Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.539
Filtrar
1.
Environ Geochem Health ; 46(7): 243, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850467

RESUMEN

Soil contamination by petroleum, including crude oil from various sources, is increasingly becoming a pressing global environmental concern, necessitating the exploration of innovative and sustainable remediation strategies. The present field-scale study developed a simple, cost-effective microbial remediation process for treating petroleum-contaminated soil. The soil treatment involves adding microbial activators to stimulate indigenous petroleum-degrading microorganisms, thereby enhancing the total petroleum hydrocarbons (TPH) degradation rate. The formulated microbial activator provided a growth-enhancing complex of nitrogen and phosphorus, trace elements, growth factors, biosurfactants, and soil pH regulators. The field trials, involving two 500 m3 soil samples with the initial TPH content of 5.01% and 2.15%, were reduced to 0.41% and 0.02% in 50 days, respectively, reaching the national standard for cultivated land category II. The treatment period was notably shorter than the commonly used composting and bioaugmentation methods (typically from 8 to 12 weeks). The results indicated that the activator could stimulate the functional microorganisms in the soil and reduce the phytotoxicity of the contaminated soil. After 40 days of treatment, the germination rate of rye seeds increased from 20 to 90%, indicating that the microbial activator could be effectively used for rapid on-site remediation of oil-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Petróleo , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Proyectos Piloto , Hidrocarburos/metabolismo , Contaminación por Petróleo , Suelo/química , Restauración y Remediación Ambiental/métodos , Germinación/efectos de los fármacos , Bacterias/metabolismo , Nitrógeno/metabolismo
2.
Plant Signal Behav ; 19(1): 2363126, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38832593

RESUMEN

Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.


Asunto(s)
Estrés Fisiológico , Bacterias/metabolismo , Animales , Zea mays/microbiología , Zea mays/metabolismo , Oligoquetos/metabolismo , Oligoquetos/microbiología
3.
Gut Microbes ; 16(1): 2356278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825779

RESUMEN

The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.


Asunto(s)
Antihipertensivos , Presión Sanguínea , Microbioma Gastrointestinal , Hipertensión , Microbioma Gastrointestinal/fisiología , Humanos , Hipertensión/microbiología , Antihipertensivos/uso terapéutico , Animales , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación
4.
Gut Microbes ; 16(1): 2363011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835220

RESUMEN

The Mediterranean diet (MD) and its bioactive constituents have been advocated for their neuroprotective properties along with their capacity to affect gut microbiota speciation and metabolism. Mediated through the gut brain axis, this modulation of the microbiota may partly contribute to the neuroprotective properties of the MD. To explore this potential interaction, we evaluated the neuroprotective properties of a novel bioactive blend (Neurosyn240) resembling the Mediterranean diet in a rodent model of chronic low-grade inflammation. Behavioral tests of cognition, brain proteomic analysis, 16S rRNA sequencing, and 1H NMR metabolomic analyses were employed to develop an understanding of the gut-brain axis interactions involved. Recognition memory, as assessed by the novel object recognition task (NOR), decreased in response to LPS insult and was restored with Neurosyn240 supplementation. Although the open field task performance did not reach significance, it correlated with NOR performance indicating an element of anxiety related to this cognitive change. Behavioral changes associated with Neurosyn240 were accompanied by a shift in the microbiota composition which included the restoration of the Firmicutes: Bacteroidota ratio and an increase in Muribaculum, Rikenellaceae Alloprevotella, and most notably Akkermansia which significantly correlated with NOR performance. Akkermansia also correlated with the metabolites 5-aminovalerate, threonine, valine, uridine monophosphate, and adenosine monophosphate, which in turn significantly correlated with NOR performance. The proteomic profile within the brain was dramatically influenced by both interventions, with KEGG analysis highlighting oxidative phosphorylation and neurodegenerative disease-related pathways to be modulated. Intriguingly, a subset of these proteomic changes simultaneously correlated with Akkermansia abundance and predominantly related to oxidative phosphorylation, perhaps alluding to a protective gut-brain axis interaction. Collectively, our results suggest that the bioactive blend Neurosyn240 conferred cognitive and microbiota resilience in response to the deleterious effects of low-grade inflammation.


Asunto(s)
Cognición , Dieta Mediterránea , Suplementos Dietéticos , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Inflamación , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Cognición/efectos de los fármacos , Inflamación/metabolismo , Inflamación/dietoterapia , Suplementos Dietéticos/análisis , Ratones Endogámicos C57BL , Eje Cerebro-Intestino/fisiología , Encéfalo/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética
5.
Microbiome ; 12(1): 104, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845047

RESUMEN

BACKGROUND: Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS: A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS: By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.


Asunto(s)
Bacterias , Heces , Microbioma Gastrointestinal , Cabras , Mucinas , Polisacáridos , Animales , Cabras/microbiología , Ovinos/microbiología , Mucinas/metabolismo , Polisacáridos/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Heces/microbiología , Metagenoma , Genoma Bacteriano , Metagenómica/métodos , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento
6.
Appl Microbiol Biotechnol ; 108(1): 356, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822843

RESUMEN

The gastrointestinal tract (GIT) is stationed by a dynamic and complex microbial community with functions in digestion, metabolism, immunomodulation, and reproduction. However, there is relatively little research on the composition and function of microorganisms in different GIT segments in dairy goats. Herein, 80 chyme samples were taken from ten GIT sites of eight Xinong Saanen dairy goats and then analyzed and identified the microbial composition via 16S rRNA V1-V9 amplicon sequencing. A total of 6669 different operational taxonomic units (OTUs) were clustered, and 187 OTUs were shared by ten GIT segments. We observed 264 species belonging to 23 different phyla scattered across ten GITs, with Firmicutes (52.42%) and Bacteroidetes (22.88%) predominating. The results revealed obvious location differences in the composition, diversity, and function of the GIT microbiota. In LEfSe analysis, unidentified_Lachnospiraceae and unidentified_Succinniclassicum were significantly enriched in the four chambers of stomach, with functions in carbohydrate fermentation to compose short-chain fatty acids. Aeriscardovia, Candidatus_Saccharimonas, and Romboutsia were significantly higher in the foregut, playing an important role in synthesizing enzymes, amino acids, and vitamins and immunomodulation. Akkermansia, Bacteroides, and Alistipes were significantly abundant in the hindgut to degrade polysaccharides and oligosaccharides, etc. From rumen to rectum, α-diversity decreased first and then increased, while ß-diversity showed the opposite trend. Metabolism was the major function of the GIT microbiome predicted by PICRUSt2, but with variation in target substrates along the regions. In summary, GIT segments play a decisive role in the composition and functions of microorganisms. KEY POINTS: • The jejunum and ileum were harsh for microorganisms to colonize due to the presence of bile acids, enzymes, faster chyme circulation, etc., exhibiting the lowest α-diversity and the highest ß-diversity. • Variability in microbial profiles between the three foregut segments was greater than four chambers of stomach and hindgut, with a higher abundance of Firmicutes dominating than others. • Dairy goats dominated a higher abundance of Kiritimatiellaeota than cows, which was reported to be associated with fatty acid synthesis.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Tracto Gastrointestinal , Cabras , ARN Ribosómico 16S , Animales , Cabras/microbiología , Tracto Gastrointestinal/microbiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Filogenia , ADN Bacteriano/genética , Biodiversidad , Femenino
7.
PeerJ ; 12: e17424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827279

RESUMEN

Background: Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods: In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results: Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the ß-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.


Asunto(s)
Biodegradación Ambiental , Fenoles , Microbiología del Suelo , Contaminantes del Suelo , Fenoles/farmacología , Microbiota/efectos de los fármacos , Suelo/química , Ecosistema , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación
8.
Harmful Algae ; 135: 102646, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38830712

RESUMEN

Toxic cyanobacterial blooms present a substantial risk to public health due to the production of secondary metabolites, notably microcystins (MCs). Microcystin-LR (MC-LR) is the most prevalent and toxic variant in freshwater. MCs resist conventional water treatment methods, persistently impacting water quality. This study focused on an oligohaline shallow lagoon historically affected by MC-producing cyanobacteria, aiming to identify bacteria capable of degrading MC and investigating the influence of environmental factors on this process. While isolated strains did not exhibit MC degradation, microbial assemblages directly sourced from lagoon water removed MC-LR within seven days at 25 ºC and pH 8.0. The associated bacterial community demonstrated an increased abundance of bacterial taxa assigned to Methylophilales, and also Rhodospirillales and Rhodocyclales to a lesser extent. However, elevated atmospheric temperatures (45 ºC) and acidification (pH 5.0 and 3.0) hindered MC-LR removal, indicating that extreme environmental changes could contribute to prolonged MC persistence in the water column. This study highlights the importance of considering environmental conditions in order to develop strategies to mitigate cyanotoxin contamination in aquatic ecosystems.


Asunto(s)
Microcistinas , Microcistinas/metabolismo , Microcistinas/análisis , Bacterias/metabolismo , Cianobacterias/metabolismo , Cianobacterias/fisiología , Microbiota , Agua de Mar/microbiología , Agua de Mar/química , Plancton , Concentración de Iones de Hidrógeno
10.
J Transl Med ; 22(1): 545, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849871

RESUMEN

Recently, research on the human microbiome, especially concerning the bacteria within the digestive system, has substantially advanced. This exploration has unveiled a complex interplay between microbiota and health, particularly in the context of disease. Evidence suggests that the gut microbiome plays vital roles in digestion, immunity and the synthesis of vitamins and neurotransmitters, highlighting its significance in maintaining overall health. Conversely, disruptions in these microbial communities, termed dysbiosis, have been linked to the pathogenesis of various diseases, including digestive system cancers. These bacteria can influence cancer progression through mechanisms such as DNA damage, modulation of the tumour microenvironment, and effects on the host's immune response. Changes in the composition and function within the tumours can also impact inflammation, immune response and cancer therapy effectiveness. These findings offer promising avenues for the clinical application of intratumoral bacteria for digestive system cancer treatment, including the potential use of microbial markers for early cancer detection, prognostication and the development of microbiome-targeted therapies to enhance treatment outcomes. This review aims to provide a comprehensive overview of the pivotal roles played by gut microbiome bacteria in the development of digestive system cancers. Additionally, we delve into the specific contributions of intratumoral bacteria to digestive system cancer development, elucidating potential mechanisms and clinical implications. Ultimately, this review underscores the intricate interplay between intratumoral bacteria and digestive system cancers, underscoring the pivotal role of microbiome research in transforming diagnostic, prognostic and therapeutic paradigms for digestive system cancers.


Asunto(s)
Bacterias , Neoplasias del Sistema Digestivo , Humanos , Neoplasias del Sistema Digestivo/microbiología , Neoplasias del Sistema Digestivo/terapia , Bacterias/metabolismo , Microbioma Gastrointestinal , Animales
11.
Microb Biotechnol ; 17(6): e14485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850270

RESUMEN

Proanthocyanidin-rich grape seed extract (GSE) has been shown to have the potential to protect bones, although the underlying mechanism remains unknown. The current study aims to explore GSE's preventive and therapeutic impact on bone loss induced by oestrogen deficiency and the underlying mechanism through the gut microbiota (GM) and metabolomic responses. In oestrogen-deficient ovariectomized (OVX) mice, GSE ameliorated bone loss by inhibiting the expansion of bone marrow adipose tissue (BMAT), restoring BMAT lipolysis and promoting bone formation. GSE regulated OVX-induced GM dysbiosis by reducing the abundance of opportunistic pathogenic bacteria, such as Alistipes, Turicibacter and Romboutsia, while elevating the abundance of beneficial bacteria, such as Bifidobacterium. The modified GM primarily impacted lipid and amino acid metabolism. Furthermore, the serum metabolites of GSE exhibited a significant enrichment in lipid metabolism. In summary, GSE shows potential as a functional food for preventing oestrogen deficiency-induced bone loss by modulating GM and metabolite-mediated lipid metabolism.


Asunto(s)
Estrógenos , Microbioma Gastrointestinal , Extracto de Semillas de Uva , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Extracto de Semillas de Uva/farmacología , Ratones , Femenino , Estrógenos/deficiencia , Estrógenos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Disbiosis/prevención & control , Ratones Endogámicos C57BL , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Osteoporosis/prevención & control , Modelos Animales de Enfermedad , Tejido Adiposo/metabolismo , Ovariectomía
12.
Environ Geochem Health ; 46(7): 222, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849580

RESUMEN

In previous studies, iron-based nanomaterials, especially biochar (BC)-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC), have been widely used for the remediation of soil contaminants. However, its potential risks to the soil ecological environment are still unknown. This study aims to explore the effects of 3% added S-nZVI/BC on soil environment and microorganisms during the remediation of Cd contaminated yellow-brown soil of paddy field. The results showed that after 49 d of incubation, S-nZVI/BC significantly reduced physiologically based extraction test (PBET) extractable Cd concentration (P < 0.05), and increased the immobilization efficiency of Cd by 16.51% and 17.43% compared with S-nZVI and nZVI/BC alone, respectively. Meanwhile, the application of S-nZVI/BC significantly increased soil urease and sucrase activities by 0.153 and 0.446 times, respectively (P < 0.05), improving the soil environmental quality and promoting the soil nitrogen cycle and carbon cycle. The results from the analysis of the 16S rRNA genes indicated that S-nZVI/BC treatment had a minimal effect on the bacterial community and did not appreciably alter the species of the original dominant bacterial phylum. Importantly, compared to other iron-based nanomaterials, incorporating S-nZVI/BC significantly increased the soil organic carbon (OC) content and decreased the excessive release of iron (P < 0.05). This study also found a significant negative correlation between OC content and Fe(II) content (P < 0.05). It might originate from the reducing effect of Fe-reducing bacteria, which consumed OC to promote the reduction of Fe(III). Accompanying this process, the redistribution of Cd and Fe mineral phases in the soil as well as the generation of secondary Fe(II) minerals facilitated Cd immobilization. Overall, S-nZVI/BC could effectively reduce the bioavailability of Cd, increase soil nutrients and enzyme activities, with less toxic impacts on the soil microorganisms.


Asunto(s)
Cadmio , Carbón Orgánico , Hierro , Microbiología del Suelo , Contaminantes del Suelo , Carbón Orgánico/química , Cadmio/química , Hierro/química , Oryza , Suelo/química , Bacterias/metabolismo , Restauración y Remediación Ambiental/métodos , ARN Ribosómico 16S , Biodegradación Ambiental
13.
Environ Microbiol ; 26(6): e16661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849711

RESUMEN

Inland saline ecosystems suffer multiple stresses (e.g., high radiation, salinity, water scarcity) that may compromise essential ecosystem functions such as organic matter decomposition. Here, we investigated the effects of drought on microbial colonization and decomposition of Sarcocornia fruticosa woody stems across different habitats in a saline watershed: on the dry floodplain, submerged in the stream channel and at the shoreline (first submerged, then emerged). Unexpectedly, weight loss was not enhanced in the submerged stems, while decomposition process differed between habitats. On the floodplain, it was dominated by fungi and high cellulolytic activity; in submerged conditions, a diverse community of bacteria and high ligninolytic activity dominated; and, on the shoreline, enzyme activities were like submerged conditions, but with a fungal community similar to the dry conditions. Results indicate distinct degradation paths being driven by different stress factors: strong water scarcity and photodegradation in dry conditions, and high salinity and reduced oxygen in wet conditions. This suggests that fungi are more resistant to drought, and bacteria to salinity. Overall, in saline watersheds, variations in multiple stress factors exert distinct environmental filters on bacteria and fungi and their role in the decomposition of plant material, affecting carbon cycling and microbial interactions.


Asunto(s)
Bacterias , Sequías , Hongos , Tallos de la Planta , Ríos , Salinidad , Bacterias/metabolismo , Bacterias/clasificación , Hongos/metabolismo , Ríos/microbiología , Tallos de la Planta/microbiología , Tallos de la Planta/metabolismo , Ecosistema
14.
Water Sci Technol ; 89(10): 2716-2731, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38822610

RESUMEN

The anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging due to its toxic effect on the microbes. Microbial electrolysis cells (MECs), with their excellent characteristics of anodic and cathodic biofilms, can be a viable way to enhance the biodegradation of PAHs. This work assessed different cathode materials (carbon brush and nickel foam) combined with bioaugmentation on typical PAHs-naphthalene biodegradation and analyzed the inhibition amendment mechanism of microbial biofilms in MECs. Compared with the control, the degradation efficiency of naphthalene with the nickel foam cathode supplied with bioaugmentation dosage realized a maximum removal rate of 94.5 ± 3.2%. The highest daily recovered methane yield (227 ± 2 mL/gCOD) was also found in the nickel foam cathode supplied with bioaugmentation. Moreover, the microbial analysis demonstrated the significant switch of predominant PAH-degrading microorganisms from Pseudomonas in control to norank_f_Prolixibacteraceae in MECs. Furthermore, hydrogentrophic methanogenesis prevailed in MEC reactors, which is responsible for methane production. This study proved that MEC combined with bioaugmentation could effectively alleviate the inhibition of PAH, with the nickel foam cathode obtaining the fastest recovery rate in terms of methane yield.


Asunto(s)
Biodegradación Ambiental , Electrólisis , Hidrocarburos Policíclicos Aromáticos , Aguas Residuales , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Bacterias/metabolismo , Electrodos , Biopelículas
15.
Food Res Int ; 188: 114483, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823869

RESUMEN

The Monascus-fermented cheese (MC) is a unique cheese product that undergoes multi-strain fermentation, imparting it with distinct flavor qualities. To clarify the role of microorganisms in the formation of flavor in MC, this study employed SPME (arrow)-GC-MS, GC-O integrated with PLS-DA to investigate variations in cheese flavors represented by volatile flavor compounds across 90-day ripening periods. Metagenomic datasets were utilized to identify taxonomic and functional changes in the microorganisms. The results showed a total of 26 characteristic flavor compounds in MC at different ripening periods (VIP>1, p < 0.05), including butanoic acid, hexanoic acid, butanoic acid ethyl ester, hexanoic acid butyl ester, 2-heptanone and 2-octanone. According to NR database annotation, the genera Monascus, Lactococcus, Aspergillus, Lactiplantibacillus, Staphylococcus, Flavobacterium, Bacillus, Clostridium, Meyerozyma, and Enterobacter were closely associated with flavor formation in MC. Ester compounds were linked to Monascus, Meyerozyma, Staphylococcus, Lactiplantibacillus, and Bacillus. Acid compounds were linked to Lactococcus, Lactobacillus, Staphylococcus, and Bacillus. The production of methyl ketones was closely related to the genera Monascus, Staphylococcus, Lactiplantibacillus, Lactococcus, Bacillus, and Flavobacterium. This study offers insights into the microorganisms of MC and its contribution to flavor development, thereby enriching our understanding of this fascinating dairy product.


Asunto(s)
Queso , Fermentación , Microbiología de Alimentos , Metagenómica , Monascus , Gusto , Compuestos Orgánicos Volátiles , Queso/microbiología , Queso/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Monascus/metabolismo , Monascus/genética , Monascus/crecimiento & desarrollo , Metagenómica/métodos , Cromatografía de Gases y Espectrometría de Masas , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Aromatizantes/metabolismo
16.
Food Res Int ; 188: 114497, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823877

RESUMEN

The spontaneous Baijiu fermentation system harbors a complex microbiome that is highly dynamic in time and space and varies depending on the Jiuqu starters and environmental factors. The intricate microbiota presents in the fermentation environment is responsible for carrying out various reactions. These reactions necessitate the interaction among the core microbes to influence the community function, ultimately shaping the distinct Baijiu styles through the process of spontaneous fermentation. Numerous studies have been conducted to enhance our understanding of the diversity, succession, and function of microbial communities with the aim of improving fermentation manipulation. However, a comprehensive and critical assessment of the core microbes and their interaction remains one of the significant challenges in the Baijiu fermentation industry. This paper focuses on the fermentation properties of core microbes. We discuss the state of the art of microbial traceability, highlighting the crucial role of environmental and starter microbiota in the Baijiu brewing microbiome. Also, we discuss the various interactions between microbes in the Baijiu production system and propose a potential conceptual framework that involves constructing predictive network models to simplify and quantify microbial interactions using co-culture models. This approach offers effective strategies for understanding the core microbes and their interactions, thus beneficial for the management of microbiota and the regulation of interactions in Baijiu fermentation processes.


Asunto(s)
Fermentación , Microbiología de Alimentos , Microbiota , Microbiota/fisiología , Interacciones Microbianas/fisiología , Cerveza/microbiología , Bacterias/metabolismo , Bacterias/clasificación
17.
Food Res Int ; 188: 114507, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823882

RESUMEN

The microorganisms of the pit mud (PM) of Nongxiangxing baijiu (NXXB) have an important role in the synthesis of flavor substances, and they determine attributes and quality of baijiu. Herein, we utilize metagenomics and genome-scale metabolic models (GSMMs) to investigate the microbial composition, metabolic functions in PM microbiota, as well as to identify microorganisms and communities linked to flavor compounds. Metagenomic data revealed that the most prevalent assembly of bacteria and archaea was Proteiniphilum, Caproicibacterium, Petrimonas, Lactobacillus, Clostridium, Aminobacterium, Syntrophomonas, Methanobacterium, Methanoculleus, and Methanosarcina. The important enzymes ofPMwere in bothGH and GT familymetabolism. A total of 38 high-quality metagenome-assembled genomes (MAGs) were obtained, including those at the family level (n = 13), genus level (n = 17), and species level (n = 8). GSMMs of the 38 MAGs were then constructed. From the GSMMs, individual and community capabilities respectively were predicted to be able to produce 111 metabolites and 598 metabolites. Twenty-three predicted metabolites were consistent with the metabonomics detected flavors and served as targets. Twelve sub-community of were screened by cross-feeding of 38 GSMMs. Of them, Methanobacterium, Sphaerochaeta, Muricomes intestini, Methanobacteriaceae, Synergistaceae, and Caloramator were core microorganisms for targets in each sub-community. Overall, this study of metagenomic and target-community screening could help our understanding of the metabolite-microbiome association and further bioregulation of baijiu.


Asunto(s)
Bacterias , Metagenómica , Microbiota , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Archaea/genética , Archaea/metabolismo , Archaea/clasificación , Aromatizantes/metabolismo , Metagenoma
18.
Carbohydr Polym ; 339: 122284, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823935

RESUMEN

Interactions between human gut microbiota and dietary fibres (DF) are influenced by the complexity and diversity of both individual microbiota and sources of DF. Based on 480 in vitro fermentations, a full factorial experiment was performed with six faecal inocula representing two enterotypes and three DF sources with nanometer, micrometer, and millimeter length-scales (apple pectin, apple cell walls and apple particles) at two concentrations. Increasing DF size reduced substrate disappearance and fermentation rates but not biomass growth. Concentrated DF enhanced butyrate production and lactate cross-feeding. Enterotype differentiated final microbial compositions but not biomass or fermentation metabolite profiles. Individual donor microbiota differences did not influence DF type or concentration effects but were manifested in the promotion of different functional microbes within each population with the capacity to degrade the DF substrates. Overall, consistent effects (independent of donor microbiota variation) of DF type and concentration on kinetics of substrate degradation, microbial biomass production, gas kinetics and metabolite profiles were found, which can form the basis for informed design of DF for desired rates/sites and consequences of gut fermentation. These results add further evidence to the concept that, despite variations between individuals, the human gut microbiota represents a community with conserved emergent properties.


Asunto(s)
Fibras de la Dieta , Heces , Fermentación , Microbioma Gastrointestinal , Pectinas , Pectinas/metabolismo , Fibras de la Dieta/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Humanos , Heces/microbiología , Malus/metabolismo , Adulto , Masculino , Femenino , Bacterias/metabolismo , Bacterias/clasificación , Biomasa
19.
Gut Microbes ; 16(1): 2359500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825783

RESUMEN

The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.


Asunto(s)
Archaea , Bacterias , Biopelículas , Heces , Microbioma Gastrointestinal , Humanos , Biopelículas/crecimiento & desarrollo , Archaea/clasificación , Archaea/metabolismo , Archaea/genética , Archaea/aislamiento & purificación , Adulto , Persona de Mediana Edad , Femenino , Masculino , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Heces/microbiología , Colon/microbiología , Methanobrevibacter/metabolismo , Methanobrevibacter/genética , Methanobrevibacter/crecimiento & desarrollo , Methanobrevibacter/aislamiento & purificación , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/metabolismo , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/metabolismo , Anciano , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Íleon/microbiología , Ácidos Grasos Volátiles/metabolismo , Adulto Joven , Ácidos y Sales Biliares/metabolismo
20.
Microb Biotechnol ; 17(6): e14503, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829373

RESUMEN

Rare earth elements (REEs) are critical for our modern lifestyles and the transition to a low-carbon economy. Recent advances in our understanding of the role of REEs in biology, particularly methylotrophy, have provided opportunities to explore biotechnological innovations to improve REE mining and recycling. In addition to bacterial accumulation and concentration of REEs, biological REE binders, including proteins (lanmodulin, lanpepsy) and small molecules (metallophores and cofactors) have been identified that enable REE concentration and separation. REE-binding proteins have also been used in several mechanistically distinct REE biosensors, which have potential application in mining and medicine. Notably, the role of REEs in biology has only been known for a decade, suggesting their considerable scope for developing new understanding and novel applications.


Asunto(s)
Bacterias , Metales de Tierras Raras , Metales de Tierras Raras/metabolismo , Metales de Tierras Raras/química , Bacterias/metabolismo , Bacterias/genética , Bacterias/química , Biotecnología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...