Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.525
Filtrar
1.
Bioresour Technol ; 304: 122848, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32113832

RESUMEN

Lignocellulosic biomass is one of the most abundant organic resources worldwide and is a promising source of renewable energy and bioproducts. It basically consists of three fractions, cellulose, hemicelluloses and lignin, which confer a recalcitrant structure. As such, pretreatment steps are required to make each fraction available for further use, with acidic, alkaline and combined acidic-alkaline treatments being the most common techniques. This review focuses on recent strategies for lignocellulosic biomass pretreatment, with a critical discussion and comparison of their efficiency based on the composition of the materials. Mild pretreatments usually allow the recovery of the three biomass fractions for further transformation and valorisation. An insight is provided of newly developed technologies from recently filed patents on lignocellulosic biomass pretreatment and the transformation of agro-industrial residues into high value-added products, such as biofuels and organic acids.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Celulosa , Hidrólisis
2.
Bioresour Technol ; 304: 123027, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32113833

RESUMEN

Synergistic opportunities to combine biomethane production via anaerobic digestion whilst cultivating microalgae have been previously suggested in literature. While biomethane is a promising and flexible renewable energy vector, microalgae are increasingly gaining importance as an alternate source of food and/or feed, chemicals and energy for advanced biofuels. However, simultaneously achieving, grid quality biomethane, effective microalgal digestate treatment, high microalgae growth rate, and the most sustainable use of the algal biomass is a major challenge. In this regard, the present paper proposes multiple configurations of an innovative Cascading Algal Biomethane-Biorefinery System (CABBS) using a novel two-step bubble column-photobioreactor photosynthetic biogas upgrading technology. To overcome the limitations in choice of microalgae for optimal system operation, a microalgae composition based biorefinery decision tree has also been conceptualised to maximise profitability. Techno-economic, environmental and practical aspects have been discussed to provide a comprehensive perspective of the proposed systems.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Fotobiorreactores , Fotosíntesis
3.
Bioresour Technol ; 304: 122996, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32115347

RESUMEN

The world energy system faces two major challenges: the requirement for more energy and less carbon. It is important to address biofuels production as an alternative to the usage of fossil fuel by utilizing microalgae as the potential feedstock. Yet, the commercialization of microalgae remains contentious caused by factors relating to the life cycle assessment and feasibility of microalgae-based biofuels. This present review starts with an introduction to the benefits of microalgae, followed by intensive elaboration on microalgae cultivation parameters. Subsequently, the fundamental principle along with the advantages and disadvantages of various pretreatment techniques of microalgae were reviewed. In addition, the conventional and recent advances in lipid extraction techniques from microalgae were comprehensively evaluated. Comparative analysis regard to the gaps from previous studies was discussed point-by-point in each section. The effort presented in this review will provide an insight for future researches dealing with microalgae-biofuel production on downstream processing.


Asunto(s)
Microalgas , Biocombustibles , Biotecnología , Carbono , Combustibles Fósiles , Lípidos
4.
Bioresour Technol ; 304: 123061, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32127245

RESUMEN

Selection of indigenous and potential algal strain with high lipid content is paramount challenge in the avenues of microalgal biodiesel production. Particularly, hyper lipid producing algae with maximal triacyglycerols (TAGs) content and preferable fatty acid composition is of interest for sustainable biodiesel. Hence, the present study on comparative assessment of Chlorella vulgaris, Scenedesmus sp. and Synechococcus sp. was done in terms of cell density, lipid, TAGs and fatty acid. Higher biomass yield was obtained in Chlorella vulgaris (0.54 gL-1) on 13th day while maximal lipid content of 36% was observed in Scenedesmus sp. followed by Chlorella vulgaris (33%). Lipidomic analysis revealed higher non-polar lipids inChlorella vulgaris (57%) and Scenedesmus sp. (54%), whereas in Synechococcus sp. 69% polar lipids were present. In fatty acid profile, C24:0 (22.11%) was predominant in Chlorella vulgaris, while C20:0 (31.72%) and C18:2 (22.26%) was prevalent in Scenedesmus sp. and Synechococcus sp. respectively.


Asunto(s)
Bioprospección , Chlorella vulgaris , Microalgas , Biocombustibles , Biomasa , Recuento de Células , Ácidos Grasos , Selección de Paciente
5.
World J Microbiol Biotechnol ; 36(3): 48, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152786

RESUMEN

The search for gasoline substitutes has grown in recent decades, leading to the increased production of ethanol as viable alternative. However, research in recent years has shown that butanol exhibits various advantages over ethanol as a biofuel. Furthermore, butanol can also be used as a chemical platform, serving as an intermediate product and as a solvent in industrial reactions. This alcohol is naturally produced by some Clostridium species; however, Clostridial fermentation processes still have inherent problems, which focuses the interest on Saccharomyces cerevisiae for butanol production, as an alternative organism for the production of this alcohol. S. cerevisiae exhibits great adaptability to industrial conditions and can be modified with a wide range of genetic tools. Although S. cerevisiae is known to naturally produce isobutanol, the n-butanol synthesis pathway has not been well established in wild S. cerevisiae strains. Two strategies are most commonly used for of S. cerevisiae butanol production: the heterologous expression of the Clostridium pathway or the amino acid uptake pathways. However, butanol yields produced from S. cerevisiae are lower than ethanol yield. Thus, there are still many challenges needed to be overcome, which can be minimized through genetic and evolutive engineering, for butanol production by yeast to become a reality.


Asunto(s)
1-Butanol/metabolismo , Biocombustibles , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Vías Biosintéticas , Butanoles/metabolismo , Clostridium/metabolismo , Tolerancia a Medicamentos , Etanol/metabolismo , Fermentación , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Microbiología Industrial , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Solventes
6.
Waste Manag ; 105: 566-574, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32169812

RESUMEN

This work evaluates the potential of hydrothermal carbonization (HTC) to valorize the digestate derived from the anaerobic digestion of sewage sludge into useful materials for P and energy recovery. The hydrothermal treatment of digestate at 180-240 °C did not lead to high-rank hydrochars. On the other hand, inorganic P concentration did not change with the temperature, while as the carbonization temperature increased, the organic P retention yield in hydrochar became lower, increasing the total P in the process water obtained at the highest temperature, up to 25.3%. P recovery from acid leaching of the hydrochar obtained at 180 °C, via precipitation with CaO at pH up to 9, led to a brown solid precipitate with total P content close to 42 mg g-1, in the range of low grade phosphorus ores. Moreover, acid leaching reduced by 50% the ash content, yielding lignite-like upgraded hydrochars with higher heating values in the range of 20.5-23.1 MJ kg-1, fairly interesting as solid fuels. Anaerobic digestion of the process water enabled additional energy recovery in form of biogas (325 and 279 mL CH4 g-1 VS -at standard temperature and pressure; STP- from the process water resulting at 180 and 210 °C, respectively).


Asunto(s)
Carbono , Aguas del Alcantarillado , Biocombustibles , Fósforo , Temperatura Ambiental
7.
Bioresour Technol ; 305: 123130, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32173260

RESUMEN

In this study, three types of biomass were first pretreated with an aqueous phase bio-oil instead of traditional acid washing. Then, the washed samples were pretreated with drying (100 â„ƒ, 30 min) and torrefaction (250 â„ƒ, 30 min) using a parabolic-trough solar receiver system. The subsequent pyrolysis was performed at 550 â„ƒ for 10 min using a parabolic-dish solar receiver system. Results showed that the solar energy can effectively ensure the temperature required for biomass drying, torrefaction, and pyrolysis, having thus a potential to replace the conventional electric heating or fossil fuel heating. Such a strategy combines the advantages of the independent pretreatments, i.e., leaching out of metallic species and reduction of oxygen content. Consequently, the high heating value of bio-oil increased remarkably, the generation of acids was strongly inhibited, whereas the formation of phenols and anhydrosugars was promoted. Therefore, the method proposed herein is promising for upgrading of biomass and bio-oil.


Asunto(s)
Calor , Pirólisis , Biocombustibles , Biomasa , Aceites Vegetales , Polifenoles
8.
Waste Manag ; 105: 373-383, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32120264

RESUMEN

In the present research, application of waste edible oil (WEO) as a suitable and abundant source for biodiesel production using CaO@MgO nanocatalyst derived from waste chicken eggshells was studied. To this end, FT-IR, XRD, SEM, EDX, Map, and TEM analyses were performed to investigate characteristics of the CaO@MgO nanocatalyst. Also, the physical properties of the biodiesel such as flash point, kinematic viscosity, density, distillation point, cloud point, pour point, cetane number, oxidation stability, and acid number were determined according to the international standards. In addition, FT-IR and HNMR analyses were used to determine the biodiesel characteristics. Moreover, the produced catalyst was successively reused for up to 6 cycles and the results showed that the catalytic activity of the catalyst produced was sufficient for biodiesel production from WEO for up to three cycles, beyond which its catalytic activity decreased. The present work further considered the effects of different parameters on biodiesel production using central composite design to determine optimal conditions. According to the results, the highest biodiesel conversion yield (98.37%) was achieved in a reaction time of 7.08 h, reaction temperature of 69.37 °C, methanol-to-oil ratio of 16.7:1, and catalyst concentration of 4.571 wt% which shows the highest biodiesel conversion yield ever achieved from waste edible oil.


Asunto(s)
Biocombustibles , Óxido de Magnesio , Animales , Compuestos de Calcio , Catálisis , Esterificación , Óxidos , Aceites Vegetales , Espectroscopía Infrarroja por Transformada de Fourier
9.
Bioresour Technol ; 304: 123003, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32081446

RESUMEN

Lignocellulosic biomass is the most plentiful renewable biomolecule and an alternative bioresource for the production of biofuels and biochemicals in biorefineries. But biomass recalcitrance is a bottleneck in their usage, thus necessitating their pretreatment for hydrolysis. Most pretreatment technologies, result in toxic by-products or have lower yield. Ionic liquids (ILs) have successfully advanced as 'greener and recyclable' alternatives to volatile organic solvents for lignocellulosic biomass dissolution. This review covers recent developments made in usage of IL-based techniques with focus on biomass breakdown mechanism, process parameter design, impact of cation and anion groups, and the advantageous impact of ILs on the subsequent processing of the fractionated biomass. Progress and barriers for large-scale commercial usage of ILs in emerging biorefineries were critically evaluated using the principles of economies of scale and green chemistry in an environmentally sustainable way.


Asunto(s)
Líquidos Iónicos , Biocombustibles , Biomasa , Hidrólisis , Lignina
10.
Bioresour Technol ; 304: 123004, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32087544

RESUMEN

Intermittent supply of easily degradable carbohydrates can be used for on-demand biogas production. The study tested the effects of splitting feeding portions of sugar beet silage (S) on biogas production rates and total yield, respectively and if methane production rates follow those ones of biogas. Four experimental AD reactors were operated for 117 days at organic loading rates of 2.0 kgVS m-3 d-1 and VS ratios of maize silage (M) to S of 3:1. While M was supplied hourly (h0-h12), reactors differed only regarding the intermittent S supply, provided at once (h0), twice (h0, h1) and three times (h0, h1, h2) per twelve-hour observation period. Biogas and methane production rates rose simultaneously after S supply and lasted depending on S intakes. Biogas and methane yields were significantly increased at S given once and twice per period. Appropriate feedstock management can thus influence production rates and increase biogas and methane yields.


Asunto(s)
Biocombustibles , Reactores Biológicos , Anaerobiosis , Metano , Ensilaje
11.
Bioresour Technol ; 304: 123017, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32087546

RESUMEN

In order to enhance the yield of high quality biodiesel form diseased swine fat, the ultrasound-assisted two-step catalyzed process was employed. First, three-dimensional ultrasound-assisted concentrated sulfuric acid pre-esterification experiment was carried out. Then, the transesterification reaction catalyzed by KOH was performed, and four parameters (catalyst concentration, reaction time, methanol/oil molar ratio and reaction temperature) were optimized using response surface methodology. The results showed that the optimal transesterification reaction conditions were catalyst concentration of 1.11 wt%, reaction temperature of 62.3 °C, methanol/oil molar ratio of 7.42:1, and reaction time of 116.14 min. The most significant factor affecting biodiesel purity was identified as catalyst concentration. Under the optimal conditions, the maximum biodiesel purity reached to 98% with the reaction time of 176.14 min, shortened by 63.3% compared with previous works. Furthermore, most of the biodiesel properties agreed the quality requirements established by Official Regulations of GB/25199-2017 of China.


Asunto(s)
Biocombustibles , Aceites Vegetales , Animales , Catálisis , China , Esterificación , Porcinos , Temperatura Ambiental
12.
Bioresour Technol ; 304: 122981, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32088624

RESUMEN

Anaerobic high-solid treatment (HST) for processing food waste and biogas production is a viable technology with considerable commercial potential. In this study, we examined and compared mesophilic and thermophilic industrial-scale plug-flow digesters. The HSTs demonstrated reasonable biogas yields from food waste (0.4-0.6 Nm3 CH4/kg volatile solids). However, during operation at thermophilic conditions ammonia inhibition (~2 g NH3-N/L) and acid accumulation (6-14 g/L) caused severe process disturbance. Microbial community structures diverged between the processes, with temperature appearing to be a strong driver. A unique feature of the thermophilic HSTs was high abundance of the uncultivated Clostridia group MBA03 and temperature fluctuations in one mesophilic HST were linked to drastically decreased abundance of methanogens and relative abundance of Cloacimonetes. The process data obtained in this study clearly demonstrate both potential and challenges in HST of food waste but also possibilities for management approaches to tackle process imbalance and restore process function.


Asunto(s)
Biocombustibles , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Alimentos , Metano
13.
Bioresour Technol ; 304: 122997, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32094007

RESUMEN

Microalgae are autotroph organisms that utilise light energy to synthesize various high-value bioactive compounds such as polysaccharides, proteins and lipids. Due to its fast growth rate and capability to survive in harsh environment, microalgae nowadays are applied in various industrial areas. The process of obtaining microalgae-based biomolecules starts with the selection of suitable microalgae strain, cultivation, followed by downstream processing of the biomass (i.e., pre-treatment, harvesting, extraction and purification). The end products of the processes are biofuels and other valuable bioproducts. Nevertheless, low production yield and high-cost downstream processes are the emerging bottlenecks which need to be addressed in the upscaling of extracted compounds from microalgae biomass. To conclude, tremendous efforts are required to overcome these challenges to revolutionize microalgae into a novel and green factory of different bioactive compounds for industrial necessities to satisfy and fulfil global demands.


Asunto(s)
Productos Biológicos , Microalgas , Biocombustibles , Biomasa , Biotecnología , Lípidos
14.
Bioresour Technol ; 304: 123036, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32107150

RESUMEN

Environmental deterioration and the need for energy security are intrinsic problems linked with the linear economy based on fossil fuels. Recently, a transformation to a sustainable circular bio-economy is being experienced where biomass waste is being valorized for energy production as well as minimization of waste and greenhouse gas emissions. The agricultural waste, generated in vast quantities in India is a prospective feedstock for biogas production. Agri-waste to biogas based circular economy requires an integration of agri-waste management, biogas production and utilization and policy support. This paper comprehensively discusses the potential of biogas production from agricultural waste, its upgradation and utilization along with the government initiatives, policy regulations. In addition, barriers that impede the development of an efficient agri-waste to biogas based circular economy, and the future research opportunities to meet the growing needs for agri-waste management, energy production and climate change mitigation are discussed.


Asunto(s)
Biocombustibles , Administración de Residuos , Agricultura , India , Estudios Prospectivos
15.
Bioresour Technol ; 304: 122998, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32107151

RESUMEN

Several feedstocks for anaerobic digestion (AD) have challenges that hamper the success of AD with their low accessible surface area, biomass recalcitrance, and the presence of natural inhibitors. This paper presents different types of pretreatment to address those individual challenges and how they contribute to facilitate AD. Organosolv and ionic liquid pretreatments are effective to remove lignin without a significant defect on lignin structures. To deal with accessible surface area and crystallinity, comminution, steam explosion, pretreatment using N-methyl-morpholine-N-oxide methods are suggested. Moreover, solid extraction, simple aeration, and biological treatments are capable in removing natural inhibitors. Up to date, methods like comminution, thermal process, and grinding are more preferable to be scaled-up.


Asunto(s)
Lignina , Vapor , Anaerobiosis , Biocombustibles , Biomasa
16.
J Environ Manage ; 260: 110111, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090822

RESUMEN

Utilization of waste resources is necessary to harness the long-term sustainability of algal technology. The study focused on the use of human urine as the basic nutrient source for culturing native microalgal consortium and further optimized the process parameters using response surface methodology. A full factorial, central composite rotatable design (CCRD) with three variables: urine concentration (1-10% vol of urine/vol of distil water [%v/v]), pH (6.5-9) and light intensity (50-350 µmolphotonsm-2sec-1) was used to evaluate the microalgal biomass and lipid content. Results indicated that at 95% confidence limits, the selected factors influence the biomass and lipid productivity. The maximum biomass productivity of 211.63 ± 1.40 mg l-1 d-1 was obtained under optimized conditions with 6.50% v/v of urine, pH of 7.69 and at light intensity of 205.40 µmolphotonsm-2sec-1. The lipid content was found to increase from 18.96 ± 1.30% in control media to 26.27 ± 1.94% under optimal conditions. The interactive effect of variables over the microalgal biomass and lipid content has also been elucidated. The data obtained were comparable to the BG11 media (control). Optimized diluted urine media in the presence of ammonium ions and under limited nitrate showed better lipid yields. Significant lipid biomolecules were detected in the algal oil extracts obtained from the diluted urine media characterized by Fourier transform infrared spectroscopy (FTIR) and Nuclear magnetic resonance (NMR). Gas chromatography-mass spectrometry (GCMS) revealed the presence of several monounsaturated and polyunsaturated fatty acids in the transesterified algal oil. Such studies would aid in technically realizing the field scale cultivation of microalgae for biofuels.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Humanos , Lípidos , Nutrientes
17.
Sci Total Environ ; 714: 136856, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32018988

RESUMEN

Bioenergy carbon capture and storage (BECCS) is an effective option for mitigation of greenhouse gas (GHG) emissions. Nevertheless, there is barely serious debate about whether its implementation can possibly jeopardize the global water resources security. Here, we provided an assessment of biomass-based Substitute Natural Gas (BioSNG) production combined with CCS, a promising BECCS technology, in terms of global water resources security, with a focus on the growth of two typical second-generation bioenergy crops: switchgrass and miscanthus. A bottom-up analysis approach was applied in this paper to calculating water consumption for BECCS and estimating water quality deterioration caused by increasing fertilizer and pesticide application. The results indicated that water usage of BECCS was equal to adding 12.86%-16.64% (switchgrass) and 17.59%-26.06% (miscanthus) additional water stress on global available water resources at 2100. Additional N fertilizer application in 2100 would be equal to over 84%, 55% and 42% for both switchgrass and miscanthus under three CCS capture efficiency scenarios, respectively, comparing to such global scale in 2012. Additional phosphate fertilizer adding to global annual available water at 2100 were 0.004-0.008 mg L-1 (switchgrass) and 0.003-0.006 mg L-1 (miscanthus), respectively. The secondary environmental hazards, such as N2O emission, would offset GHG emission mitigation by BECCS. Meanwhile, the enrichment and leaching of pesticide residues increased the risk of groundwater contamination. This study revealed water consumption and contamination issues caused by BECCS cannot be neglected. Thus, additional studies of accurate land-use models in global scale and advanced technology for biofuel extraction are needed in the future.


Asunto(s)
Agua , Biocombustibles , Biomasa , Carbono , Productos Agrícolas
18.
Bioresour Technol ; 304: 123022, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32070839

RESUMEN

Type I (Methylomicrobium album) and II (Methyloferula stellata) methanotrophs were encapsulated by alginate and polyvinyl alcohol (PVA) to improve methanol production from simulated biogas [methane (CH4) and carbon dioxide (CO2)] in the presence of CH4 vector. Polymeric matrix alginate (2%) and PVA (10%) were found to be optimum for the immobilization of both the methanotrophs, with a relative efficiency of methanol production up to 80.6 and 88.7%, respectively. The stability of methanol production by immobilized cells was improved up to 13.2-fold under repeated batch-culture over free cells. The addition of CH4 vectors showed 1.7-fold higher methanol production on using simulated biogas than in the control. The maximum methanol production of 7.46 and 7.14 mmol/L was noted for PVA-encapsulated M. album and M. stellata, respectively. This study successfully established the beneficial effects of CH4 vectors on methanol production by methanotrophs from greenhouse gases that can be applied for real biogas feedstock.


Asunto(s)
Metano , Methylococcaceae , Biocombustibles , Metanol , Polímeros
19.
Bioresour Technol ; 304: 122993, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32078900

RESUMEN

Green microalga, Chlamydomonas sp. TRC-1 (C. TRC-1), isolated from the outlet of effluent treatment plant of textile dyeing mill, was investigated for its competence towards bioremediation. Algal biomass obtained after remediation (ABAR) was implied for bioelectricity and biofuel production. C. TRC-1 could completely decolorize the effluent in 7 days. Significant reduction in pollution-indicating parameters was observed. Chronoamperometric studies were carried out using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). Maximum current density, power and power density of 3.6 A m-2, 4.13 × 10-4 W and 1.83 W m-2, respectively were generated in ABAR. EIS studies showed a decrease in resistance of ABAR, supporting better electron transfer as compared to algal biomass before remediation (ABBR). Its candidature for biofuel production was assessed by estimating the total lipid content. Results revealed enhancement in lipid content from 46.85% (ABBR) to 79.1% (ABAR). Current study advocates versatile potential of isolated C. TRC-1 for bioremediation of wastewater, bioelectricity production and biofuel generation.


Asunto(s)
Chlamydomonas , Microalgas , Biocombustibles , Biomasa , Lípidos , Aguas Residuales
20.
Bioresour Technol ; 302: 122828, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32001085

RESUMEN

Biohydrogen production via dark fermentation is currently the most developed method considering its practical readiness for scale-up. However, technological issues to be resolved are still identifiable and should be of concern, particularly in terms of internal mass transfer. If sufficient liquid-to-gas H2 mass transfer rates are not ensured, serious problems associated with the recovery of biohydrogen and consequent inhibition of the process can occur. Therefore, the continuous and effective removal of H2 gas is required, which can be performed using gas separation membranes. In this review, we aim to analyze the literature experiences and knowledge regarding mass transfer enhancement approaches and show how membranes may contribute to this task by simultaneously processing the internal (headspace) gas, consisting mainly of H2 and CO2. Promising strategies related to biogas recirculation and integrated schemes using membranes will be presented and discussed to detect potential future research directions for improving biohydrogen technology.


Asunto(s)
Biocombustibles , Hidrógeno , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA