Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.556
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 37(3): 816-830, 2021 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-33783152

RESUMEN

Due to abundant availability of shale gas and biogas, methane has been considered as one of the most potential carbon sources for industrial biotechnology. Methanotrophs carrying the native methane monooxygenase are capable of using methane as a sole energy and carbon source, which provides a novel strategy for reducing greenhouse gas emission and substituting edible substrates used in bioconversion processes. With the rapid development of genetic engineering tools and biosynthesis techniques, various strategies for improving the efficiency of methane bioconversion have been achieved to produce a variety of commodity bio-based products. Herein, we summarize several important aspects related with methane utilization and metabolic engineering of methanotrophs, including the modification of methane oxidation pathways, the construction of efficient cell factories, and biosynthesis of chemicals and fuels. Finally, the prospects and challenges of the future development of methane bioconversion are also discussed.


Asunto(s)
Biocombustibles , Metano , Biotecnología , Ingeniería Metabólica , Oxidación-Reducción
2.
Sheng Wu Gong Cheng Xue Bao ; 37(3): 923-938, 2021 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-33783158

RESUMEN

Bacillus subtilis is a model strain for studying the physiological and biochemical mechanisms of microorganism, and is also a good chassis cell for industrial application to produce biological agents such as small molecule compounds, bulk chemicals, industrial enzymes, precursors of drugs and health product. In recent years, studies on metabolic engineering methods and strategies of B. subtilis have been increasingly reported, providing good tools and theoretical references for using it as chassis cells to produce biological agents. This review provides information on systematically optimizing the Bacillus subtilis chassis cell by regulating global regulatory factors, simplifying and optimizing the genome, multi-site and multi-dimensional regulating, dynamic regulating through biosensors, membrane protein engineering. For producing the protein reagent, the strain is optimized by optimizing the promoters, signal peptides, secretion components and building the expression system without chemical inducers. In addition, this review also prospects the important issues and directions that need to be focused on in the further optimization of B. subtilis in industrial production.


Asunto(s)
Bacillus subtilis , Ingeniería Metabólica , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Biotecnología , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/genética
3.
Bioresour Technol ; 329: 124895, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33713898

RESUMEN

Microalgae have gained significant importance in biotechnology development, providing valuable goods and services in multiple applications. Although there is a rising market for most of these applications, the incorporation and introduction of microalgae into new venues will extend in the near future. These advances are due to the vast biodiversity of microalgal species, recent genetic engineering tools, and culture techniques. There are three main possible approaches for novel algal compounds from: (1) recently isolated yet less known microalgae; (2) selectively stressed conditions; and (3) enzymatically adjusted compounds from conventional molecules. All these approaches can be combined in a specific manner. This review discusses the opportunities, potential and limitations of introducing novel microalgae-based products, and how the recent technologies can be deployed to make these products financially viable. To give an outlook to the future, an analysis of the developments and predicted future market that further enlarge the promise of cultivating microalgae for commercial purposes are considered.


Asunto(s)
Microalgas , Biodiversidad , Biotecnología , Ingeniería Genética
4.
Sensors (Basel) ; 21(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672772

RESUMEN

Despite barrier measures and physical distancing tailored by the populations worldwide, coronavirus continues to spread causing severe health and social-economic problems. Therefore, researchers are focusing on developing efficient detection and therapeutic platforms for SARS-CoV2. In this context, various biotechnologies, based on novel molecules targeting the virus with high specificity and affinity, have been described. In parallel, new approaches exploring nanotechnology have been proposed for enhancing treatments and diagnosis. We discuss in the first part of this review paper, the different biosensing and rapid tests based on antibodies, nucleic acids and peptide probes described since the beginning of the pandemic. Furthermore, given their numerous advantages, the contribution of nanotechnologies is also highlighted.


Asunto(s)
Biotecnología/tendencias , /terapia , Nanotecnología/tendencias , Técnicas Biosensibles , Humanos
5.
Adv Exp Med Biol ; 1261: 165-174, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33783738

RESUMEN

Haloarchaea are halophilic microorganisms belonging to the Archaea domain that inhabit salty environments (mainly soils and water) all around the world. Most of the genera included in this group are able to produce carotenoids at significant concentrations (even wild-type strains). The major carotenoid produced by the cells is bacterioruberin (and its derivatives), which is only produced by this kind of microbes. Nevertheless, the understanding of carotenoid metabolism in haloarchaea, its regulation, and the roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. Besides, potential biotechnological uses of haloarchaeal pigments are poorly explored. This work summarizes what it has been described so far about carotenoid production by haloarchaea, haloarchaeal carotenoid production at large scale, as well as the potential uses of haloarchaeal pigments in biotechnology and biomedicine.


Asunto(s)
Archaea , Carotenoides , Archaea/genética , Biotecnología , Pigmentación
6.
Chemosphere ; 271: 129800, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33736224

RESUMEN

Offering a potential solution for global food security and mitigating environmental issues caused by the expansion of land-based food production, the carbon-hunger and nutrient-rich microalgae emerged as a sustainable food source for both humans and animals. Other than as an alternative source for protein, microalgae offer its most valuable nutrients, omega-3 and 6 long-chain polyunsaturated fatty acids where the content can compete with that of marine fish with lower chemicals contamination and higher purity. Furthermore, the colorful pigments of microalgae can act as antioxidants together with many other health-improving properties as well as a natural colorant. In addition, the supplementation of algae as animal feed provides plentiful benefits, such as improved growth and body weight, reduced feed intake, enhanced immune response and durability towards illness, antibacterial and antiviral action as well as enrichment of livestock products with bioactive compounds. The significant breakthrough in algal biotechnology has made algae a powerful "cell factory" for food production and lead to the rapid growth of the algal bioeconomy in the food and feed industry. The first overview of this review was to present the general of microalgae and its potential capability. Subsequently, the nutritional compositions of microalgae were discussed together with its applications in human foods and animal feeds, followed by the exploration of their economic feasibility and sustainability as well as market trends. Lastly, both challenges and future perspectives were also discussed.


Asunto(s)
Ácidos Grasos Omega-3 , Microalgas , Alimentación Animal , Animales , Biotecnología , Ácidos Grasos , Humanos
7.
J Vis Exp ; (167)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33586706

RESUMEN

A versatile twin-screw extrusion process to provide an efficient thermo-mechano-chemical pre-treatment on lignocellulosic biomass before using it as source of mechanical reinforcement in fully bio-based fiberboards was developed. Various lignocellulosic crop by-products have already been successfully pre-treated through this process, e.g., cereal straws (especially rice), coriander straw, shives from oleaginous flax straw, and bark of both amaranth and sunflower stems. The extrusion process results in a marked increase in the average fiber aspect ratio, leading to improved mechanical properties of fiberboards. The twin-screw extruder can also be fitted with a filtration module at the end of the barrel. The continuous extraction of various chemicals (e.g., free sugars, hemicelluloses, volatiles from essential oil fractions, etc.) from the lignocellulosic substrate, and the fiber refining can, therefore, be performed simultaneously. The extruder can also be used for its mixing ability: a natural binder (e.g., Organosolv lignins, protein-based oilcakes, starch, etc.) can be added to the refined fibers at the end of the screw profile. The obtained premix is ready to be molded through hot pressing, with the natural binder contributing to fiberboard cohesion. Such a combined process in a single extruder pass improves the production time, production cost, and may lead to reduction in plant production size. Because all the operations are performed in a single step, fiber morphology is better preserved, thanks to a reduced residence time of the material inside the extruder, resulting in enhanced material performances. Such one-step extrusion operation may be at the origin of a valuable industrial process intensification. Compared to commercial wood-based materials, these fully bio-based fiberboards do not emit any formaldehyde, and they could find various applications, e.g., intermediate containers, furniture, domestic flooring, shelving, general construction, etc.


Asunto(s)
Biotecnología/instrumentación , Biotecnología/métodos , Lignina/química , Absorción Fisicoquímica , Biomasa , Desecación , Calor , Agua/química , Madera/química
8.
Food Chem ; 349: 129127, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33561794

RESUMEN

Metal-organic structures (MOFs) have been designed for a wide range of applications due to their high porosity, large surface area, and flexibility. For the first time in this work, the successful immobilization of α-amylase is confirmed by the use of ZIF-8 as easy and good support. The morphology, functional groups, and chemical composition of the support and immobilized α-amylase were tested using different methods such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). The enzymatic activities of the immobilized olibanum-bovine serum albumin@zeolitic imidazolate frameworks nanocomposite (OLB/BSA@ZIF-8)-α-amylase were compared with the free one. The pH and thermal stability of the OLB/BSA@ZIF-8-α-amylase were significantly enhanced compared to the free enzyme. The OLB/BSA@ZIF-8-α-amylase displayed excellent long-term storage stability, which could protect more than 90% of the initial activity for 8 weeks. Besides, the OLB/BSA@ZIF-8-α-amylase had high reusability, which showed a high degree of activity (more than 81%) after 20 cycles. This is the first study that uses OLB/BSA@ZIF-8 nanocomposite as immobilizing support for the immobilization of α-amylase. Improved catalytic efficiency (Vmax/Km) values, reusability, and storage stability of immobilized α-amylase can make it suitable in industrial and biotechnological applications.


Asunto(s)
Enzimas Inmovilizadas/química , Estructuras Metalorgánicas/química , Nanocompuestos/química , Albúmina Sérica Bovina/química , alfa-Amilasas/química , Animales , Biocatálisis , Biotecnología , Bovinos , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Porosidad , Zeolitas/química , alfa-Amilasas/metabolismo
9.
Nature ; 590(7844): 47-56, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536649

RESUMEN

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.


Asunto(s)
Biotecnología/métodos , Biotecnología/tendencias , Celulosa/química , Nanoestructuras/química , Desarrollo Sostenible/tendencias , Materiales Biocompatibles/química , Geles/química , Humanos , Porosidad
12.
J Environ Manage ; 284: 112040, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33571854

RESUMEN

Waste animal fats and proteins (WAFP) are rich in various animal by-products from food industries. On one hand, increasing production of huge amounts of WAFP brings a great challenge to their appropriate disposal, and raises severe risks to environment and life health. On the other hand, the high fat and protein contents in these animal wastes are valuable resources which can be reutilized in an eco-friendly and renewable way. Sustainable enzymatic technologies are promising methods for WAFP management. This review discussed the application of various enzymes in the conversion of WSFP to value-added biodiesel and bioactivate hydrolysates. New biotechnologies to discover novel enzymes with robust properties were proposed as well. This paper also presented the bio-utilization strategy of animal fat and protein wastes as alternative nutrient media for microorganism growth activities to yield important industrial enzymes cost-effectively.


Asunto(s)
Administración de Residuos , Animales , Biocombustibles , Biotecnología , Grasas , Industria de Alimentos , Residuos Industriales
13.
Front Public Health ; 9: 628073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33598446

RESUMEN

COVID-19 has triggered various changes in our everyday lives and how we conceptualize the functions of governments. Some areas require stricter forms of regulation while others call for deregulation. The challenge for the regulatory authorities is to manage these potentially conflicting demands in regulation and define coherently their overall regulatory rationale. The precision regulation approach can be a helpful approach. It is defined here as a streamlined approach to regulation to deliver the right methods of regulation for the right group of people at the right time. This problem-solving innovation in regulation triggered by the recent epidemiologic crisis in South Korea demonstrates the emergence of the precision regulation approach. South Korea has implemented streamlined fast-track services for the biotechnology industry to produce test kits swiftly. This article expands the definition of precision regulation from AI regulation literature, and positions the term as a new regulatory rationale, not as a regulatory tool, using the case study from South Korea.


Asunto(s)
Inteligencia Artificial/legislación & jurisprudencia , Biotecnología/legislación & jurisprudencia , Regulación Gubernamental , Humanos , República de Corea
14.
Nat Protoc ; 16(3): 1740-1760, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597770

RESUMEN

Cyclic disulfide-rich peptides have attracted significant interest in drug development and biotechnology. Here, we describe a protocol for producing cyclic peptide precursors in Pichia pastoris that undergo in vitro enzymatic maturation into cyclic peptides using recombinant asparaginyl endopeptidases (AEPs). Peptide precursors are expressed with a C-terminal His tag and secreted into the media, enabling facile purification by immobilized metal affinity chromatography. After AEP-mediated cyclization, cyclic peptides are purified by reverse-phase high-performance liquid chromatography and characterized by mass spectrometry, peptide mass fingerprinting, NMR spectroscopy, and activity assays. We demonstrate the broad applicability of this protocol by generating cyclic peptides from three distinct classes that are either naturally occurring or synthetically backbone cyclized, and range in size from 14 amino acids with one disulfide bond, to 34 amino acids with a cystine knot comprising three disulfide bonds. The protocol requires 14 d to identify and optimize a high-expressing Pichia clone in small-scale cultures (24 well plates or 50 mL tubes), after which large-scale production in a bioreactor and peptide purification can be completed in 10 d. We use the cyclotide Momordica cochinchinensis trypsin inhibitor II as an example. We also include a protocol for recombinant AEP production in Escherichia coli as AEPs are emerging tools for orthogonal peptide and protein ligation. We focus on two AEPs that preferentially cyclize different peptide precursors, namely an engineered AEP with improved catalytic efficiency [C247A]OaAEP1b and the plant-derived MCoAEP2. Rudimentary proficiency and equipment in molecular biology, protein biochemistry and analytical chemistry are needed.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Biosíntesis de Péptidos/efectos de los fármacos , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Biotecnología , Ciclización , Ciclotidas/química , Ciclotidas/genética , Ciclotidas/metabolismo , Cisteína Endopeptidasas/farmacología , Disulfuros , Modelos Moleculares , Péptidos/metabolismo , Péptidos Cíclicos/química , Saccharomycetales/metabolismo
15.
Bioresour Technol ; 326: 124767, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33540213

RESUMEN

Polyhydroxyalkanoates (PHA) are microbial polyesters which, apart from their primary storage role, enhance the stress robustness of PHA accumulating cells against various stressors. PHA also represent interesting alternatives to petrochemical polymers, which can be produced from renewable resources employing approaches of microbial biotechnology. During biotechnological processes, bacterial cells are exposed to various stressor factors such as fluctuations in temperature, osmolarity, pH-value, elevated pressure or the presence of microbial inhibitors. This review summarizes how PHA helps microbial cells to cope with biotechnological process-relevant stressors and, vice versa, how various stress conditions can affect PHA production processes. The review suggests a fundamentally new strategy for PHA production: the fine-tuned exposure to selected stressors, which might be used to boost PHA production and even to tailor their structure.


Asunto(s)
Polihidroxialcanoatos , Bacterias , Reactores Biológicos , Biotecnología , Poliésteres , Temperatura
16.
Methods Mol Biol ; 2238: 37-61, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33471323

RESUMEN

Generation of plant lines with transgene or edited gene variants is the desired outcome of transformation technology. Conventional DNA-based plant transformation methods are the most commonly used technology but these approaches are limited to a small number of plant species with efficient transformation systems. The ideal transformation technologies are those that allow biotechnology applications across wide genetic background, especially within elite germplasm of major crop species. This chapter will briefly review key regulatory genes involved in plant morphogenesis with a focus on in vitro somatic embryogenesis and their application in improving plant transformation.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Desarrollo de la Planta , Proteínas de Plantas/genética , Técnicas de Embriogénesis Somática de Plantas/métodos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Transformación Genética , Biotecnología , Productos Agrícolas/genética , Vectores Genéticos , Plantas Modificadas Genéticamente/genética
19.
Environ Sci Pollut Res Int ; 28(7): 7710-7741, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33403642

RESUMEN

Chlorinated volatile organic compounds (CVOCs) are persistent organic pollutants which are harmful to public health and the environment. Many CVOCs occur in substantial quantities in groundwater and soil, even though their use has been more carefully managed and restricted in recent years. This review summarizes recent data on several innovative treatment solutions for CVOC-affected media including bioremediation, phytoremediation, nanoscale zero-valent iron (nZVI)-based reductive dehalogenation, and photooxidation. There is no optimally developed single technology; therefore, the possibility of using combined technologies for CVOC remediation, for example bioremediation integrated with reduction by nZVI, is presented. Some methods are still in the development stage. Advantages and disadvantages of each treatment strategy are provided. It is hoped that this paper can provide a basic framework for selection of successful CVOC remediation strategies.


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea , Compuestos Orgánicos Volátiles , Contaminantes Químicos del Agua , Biotecnología , Nanotecnología , Contaminantes Químicos del Agua/análisis
20.
Viruses ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430116

RESUMEN

Virus research has advanced significantly since the discovery of the tobacco mosaic virus (TMV), the characterization of its infection mechanisms and the factors that determine their pathogenicity. However, most viral research has focused on pathogenic viruses to humans, animals and plants, which represent only a small fraction in the virosphere. As a result, the role of most viral genes, and the mechanisms of coevolution between mutualistic viruses, their host and their environment, beyond pathogenicity, remain poorly understood. This review focuses on general aspects of viruses that interact with extremophile organisms, characteristics and examples of mechanisms of adaptation. Finally, this review provides an overview on how knowledge of extremophile viruses sheds light on the application of new tools of relevant use in modern molecular biology, discussing their value in a biotechnological context.


Asunto(s)
Biotecnología , Microbiología Ambiental , Extremófilos/virología , Animales , Virus de Archaea/fisiología , Bacterias/virología , Humanos , Nanomedicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...