, imaging acquisitions, automation, method robustness, and, thus, versatility. This has resulted in a range of FISH variants that gave researchers the ability to access a variety of other valuable information such as complex population composition, metabolic activity, gene detection/quantification, or subcellular location of genetic elements. In this chapter, we will review the more relevant FISH variants, their intended use, and how they address particular challenges of classical FISH.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Automatización/métodos
13.
Sensors (Basel) ; 21(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525420

RESUMEN

BACKGROUND: Cell detection and counting is of essential importance in evaluating the quality of early-stage embryo. Full automation of this process remains a challenging task due to different cell size, shape, the presence of incomplete cell boundaries, partially or fully overlapping cells. Moreover, the algorithm to be developed should process a large number of image data of different quality in a reasonable amount of time. METHODS: Multi-focus image fusion approach based on deep learning U-Net architecture is proposed in the paper, which allows reducing the amount of data up to 7 times without losing spectral information required for embryo enhancement in the microscopic image. RESULTS: The experiment includes the visual and quantitative analysis by estimating the image similarity metrics and processing times, which is compared to the results achieved by two wellknown techniques-Inverse Laplacian Pyramid Transform and Enhanced Correlation Coefficient Maximization. CONCLUSION: Comparatively, the image fusion time is substantially improved for different image resolutions, whilst ensuring the high quality of the fused image.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Automatización , Aumento de la Imagen
14.
Yonsei Med J ; 62(3): 255-261, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33635016

RESUMEN

PURPOSE: This study aimed to examine the inter-method reliability and volumetric differences between NeuroQuant (NQ) and Freesurfer (FS) using T1 volume imaging sequence with different slice thicknesses in patients with mild cognitive impairment (MCI). MATERIALS AND METHODS: This retrospective study enrolled 80 patients diagnosed with MCI at our memory clinic. NQ and FS were used for volumetric analysis of three-dimensional T1-weighted images with slice thickness of 1 and 1.2 mm. Inter-method reliability was measured with Pearson correlation coefficient (r), intraclass correlation coefficient (ICC), and effect size (ES). RESULTS: Overall, NQ volumes were larger than FS volumes in several locations: whole brain (0.78%), cortical gray matter (5.34%), and white matter (2.68%). Volume measures by NQ and FS showed good-to-excellent ICCs with both 1 and 1.2 mm slice thickness (ICC=0.75-0.97, ES=-1.0-0.73 vs. ICC=0.78-0.96, ES=-0.9-0.77, respectively), except for putamen, pallidum, thalamus, and total intracranial volumes. The ICCs in all locations, except the putamen and cerebellum, were slightly higher with a slice thickness of 1 mm compared to those of 1.2 mm. CONCLUSION: Inter-method reliability between NQ and FS was good-to-excellent in most regions with improvement with a 1-mm slice thickness. This finding indicates that the potential effects of slice thickness should be considered when performing volumetric measurements for cognitive impairment.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética , Anciano , Anciano de 80 o más Años , Automatización , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos
15.
ACS Appl Mater Interfaces ; 13(7): 8042-8048, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33576594

RESUMEN

Biomarkers based on DNA methylation have attracted wide attention in biomedical research due to their potential clinical value. Therefore, a sensitive and accurate method for DNA methylation detection is highly desirable for the discovery and diagnostics of human diseases, especially cancers. Here, an integrated, low-cost, and portable point-of-care (POC) device is presented to analyze DNA methylation, which integrates the process of pyrosequencing in a digital microfluidic chip. Without additional equipment and complicated operation, droplets are manipulated by patterned electrodes with individually programmed control. The system exhibited an excellent sensitivity with a limit of detection (LOD) of 10 pg and a comparable checkout down to 5% methylation level within 30 min, which offered a potential substitute for the detection of DNA methylation. With the advantages of portability, ease of use, high accuracy, and low cost, the POC platform shows great potential for the analysis of tumor-specific circulating DNA.


Asunto(s)
Automatización , ADN/análisis , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Sistemas de Atención de Punto , Biomarcadores/análisis , ADN/genética , Metilación de ADN , Humanos , Técnicas Analíticas Microfluídicas/instrumentación
17.
J Chromatogr A ; 1640: 461963, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33610133

RESUMEN

Historically, retention parameters were reliably used as identification criterion in chromatographic analytical systems. However, pure analytical standards are necessary to determine the retention behaviour of a given compound. In recent decades, mass spectrometer (MS) became the detector of choice to obtain structural information on unknown peaks, thanks to the elucidation of fragments, often arisen from the loss of specific functional groups. The cost and the level of experience of the operators is surely higher compared to the use of retention data. Therefore, the aim of the present review is to describe the efforts in the introduction of the Linear Retention Index (LRI) in routine, interlaboratory applicable identification procedures. The requirements and the main challenges will be discussed, even compared to gas chromatography methods, in which LRI is stably used for identification purposes, usually in combination with MS spectral libraries. The higher number of LC-amenable molecules and the wide range of LC mobile phase compositions make the building of universal LRI database a very challenging task. The limitations encountered in the past decades are reported, together with new proposals in order to overcome such issues.


Asunto(s)
Cromatografía Liquida/métodos , Automatización , Espectrometría de Masas , Aceites Volátiles/análisis , Publicaciones , Programas Informáticos
18.
Nat Commun ; 12(1): 936, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568670

RESUMEN

Patch clamp recording of neurons is a labor-intensive and time-consuming procedure. Here, we demonstrate a tool that fully automatically performs electrophysiological recordings in label-free tissue slices. The automation covers the detection of cells in label-free images, calibration of the micropipette movement, approach to the cell with the pipette, formation of the whole-cell configuration, and recording. The cell detection is based on deep learning. The model is trained on a new image database of neurons in unlabeled brain tissue slices. The pipette tip detection and approaching phase use image analysis techniques for precise movements. High-quality measurements are performed on hundreds of human and rodent neurons. We also demonstrate that further molecular and anatomical analysis can be performed on the recorded cells. The software has a diary module that automatically logs patch clamp events. Our tool can multiply the number of daily measurements to help brain research.


Asunto(s)
Aprendizaje Profundo , Neuronas/citología , Adulto , Anciano , Animales , Automatización , Encéfalo/citología , Electrofisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Neuronas/química , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Programas Informáticos , Grabación en Video
19.
Sci Rep ; 11(1): 983, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441703

RESUMEN

We assess repeatability of automatic measurements of a new anterior segment optical coherence tomographer and biometer (ANTERION) and their agreement with those provided by an anterior segment-optical coherence tomography device combined with Placido-disk corneal topography (MS-39) and a validated optical biometer (IOLMaster 500). A consecutive series of patients underwent three measurements with ANTERION and one with MS-39. A subgroup of patients underwent biometry also with IOLMaster 500. Repeatability was assessed by means of within-subject standard deviation, coefficient of variation (COV), and intraclass correlation coefficient (ICC). Agreement was investigated with the 95% limits of agreement. Paired t-test and Wilcoxon matched-pairs test were performed to compare the measurements of the different devices. Repeatability of ANTERION measurements was high, with ICC > 0.98 for all parameters except astigmatism (0.963); all parameters apart from those related to astigmatism revealed a COV < 1%. Repeatability of astigmatism improved when only eyes whose keratometric astigmatism was higher than 1.0 D were investigated. Most measurements by ANTERION and MS-39 showed good agreement. No significant differences were found between measurements by ANTERION and IOLMaster, but for corneal diameter. ANTERION revealed high repeatability of automatic measurements and good agreement with both MS-39 and IOLMaster for most parameters.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Coherencia Óptica/instrumentación , Adulto , Anciano , Anciano de 80 o más Años , Automatización , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estándares de Referencia , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...