RESUMEN
Background: Gut dysbiosis and gut microbiome-derived metabolites have been implicated in both disease onset and treatment response, but this has been rarely demonstrated in pemphigus vulgaris (PV). Here, we aim to systematically characterize the gut microbiome to assess the specific microbial species and metabolites associated with PV. Methods: We enrolled 60 PV patients and 19 matched healthy family members, and collected 100 fecal samples (60 treatment-naïve, 21 matched post-treatment, and 19 controls). Metagenomic shotgun sequencing and subsequent quality control/alignment/annotation were performed to assess the composition and microbial species, in order to establish the association between gut microbiome with PV onset and treatment response. In addition, we evaluated short-chain fatty acids (SCFAs) in PV patients through targeted metabolomics analysis. Results: The diversity of the gut microbiome in PV patients deviates from the healthy family members but not between responder and non-responder, or before and after glucocorticoid treatment. However, the relative abundance of several microbial species, including the pathogenic bacteria (e.g., Escherichia coli) and some SCFA-producing probiotics (e.g., Eubacterium ventriosum), consistently differed between the two groups in each comparison. Escherichia coli was enriched in PV patients and significantly decreased after treatment in responders. In contrast, Eubacterium ventriosum was enriched in healthy family members and significantly increased particularly in responders after treatment. Consistently, several gut microbiome-derived SCFAs were enriched in healthy family members and significantly increased after treatment (e.g., butyric acid and valeric acid). Conclusions: This study supports the association between the gut microbiome and PV onset, possibly through disrupting the balance of gut pathogenic bacteria and probiotics and influencing the level of gut microbiome-derived SCFAs. Furthermore, we revealed the potential relationship between specific microbial species and glucocorticoid treatment.
Asunto(s)
Microbioma Gastrointestinal , Pénfigo , Humanos , Pénfigo/terapia , Glucocorticoides , Eubacterium/metabolismo , Ácidos Grasos Volátiles/metabolismo , Bacterias/metabolismoRESUMEN
The impact of bacterial members of the microbiota on the development of colorectal cancer (CRC) has become clear in recent years. However, exactly how bacteria contribute to the development of cancer is often still up for debate. The impact of bacteria-derived metabolites, which can influence the development of CRC either in a promoting or inhibiting manner, is undeniable. Here, we discuss the effects of the most well-studied bacteria-derived metabolites associated with CRC, including secondary bile acids, short-chain fatty acids, trimethylamine-N-oxide and indoles. We show that the effects of individual metabolites on CRC development are often nuanced and dose- and location-dependent. In the coming years, the array of metabolites involved in CRC development will undoubtedly increase further, which will emphasize the need to focus on causation and mechanisms and the clearly defined roles of bacterial species within the microbiota.
Asunto(s)
Neoplasias Colorrectales , Microbiota , Humanos , Neoplasias Colorrectales/metabolismo , Bacterias/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácidos y Sales Biliares/metabolismoRESUMEN
Polycyclic aromatic hydrocarbons (PAHs) are among the most widely spread pollutants in the environment including the agricultural soil. PAH degradation by indigenous bacteria is an effective and economical means to remove these pollutants from the environment. Here, we report a bacterial consortium (Pdy-1) isolated from paddy rice soil in northern Japan able to degrade polycyclic aromatic hydrocarbons (PAHs) at high rates. Pdy-1 was incubated with a mixture of PAH compounds (fluorene, phenanthrene, and pyrene) in Bushnell Haas Medium at a final concentration of 100 mg/L each. PDY-1 degraded 100% of fluorene, 95% of phenanthrene, and 52% of pyrene in 5 days. Phenanthrene and pyrene were completely degraded at 10 d and 15 d, respectively. Cloning of the 16S rRNA gene revealed that the consortium was composed of 40% Achromobacter and 7% each of Castelaniella, Rhodanobacter, and Hypomicrobium. Comamonas, Ferrovibrio, Terrimonas, Bordetella, Rhizobium, and Pseudonocardia were also detected. PCR-DGGE showed the dynamics of the consortium during the incubation period. Real-time PCR revealed that PAH degrading genes such as the gram-positive ring dihydroxylating genes (PAH-RDH) and pyrene dioxygenase (nidA) were most abundant at day 5 when the rapid biodegradation of the PAHs was observed. This study improves our understanding on dynamics and characteristics of an effective PAH-degrading bacterial consortium from paddy rice soil.
Asunto(s)
Contaminantes Ambientales , Oryza , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Oryza/metabolismo , Suelo , Consorcios Microbianos , ARN Ribosómico 16S/genética , Contaminantes del Suelo/metabolismo , Fenantrenos/metabolismo , Fluorenos/metabolismo , Pirenos/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Microbiología del SueloRESUMEN
The effect of dietary lead on the intestinal microbiome has not been fully elucidated. To determine if there was an association between microflora modulation, predicted functional genes, and Pb exposure, mice were provided diets amended with increasing concentrations of a single lead compound, lead acetate, or a well characterized complex reference soil containing lead, i.e. 6.25-25 mg/kg Pb acetate (PbOAc) or 7.5-30 mg/kg Pb in reference soil SRM 2710a having 0.552 % Pb among other heavy metals such as Cd. Feces and ceca were collected following 9 days of treatment and the microbiome analyzed by 16 S rRNA gene sequencing. Treatment effects on the microbiome were observed in both feces and ceca of mice. Changes in the cecal microbiomes of mice fed Pb as Pb acetate or as a constituent in SRM 2710a were statistically different except for a few exceptions regardless of dietary source. This was accompanied by increased average abundance of functional genes associated with metal resistance, including those related to siderophore synthesis and arsenic and/or mercury detoxification. Akkermansia, a common gut bacterium, was the highest ranked species in control microbiomes whereas Lactobacillus ranked highest in treated mice. Firmicutes/Bacteroidetes ratios in the ceca of SRM 2710a treated mice increased more than with PbOAc, suggestive of changes in gut microbiome metabolism that promotes obesity. Predicted functional gene average abundance related to carbohydrate, lipid, and/or fatty acid biosynthesis and degradation were greater in the cecal microbiome of SRM 2710a treated mice. Bacilli/Clostridia increased in the ceca of PbOAc treated mice and may be indicative of increased risk of host sepsis. Family Deferribacteraceae also was modulated by PbOAc or SRM 2710a possibly impacting inflammatory response. Understanding the relationship between microbiome composition, predicted functional genes, and Pb concentration, especially in soil, may provide new insights into the utility of various remediation methodologies that minimize dysbiosis and modulate health effects, thus assisting in the selection of an optimal treatment for contaminated sites.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Microbioma Gastrointestinal/genética , Plomo/toxicidad , Plomo/metabolismo , Bacterias/metabolismo , Firmicutes/metabolismo , SueloRESUMEN
Textile effluent contains a highly toxic and refractory azo dyes. Eco-friendly method for efficient decolorization and degradation of textile effluent is essential. In the present study, treatment of textile effluent was carried through sequential electro oxidation (EO) and photo electro oxidation (PEO) using RuO2-IrO2 coated titanium electrode as an anode and cathode followed by biodegradation. The pre-treatment of textile effluent by photo electro oxidation for 14 h exhibited 92% of decolorization. Subsequent biodegradation of the pre-treated textile effluent enhanced the reduction of chemical oxygen demand to 90%. Metagenomics results exhibited that Flavobacterium, Dietzia, Curtobacterium, Mesorhizobium, Sphingobium, Streptococcus, Enterococcus, Prevotellaand Stenotrophomonas bacterial communities majorly involved in the biodegradation of textile effluent. Hence, integrating sequential photo electro oxidation and biodegradation proposed an efficient and eco-friendly approach for treating textile effluent.
Asunto(s)
Actinomycetales , Bacterias , Biodegradación Ambiental , Bacterias/genética , Bacterias/metabolismo , Textiles , Oxidación-Reducción , Actinomycetales/metabolismo , Compuestos Azo , Colorantes/metabolismo , Industria TextilRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Given the adverse effects of the current principal treatments, there is still a great need for effective cures for rheumatoid arthritis (RA), an immune-mediated disease. Toddalia asiatica (L.) Lam is a traditional medicinal herb that can be used for RA treatment because of its anti-inflammatory and analgesic properties. AIM OF THE STUDY: To investigate the possible effects of Toddalia asiatica extract (TAE) on intestinal immunity and the intestinal bacterial flora in a rat model of RA. MATERIALS AND METHODS: The anti-arthritis effect of TAE was evaluated in arthritis rats induced by complete Freund's adjuvant-induced arthritis (AIA). Arthritis index (AI) scores, systemic inflammation scores, histopathologic changes in the colon and ankle were detected by hematoxylin and eosin staining. Western blot analysis was performed to assess the protein expression of IL-17A, RORC, IL-1ß, IL-6, FOXP3, IL-10 in the colon. RT-PCR was performed to assess the expression of the colon's mRNA. Finally, changes to the gut microbiome by sequencing 16S rDNA. Microbial function prediction was performed using PICRUSt with the KEGG databases and correlation analysis was carried out by computing Spearman's rank correlations. RESULTS: demonstrated that TAE administration at a dose of 3 g/kg dramatically decreased AI scores, systemic inflammation scores, and histopathologic lesions of the ankle and colon in AIA rats. TAE was found to significantly reduce the expression levels of Th17-related proteins and mRNAs (IL-17A, RORC, IL-1ß and IL-6) in the colon, while increasing the expression levels of Treg-related proteins and mRNA (IL-10 and FOXP3), which helped restore the balance of Th17/Treg immune cells in the colon. Meanwhile, TAE was also found to be capable of remodeling the gut microbiota in AIA rats. Depleting RA-associated genera and thereby increasing α-diversity enriched the gut microbiota's diversity and shifted the community composition dramatically, leading to the increase of Firmicutes_unclassified, Ruminococcaceae_unclassified, Muribaculum, Subdoligranulum, Lachnospira, Marvinbryantia, and the reduction of RA-related bacteria Ligilactobacillus, Streptococcus and Eubacterium-eligens-group. Furthermore, PICRUSt analysis revealed that metabolic pathways were associated with TAE treatment, with metabolic pathways dominating. Among them, metabolic pathways were predominant. Correlation studies showed that a total of 9 microorganisms, including Ligilactobacillus, Eubacterium-eligens-group and Subdoligranulum, were significantly associated with Th17/Treg expression. CONCLUSIONS: This study demonstrates that TAE is a low-toxicity poly alkaline drug that can rapidly and effectively improve joint symptoms in RA rats and increases beneficial intestinal bacteria and decreases harmful ones, which is associated with modulating Th17/Treg interactions in intestinal T cells and reversing microbial disorders.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Ratas , Animales , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Linfocitos T Reguladores , Interleucina-6/metabolismo , Citocinas/metabolismo , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Inflamación/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Colon/patología , Medicamentos Herbarios Chinos/farmacología , Bacterias/metabolismo , Factores de Transcripción Forkhead/metabolismo , Células Th17RESUMEN
Soils co-contaminated with heavy metals and organic pollutants are common and threaten the natural environment and human health. Although artificial microbial consortia have advantages over single strains, the mechanism affecting their effectiveness and colonization in polluted soils still requires determination. Here, we constructed two kinds of artificial microbial consortia from the same or different phylogenetic groups and inoculated them into soil co-contaminated with Cr(VI) and atrazine to study the effects of phylogenetic distance on consortia effectiveness and colonization. The residual concentrations of pollutants demonstrated that the artificial microbial consortium from different phylogenetic groups achieved the highest removal rates of Cr(VI) and atrazine. The removal rate of 400 mg/kg atrazine was 100%, while that of 40 mg/kg Cr(VI) was 57.7%. High-throughput sequence analysis showed that the soil bacterial negative correlations, core genera, and potential metabolic interactions differed among treatments. Furthermore, artificial microbial consortia from different phylogenetic groups had better colonization and a more significant effect on the abundance of native core bacteria than consortia from the same phylogenetic group. Our study highlights the importance of phylogenetic distance on consortium effectiveness and colonization and offers insight into the bioremediation of combined pollutants.
Asunto(s)
Atrazina , Contaminantes del Suelo , Humanos , Atrazina/análisis , Filogenia , Consorcios Microbianos , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Bacterias/genética , Bacterias/metabolismo , Suelo , Microbiología del SueloRESUMEN
Lignocellulose biomass has recently been considered a cost-effective and renewable energy source within circular economy management. Cellulases are important key enzymes for simple, fast, and clean biomass decomposition. The intestinal tract of millipedes is the environment which can provide promising microbial strains with cellulolytic potential. In the present study, we used the tropical millipede Telodeinopus aoutii as an experimental organism. Within a feeding test in which millipedes were fed with oak and maple leaf litter, we focused on isolating culturable cellulolytic microbiota from the millipede gut. Several growth media selecting for actinobacteria, bacteria, and fungi have been used to cultivate microbial strains with cellulolytic activities. Our results showed that oak-fed millipedes provided a higher number of culturable bacteria and a more diversified microbial community than maple-fed ones. The screening for cellulolytic activity using Congo red revealed that about 30% of bacterial and fungal phylotypes isolated from the gut content of T. aoutii, produced active cellulases in vitro. Actinobacteria Streptomyces and Kitasatospora were the most active cellulolytic genera on Congo red test. In contrast, fungi Aspergillus, Penicillium, Cheatomium, Clonostachys, and Trichoderma showed the highest protein-specific cellulase activity quantified by 4-Methylumbelliferyl ß-D-cellobioside (4-MUC). Our findings provide a basis for future research on the enzyme activities of microbes isolated from the digestive tracts of invertebrates and their biocatalytic role in biomass degradation.
Asunto(s)
Celulasa , Celulasas , Rojo Congo , Celulasas/metabolismo , Celulasa/metabolismo , Bacterias/genética , Bacterias/metabolismoRESUMEN
Parageobacillus thermoglucosidasius is a thermophilic bacterium characterized by rapid growth, low nutrient requirements, and amenability to genetic manipulation. These characteristics along with its ability to ferment a broad range of carbohydrates make P. thermoglucosidasius a potential workhorse in whole-cell biocatalysis. The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) catalyzes the transport and phosphorylation of carbohydrates and sugar derivatives in bacteria, making it important for their physiological characterization. In this study, the role of PTS elements on the catabolism of PTS and non-PTS substrates was investigated for P. thermoglucosidasius DSM 2542. Knockout of the common enzyme I, part of all PTSs, showed that arbutin, cellobiose, fructose, glucose, glycerol, mannitol, mannose, N-acetylglucosamine, N-acetylmuramic acid, sorbitol, salicin, sucrose, and trehalose were PTS-dependent on translocation and coupled to phosphorylation. The role of each putative PTS was investigated and six PTS-deletion variants could not grow on arbutin, mannitol, N-acetylglucosamine, sorbitol, and trehalose as the main carbon source, or showed diminished growth on N-acetylmuramic acid. We concluded that PTS is a pivotal factor in the sugar metabolism of P. thermoglucosidasius and established six PTS variants important for the translocation of specific carbohydrates. This study lays the groundwork for engineering efforts with P. thermoglucosidasius towards efficient utilization of diverse carbon substrates for whole-cell biocatalysis.
Asunto(s)
Acetilglucosamina , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Acetilglucosamina/metabolismo , Arbutina , Trehalosa , Fosfotransferasas/genética , Carbohidratos , Bacterias/metabolismo , Manitol , Sorbitol , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
Expansins are proteins that loosen plant cell walls but lack enzymatic activity. Here we describe two protocols tailored to measure the biomechanical activity of bacterial expansin. The first assay relies on the weakening of filter paper by expansin. The second assay is based on induction of creep (long-term, irreversible extension) of plant cell wall samples.
Asunto(s)
Bacterias , Pared Celular , Bacterias/metabolismo , Pared Celular/metabolismo , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismoRESUMEN
The interaction between bacteria and insects can significantly impact a wide range of different areas because bacteria and insects are widely distributed around the globe. The bacterial-insect interactions have the potential to directly affect human health since insects are vectors for disease transmission, and their interactions can also have economic consequences. In addition, they have been linked to high mortality rates in economically important insects, resulting in substantial economic losses. MicroRNAs (miRNAs) are types of non-coding RNAs involved in regulating gene expression post-transcriptionally. The length of miRNAs ranges from 19 to 22 nucleotides. MiRNAs, in addition to their ability to exhibit dynamic expression patterns, have a diverse range of targets. This enables them to govern various physiological activities in insects, like innate immune responses. Increasing evidence suggests that miRNAs have a crucial biological role in bacterial infection by influencing immune responses and other mechanisms for resistance. This review focuses on some of the most recent and exciting discoveries made in recent years, including the correlation between the dysregulation of miRNA expression in the context of bacterial infection and the progression of the infection. Furthermore, it describes how they profoundly impact the immune responses of the host by targeting the Toll, IMD, and JNK signaling pathways. It also emphasizes the biological function of miRNAs in regulating immune responses in insects. Finally, it also discusses current knowledge gaps about the function of miRNAs in insect immunity, in addition to areas that require more research in the future.
Asunto(s)
Infecciones Bacterianas , MicroARNs , Mariposas Nocturnas , Animales , Humanos , MicroARNs/metabolismo , Interacciones Huésped-Patógeno/genética , Infecciones Bacterianas/genética , Insectos/genética , Insectos/metabolismo , Bacterias/genética , Bacterias/metabolismoRESUMEN
The emergence and development of next-generation sequencing technologies (NGS) has made the analysis of the water microbiome in drinking water distribution systems (DWDSs) more accessible and opened new perspectives in microbial ecology studies. The current study focused on the characterization of the water microbiome employing a gene- and genome-centric metagenomic approach to five waterworks in Finland with different raw water sources, treatment methods, and disinfectant. The microbial communities exhibit a distribution pattern of a few dominant taxa and a large representation of low-abundance bacterial species. Changes in the community structure may correspond to the presence or absence and type of disinfectant residual which indicates that these conditions exert selective pressure on the microbial community. The Archaea domain represented a small fraction (up to 2.5%) and seemed to be effectively controlled by the disinfection of water. Their role particularly in non-disinfected DWDS may be more important than previously considered. In general, non-disinfected DWDSs harbor higher microbial richness and maintaining disinfectant residual is significantly important for ensuring low microbial numbers and diversity. Metagenomic binning recovered 139 (138 bacterial and 1 archaeal) metagenome-assembled genomes (MAGs) that had a >50% completeness and <10% contamination consisting of 20 class representatives in 12 phyla. The presence and occurrence of nitrite-oxidizing bacteria (NOB)-like microorganisms have significant implications for nitrogen biotransformation in drinking water systems. The metabolic and functional complexity of the microbiome is evident in DWDSs ecosystems. A comparative analysis found a set of differentially abundant taxonomic groups and functional traits in the active community. The broader set of transcribed genes may indicate an active and diverse community regardless of the treatment methods applied to water. The results indicate a highly dynamic and diverse microbial community and confirm that every DWDS is unique, and the community reflects the selection pressures exerted at the community structure, but also at the levels of functional properties and metabolic potential.
Asunto(s)
Desinfectantes , Agua Potable , Microbiota , Metagenoma , Agua Potable/microbiología , Finlandia , Bacterias/metabolismo , Microbiota/genética , Archaea/genética , MetagenómicaRESUMEN
BACKGROUND: Celiac disease (CeD) is a multisystem immune-mediated multifactorial condition strongly associated with the intestinal microbiota. AIM: To evaluate the predictive power of the gut microbiota in the diagnosis of CeD and to search for important taxa that may help to distinguish CeD patients from controls. METHODS: Microbial DNA from bacteria, viruses, and fungi, was isolated from mucosal and fecal samples of 40 children with CeD and 39 controls. All samples were sequenced using the HiSeq platform, the data were analyzed, and abundance and diversities were assessed. For this analysis, the predictive power of the microbiota was evaluated by calculating the area under the curve (AUC) using data for the entire microbiome. The Kruskal-Wallis test was used to evaluate the significance of the difference between AUCs. The Boruta logarithm, a wrapper built around the random forest classification algorithm, was used to identify important bacterial biomarkers for CeD. RESULTS: In fecal samples, AUCs for bacterial, viral, and fungal microbiota were 52%, 58%, and 67.7% respectively, suggesting weak performance in predicting CeD. However, the combination of fecal bacteria and viruses showed a higher AUC of 81.8 %, indicating stronger predictive power in the diagnosis of CeD. In mucosal samples, AUCs for bacterial, viral, and fungal microbiota were 81.2%, 58.6%, and 35%, respectively, indicating that mucosal bacteria alone had the highest predictive power. Two bacteria, Bacteroides intestinalis and Burkholderiales bacterium 1-1-47, in fecal samples and one virus, Human_endogenous _retrovirus_K, in mucosal samples are predicted to be "important" biomarkers, differentiating celiac from nonceliac disease groups. Bacteroides intestinalis is known to degrade complex arabinoxylans and xylan which have a protective role in the intestinal mucosa. Similarly, several Burkholderiales species have been reported to produce peptidases that hydrolyze gluten peptides, with the potential to reduce the gluten content of food. Finally, a role for Human_endogenous _retrovirus_K in immune-mediated disease such as CeD has been reported. CONCLUSION: The excellent predictive power of the combination of the fecal bacterial and viral microbiota with mucosal bacteria alone indicates a potential role in the diagnosis of difficult cases of CeD. Bacteroides intestinalis and Burkholderiales bacterium 1-1-47, which were found to be deficient in CeD, have a potential protective role in the development of prophylactic modalities. Further studies on the role of the microbiota in general and Human_endogenous _retrovirus_K in particular are needed.
Asunto(s)
Enfermedad Celíaca , Microbioma Gastrointestinal , Humanos , Niño , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/epidemiología , Enfermedad Celíaca/metabolismo , Arabia Saudita/epidemiología , Glútenes , Biomarcadores/metabolismo , Bacterias/genética , Bacterias/metabolismoRESUMEN
Peptide natural products constitute a major class of secondary metabolites produced by microorganisms (mostly bacteria and fungi). In the past several decades, researchers have gained extensive knowledge about nonribosomal peptides (NRPs) generated by ribosome-independent systems, namely, NRP synthetases (NRPSs). NRPSs are multifunctional enzymes consisting of semiautonomous domains that form a peptide backbone. Using a thiotemplate mechanism that employs assembly-line logic with multiple modules, NRPSs activate, tether, and modify amino acid building blocks, sequentially elongating the peptide chain before releasing the complete peptide. Adenylation, thiolation, condensation, and thioesterase domains play central roles in these reactions. This chapter focuses on the current understanding of these central domains in NRPS assembly-line enzymology.
Asunto(s)
Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptidos , Péptidos/metabolismo , Bacterias/metabolismo , Hongos/metabolismo , Aminoácidos/metabolismo , Péptido Sintasas/químicaRESUMEN
4'-Phosphopantetheinylation is an essential posttranslational modification of the primary and secondary metabolic pathways in prokaryotes and eukaryotes. Several peptide-based natural products are biosynthesized by large, multifunctional enzymes known as nonribosomal peptide synthetases (NRPSs), responsible for producing virulence factors and many pharmaceuticals. The thiolation (T) domain serves as a covalent tether for substrates and intermediates in nonribosomal peptide biosynthesis and must be posttranslationally modified with a 4'-phosphopantetheinyl group. To detect 4'-phosphopantetheinylation of NRPS in bacterial proteomes, we developed a 5'-(vinylsulfonylaminodeoxy)adenosine scaffold with a clickable functionality, enabling effective chemical labeling of 4'-phosphopantethylated NRPSs. In this chapter, we describe the design and synthesis of an activity-based protein profiling probe and summarize our work toward developing a series of protocols for the labeling and visualization of 4'-phosphopantetheinylation of endogenous NRPSs in complex proteomes.
Asunto(s)
Adenosina , Proteoma , Adenosina/química , Bacterias/metabolismo , Péptido Sintasas/químicaRESUMEN
Anammox bacteria rely heavily on iron and have many iron storage sites. However, the biological significance of these iron storage sites has not been clearly defined. In this study, we explored the properties and location of iron storage sites to better understand their cellular function. To do this, the Candidatus Kuenenia stuttgartiensis iron storage protein, bacterioferritin (K.S Bfr), was successfully expressed and purified. In vitro, correctly assembled globulins were observed by transmission electron microscopy. The self-assembled K.S Bfr has active redox and can bind Fe2+ and mineralize it in the protein cavity. In vivo, engineered bacteria with K.S Bfr showed good adaptability to Fe2+, with a survival rate of 78.9% when exposed to 5 mM Fe2+, compared with only 66.0% for wild-type bacteria lacking K.S Bfr. A potential iron regulatory strategy similar to that of Anammox was identified in transcriptomic analysis of engineered bacteria. This system may be controlled by the iron uptake regulator Furto transport Fe2+ via FeoB and store excess Fe2+ in K.S Bfr to maintain cellular homeostasis. K.S Bfr has superior iron storage capacity both intracellularly and in vitro. The discovery of K.S Bfr reveals the storage location of iron-rich nanoparticles, increases our understanding of the adaptability of iron-dependent bacteria to Fe2+, and suggests possible iron regulation strategies in Anammox bacteria.
Asunto(s)
Ferritinas , Hierro , Hierro/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Oxidación-Reducción , HomeostasisRESUMEN
In marine systems, the availability of inorganic phosphate can limit primary production leading to bacterial and phytoplankton utilization of the plethora of organic forms available. Among these are phospholipids that form the lipid bilayer of all cells as well as released extracellular vesicles. However, information on phospholipid degradation is almost nonexistent despite their relevance for biogeochemical cycling. Here, we identify complete catabolic pathways for the degradation of the common phospholipid headgroups phosphocholine (PC) and phosphorylethanolamine (PE) in marine bacteria. Using Phaeobacter sp. MED193 as a model, we provide genetic and biochemical evidence that extracellular hydrolysis of phospholipids liberates the nitrogen-containing substrates ethanolamine and choline. Transporters for ethanolamine (EtoX) and choline (BetT) are ubiquitous and highly expressed in the global ocean throughout the water column, highlighting the importance of phospholipid and especially PE catabolism in situ. Thus, catabolic activation of the ethanolamine and choline degradation pathways, subsequent to phospholipid metabolism, specifically links, and hence unites, the phosphorus, nitrogen, and carbon cycles.
Asunto(s)
Etanolaminas , Fosfolípidos , Fosfolípidos/metabolismo , Colina/metabolismo , Etanolamina , Bacterias/metabolismo , NitrógenoRESUMEN
Polyethylene (PE) is the most abundantly used synthetic resin and one of the most resistant to degradation, and its massive accumulation in the environment has caused serious pollution. Traditional landfill, composting and incineration technologies can hardly meet the requirements of environmental protection. Biodegradation is an eco-friendly, low-cost and promising method to solve the plastic pollution problem. This review summarizes the chemical structure of PE, the species of PE degrading microorganisms, degrading enzymes and metabolic pathways. Future research is suggested to focus on the screening of high-efficiency PE degrading strains, the construction of synthetic microbial consortia, the screening and modification of degrading enzymes, so as to provide selectable pathways and theoretical references for PE biodegradation research.
Asunto(s)
Bacterias , Polietileno , Polietileno/química , Polietileno/metabolismo , Bacterias/metabolismo , Plásticos/metabolismo , Biodegradación Ambiental , Consorcios MicrobianosRESUMEN
Although polyurethane (PUR) plastics play important roles in daily life, its wastes bring serious environmental pollutions. Biological (enzymatic) degradation is considered as an environmentally friendly and low-cost method for PUR waste recycling, in which the efficient PUR-degrading strains or enzymes are crucial. In this work, a polyester PUR-degrading strain YX8-1 was isolated from the surface of PUR waste collected from a landfill. Based on colony morphology and micromorphology observation, phylogenetic analysis of 16S rDNA and gyrA gene, as well as genome sequence comparison, strain YX8-1 was identified as Bacillus altitudinis. The results of high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) showed that strain YX8-1 was able to depolymerize self-synthesized polyester PUR oligomer (PBA-PU) to produce a monomeric compound 4, 4'-methylene diphenylamine. Furthermore, strain YX8-1 was able to degrade 32% of the commercialized polyester PUR sponges within 30 days. This study thus provides a strain capable of biodegradation of PUR waste, which may facilitate the mining of related degrading enzymes.
Asunto(s)
Poliésteres , Poliuretanos , Poliuretanos/química , Poliésteres/química , Cromatografía Liquida , Filogenia , Espectrometría de Masas en Tándem , Bacterias/metabolismo , Biodegradación AmbientalRESUMEN
PET (polyethylene terephthalate) is one of the most important petrochemicals that is widely used in mineral water bottles, food and beverage packaging and textile industry. Because of its stability under environmental conditions, the massive amount of PET wastes caused serious environmental pollution. The use of enzymes to depolymerize PET wastes and upcycling is one of the important directions for plastics pollution control, among which the key is the depolymerization efficiency of PET by PET hydrolase. BHET (bis(hydroxyethyl) terephthalate) is the main intermediate of PET hydrolysis, its accumulation can hinder the degradation efficiency of PET hydrolase significantly, and the synergistic use of PET hydrolase and BHET hydrolase can improve the PET hydrolysis efficiency. In this study, a dienolactone hydrolase from Hydrogenobacter thermophilus which can degrade BHET (HtBHETase) was identified. After heterologous expression in Escherichia coli and purification, the enzymatic properties of HtBHETase were studied. HtBHETase shows higher catalytic activity towards esters with short carbon chains such as p-nitrophenol acetate. The optimal pH and temperature of the reaction with BHET were 5.0 and 55 â, respectively. HtBHETase exhibited excellent thermostability, and retained over 80% residual activity after treatment at 80 â for 1 hour. These results indicate that HtBHETase has potential in biological PET depolymerization, which may facilitate the enzymatic degradation of PET.