Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.523
Filtrar
1.
PeerJ ; 12: e17125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577414

RESUMEN

Rainforest conversion and expansion of plantations in tropical regions change local microclimate and are associated with biodiversity decline. Tropical soils are a hotspot of animal biodiversity and may sensitively respond to microclimate changes, but these responses remain unexplored. To address this knowledge gap, here we investigated seasonal fluctuations in density and community composition of Collembola, a dominant group of soil invertebrates, in rainforest, and in rubber and oil palm plantations in Jambi province (Sumatra, Indonesia). Across land-use systems, the density of Collembola in the litter was at a maximum at the beginning of the wet season, whereas in soil it generally varied little. The community composition of Collembola changed with season and the differences between land-use systems were most pronounced at the beginning of the dry season. Water content, pH, fungal and bacterial biomarkers, C/N ratio and root biomass were identified as factors related to seasonal variations in species composition of Collembola across different land-use systems. We conclude that (1) conversion of rainforest into plantation systems aggravates detrimental effects of low moisture during the dry season on soil invertebrate communities; (2) Collembola communities are driven by common environmental factors across land-use systems, with water content, pH and food availability being most important; (3) Collembola in litter are more sensitive to climatic variations than those in soil. Overall, the results document the sensitivity of tropical soil invertebrate communities to seasonal climatic variations, which intensifies the effects of the conversion of rainforest into plantation systems on soil biodiversity.


Asunto(s)
Artrópodos , Suelo , Animales , Suelo/química , Bosque Lluvioso , Estaciones del Año , Invertebrados , Agua
2.
PLoS One ; 19(3): e0297369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38437232

RESUMEN

Cameroon monomodal rainforest zone has a strong agricultural activity and is therefore exposed to pesticides. Furthermore, the area possesses climatic factors that favor the growth of Achatinadea snails known as African giant snails, a delicacy for the local population. The present study aimed to evaluate pesticides contamination (less vs more exposed areas) through assessment of exposure and impact on Achatinadea snails. Achatinadea snails were collected within intensive agricultural areas (Njombe and Kribi rural) and in areas with less agricultural activity (Ebodje and Dibombari). Collection was performed at night between July and September 2020 using an adapted square kilometer method. Type, number, weight, and size of the collected snails were analyzed and compared using Welsh's One-way Analysis of variance (ANOVA). After removing the soft part from the shell, the presence of pesticides was determined using mass spectrometry. Histological analysis of kidney and ovo-testis was performed using eosin-hematoxylin staining. Results showed that the main variety of snails collected are Archachatina marginata. In areas with less agricultural activity, snails are bigger than those from more agricultural areas heavily using pesticides. Furthermore, pesticides detection showed that glyphosate, but not metalaxyl, is present in animals coming from all the collection sites. Cypermethrin was found in all the samples except in those from Dibombari. Histology revealed that the structure of the kidney and ovo-testis of snails from more exposed areas is impaired. In conclusion, this study revealed that some pesticides are transferred to snail and impair the structure of important organs.


Asunto(s)
Gastrópodos , Plaguicidas , Animales , Masculino , Plaguicidas/toxicidad , Camerún , Bosque Lluvioso , Agricultura
3.
Oecologia ; 204(3): 717-726, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483587

RESUMEN

Most canopy species in lowland tropical rain forests in Southeast Asia, represented by Dipterocarpaceae, undergo mast reproduction synchronously at community level during a general flowering event. Such events occur at irregular intervals of 2-10 years. Some species do not necessarily participate in every synchronous mast reproduction, however. This may be due to a lack of carbohydrate resources in the trees for masting. We tested the hypothesis that interspecific differences in the time required to store assimilates in trees for seed production are due to the frequency of masting and/or seed size in each species. We examined the relationship between reproductive frequency and the carbon accumulation period necessary for seed production, and between the seed size and the period, using radiocarbon analysis in 18 dipterocarp canopy species. The mean carbon accumulation period was 0.84 years before seed maturation in all species studied. The carbon accumulation period did not have any significant correlation with reproductive frequency or seed size, both of which varied widely across the species studied. Our results show that for seed production, dipterocarp masting species do not use carbon assimilates stored for a period between the masting years, but instead use recent photosynthates produced primarily in a masting year, regardless of the masting interval or seed size of each species. These findings suggest that storage of carbohydrate resources is not a limiting factor in the masting of dipterocarps, and that accumulation and allocation of other resources is important as a precondition for participation in general flowering.


Asunto(s)
Carbono , Bosque Lluvioso , Semillas , Árboles , Reproducción , Carbohidratos
4.
Zootaxa ; 5418(5): 551-575, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38480341

RESUMEN

Four new species of trachelid spiders belonging to the genus Utivarachna Kishida, 1940 are described: U. angsoduo sp. nov., U. balonku sp. nov., U. rimba sp. nov., and U. trisula sp. nov. Part of the EFForTS project, the spider specimens were uncovered in a canopy fogging collection of tree crown arthropods along a land-use gradient from rainforest via jungle rubber (rubber agroforestry) to monocultures of rubber and oil palm in Jambi Province, Sumatra, Indonesia. Three of the proposed new species were found exclusively in rainforest or jungle rubber agroforest (U. angsoduo sp. nov., U. rimba sp. nov., U. trisula sp. nov.), and one of them exclusively in monocultures of rubber trees (U. balonku sp. nov.). We provide photographs and distribution maps for the proposed new species, and discuss their potential ecology based on their sampling locations. We also encountered a fifth species of the genus in all four land-use systems, U. phyllicola Deeleman-Reinhold, 2001, one of two species of the genus previously recorded from Sumatra, and also provide photographs and distribution maps for this species in the research area of the EFForTS project.


Asunto(s)
Goma , Arañas , Animales , Indonesia , Bosque Lluvioso , Distribución Animal
5.
Environ Microbiol ; 26(3): e16600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38482770

RESUMEN

Microbial community structure and function were assessed in the organic and upper mineral soil across a ~4000-year dune-based chronosequence at Big Bay, New Zealand, where total P declined and the proportional contribution of organic soil in the profile increased with time. We hypothesized that the organic and mineral soils would show divergent community evolution over time with a greater dependency on the functionality of phosphatase genes in the organic soil layer as it developed. The structure of bacterial, fungal, and phosphatase-harbouring communities was examined in both horizons across 3 dunes using amplicon sequencing, network analysis, and qPCR. The soils showed a decline in pH and total phosphorus (P) over time with an increase in phosphatase activity. The organic horizon had a wider diversity of Class A (phoN/phoC) and phoD-harbouring communities and a more complex microbiome, with hub taxa that correlated with P. Bacterial diversity declined in both horizons over time, with enrichment of Planctomycetes and Acidobacteria. More complex fungal communities were evident in the youngest dune, transitioning to a dominance of Ascomycota in both soil horizons. Higher phosphatase activity in older dunes was driven by less diverse P-mineralizing communities, especially in the organic horizon.


Asunto(s)
Microbiota , Suelo , Suelo/química , Fósforo/análisis , Bosque Lluvioso , Bacterias/genética , Microbiota/genética , Minerales , Monoéster Fosfórico Hidrolasas/genética , Microbiología del Suelo
6.
Environ Sci Technol ; 58(11): 4968-4978, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38452105

RESUMEN

Knowledge gaps of mercury (Hg) biogeochemical processes in the tropical rainforest limit our understanding of the global Hg mass budget. In this study, we applied Hg stable isotope tracing techniques to quantitatively understand the Hg fate and transport during the waterflows in a tropical rainforest including open-field precipitation, throughfall, and runoff. Hg concentrations in throughfall are 1.5-2 times of the levels in open-field rainfall. However, Hg deposition contributed by throughfall and open-field rainfall is comparable due to the water interception by vegetative biomasses. Runoff from the forest shows nearly one order of magnitude lower Hg concentration than those in throughfall. In contrast to the positive Δ199Hg and Δ200Hg signatures in open-field rainfall, throughfall water exhibits nearly zero signals of Δ199Hg and Δ200Hg, while runoff shows negative Δ199Hg and Δ200Hg signals. Using a binary mixing model, Hg in throughfall and runoff is primarily derived from atmospheric Hg0 inputs, with average contributions of 65 ± 18 and 91 ± 6%, respectively. The combination of flux and isotopic modeling suggests that two-thirds of atmospheric Hg2+ input is intercepted by vegetative biomass, with the remaining atmospheric Hg2+ input captured by the forest floor. Overall, these findings shed light on simulation of Hg cycle in tropical forests.


Asunto(s)
Mercurio , Mercurio/análisis , Bosque Lluvioso , Monitoreo del Ambiente/métodos , Bosques , Agua
7.
Toxins (Basel) ; 16(2)2024 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-38393161

RESUMEN

Snake venoms have evolved in several families of Caenophidae, and their toxins have been assumed to be biochemical weapons with a role as a trophic adaptation. However, it remains unclear how venom contributes to the success of venomous species for adaptation to different environments. Here we compared the venoms from Bothrocophias hyoprora, Bothrops taeniatus, Bothrops bilineatus smaragdinus, Bothrops brazili, and Bothrops atrox collected in the Amazon Rainforest, aiming to understand the ecological and toxinological consequences of venom composition. Transcriptomic and proteomic analyses indicated that the venoms presented the same toxin groups characteristic from bothropoids, but with distinct isoforms with variable qualitative and quantitative abundances, contributing to distinct enzymatic and toxic effects. Despite the particularities of each venom, commercial Bothrops antivenom recognized the venom components and neutralized the lethality of all species. No clear features could be observed between venoms from arboreal and terrestrial habitats, nor in the dispersion of the species throughout the Amazon habitats, supporting the notion that venom composition may not shape the ecological or toxinological characteristics of these snake species and that other factors influence their foraging or dispersal in different ecological niches.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Proteómica , Bosque Lluvioso , Venenos de Crotálidos/química , Antivenenos , Serpientes
8.
Nat Commun ; 15(1): 1683, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395938

RESUMEN

Dipterocarpoideae species form the emergent layer of Asian rainforests. They are the indicator species for Asian rainforest distribution, but they are severely threatened. Here, to understand their adaptation and population decline, we assemble high-quality genomes of seven Dipterocarpoideae species including two autotetraploid species. We estimate the divergence time between Dipterocarpoideae and Malvaceae and within Dipterocarpoideae to be 108.2 (97.8‒118.2) and 88.4 (77.7‒102.9) million years ago, and we identify a whole genome duplication event preceding dipterocarp lineage diversification. We find several genes that showed a signature of selection, likely associated with the adaptation to Asian rainforests. By resequencing of two endangered species, we detect an expansion of effective population size after the last glacial period and a recent sharp decline coinciding with the history of local human activities. Our findings contribute to understanding the diversification and adaptation of dipterocarps and highlight anthropogenic disturbances as a major factor in their endangered status.


Asunto(s)
Dipterocarpaceae , Genómica , Bosque Lluvioso , Genoma , Filogenia
9.
J Anim Ecol ; 93(4): 501-516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409804

RESUMEN

Tropical rainforest trees host a diverse arthropod fauna that can be characterised by their functional diversity (FD) and phylogenetic diversity (PD). Human disturbance degrades tropical forests, often coinciding with species invasion and altered assembly that leads to a decrease in FD and PD. Tree canopies are thought to be particularly vulnerable, but rarely investigated. Here, we studied the effects of forest disturbance on an ecologically important invertebrate group, the ants, in a lowland rainforest in New Guinea. We compared an early successional disturbed plot (secondary forest) to an old-growth plot (primary forest) by exhaustively sampling their ant communities in a total of 852 trees. We expected that for each tree community (1) disturbance would decrease FD and PD in tree-dwelling ants, mediated through species invasion. (2) Disturbance would decrease ant trait variation due to a more homogeneous environment. (3) The main drivers behind these changes would be different contributions of true tree-nesting species and visiting species. We calculated FD and PD based on a species-level phylogeny and 10 ecomorphological traits. Furthermore, we assessed by data exclusion the influence of species, which were not nesting in individual trees (visitors) or only nesting species (nesters), and of non-native species on FD and PD. Primary forests had higher ant species richness and PD than secondary forest. However, we consistently found increased FD in secondary forest. This pattern was robust even if we decoupled functional and phylogenetic signals, or if non-native ant species were excluded from the data. Visitors did not contribute strongly to FD, but they increased PD and their community weighted trait means often varied from nesters. Moreover, all community-weighted trait means changed after forest disturbance. Our finding of contradictory FD and PD patterns highlights the importance of integrative measures of diversity. Our results indicate that the tree community trait diversity is not negatively affected, but possibly even enhanced by disturbance. Therefore, the functional diversity of arboreal ants is relatively robust when compared between old-growth and young trees. However, further study with higher plot-replication is necessary to solidify and generalise our findings.


Asunto(s)
Hormigas , Biodiversidad , Humanos , Animales , Filogenia , Bosques , Bosque Lluvioso , Ecosistema
10.
Ecology ; 105(4): e4273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361224

RESUMEN

Tropical tree species are increasingly being pushed to inhabit deforested landscapes. The habitat amount hypothesis posits that, in remaining forest patches, species diversity in equal-sized samples decreases with decreasing forest cover in the surrounding landscape. We tested this prediction by taking into account three important factors that can affect species responses to forest loss. First, forest loss effects can be linear (proportional) or nonlinear, as there can be threshold values of forest loss beyond which species extirpation may be accelerated. Second, such effects are usually scale dependent and may go unnoticed if assessed at suboptimal scales. Finally, species extirpation may take decades to become evident, so the effects of forest loss can be undetected when assessing long-lived organisms, like adult old-growth forest trees. Here, we evaluated the linear and nonlinear effects of landscape forest loss across different spatial scales on site-scale abundance and diversity of old-growth forest trees, separately for four plant-life stages (seeds, saplings, juveniles, and adults) in two rainforest regions with different levels of deforestation. We expected stronger (and negative) forest loss effects on early plant-life stages, especially in the region with the highest deforestation. Surprisingly, in 13 of 16 study cases (2 responses × 4 life stages × 2 regions), null models showed higher empirical support than linear and nonlinear models at any scale. Therefore, the species richness and abundance of local tree assemblages seem to be weakly affected by landscape-scale forest loss independently of the spatial scale, life stage, and region. Yet, as expected, the predictive power of forest cover was relatively lower in the least deforested region. Our findings suggest that landscape-scale forest loss is poorly related to site-scale processes, such as seed dispersal and seedling recruitment, or, at least, such effects are too small to shape the abundance and diversity of tree assemblages within forest patches. Therefore, our findings do not support the most important prediction of the habitat amount hypothesis but imply that, on a per-area basis, a unit of habitat (forest) in a highly deforested landscape has a conservation value similar to that of a more forested one, particularly in moderately deforested rainforests.


Asunto(s)
Bosques , Árboles , Ecosistema , Bosque Lluvioso , Plantas , Conservación de los Recursos Naturales , Biodiversidad
11.
Sci Rep ; 14(1): 4252, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378955

RESUMEN

We investigated within- and between-individual song variation and song-based neighbour-stranger discrimination in a non-learning bird species, the blue-headed wood-dove (Turtur brehmeri), which inhabits lowland rainforests of West and Central Africa. We found that songs of this species are individually specific and have a high potential for use in individual recognition based on the time-frequency pattern of note distribution within song phrases. To test whether these differences affect behaviour, we conducted playback experiments with 19 territorial males. Each male was tested twice, once with the songs of a familiar neighbour and once with the songs of an unfamiliar stranger. We observed that males responded more aggressively to playback of a stranger's songs: they quickly approached close to the speaker and spent more time near it. However, no significant differences between treatments were observed in the vocal responses. In addition, we explored whether responses differed based on the song frequency of the focal male and/or that of the simulated intruder (i.e., playback), as this song parameter is inversely related to body size and could potentially affect males' decisions to respond to other birds. Song frequency parameters (of either the focal male or the simulated intruder) had no effect on the approaching response during playback. However, we found that the pattern of response after playback was significantly affected by the song frequency of the focal male: males with lower-frequency songs stayed closer to the simulated intruder for a longer period of time without singing, while males with higher-frequency songs returned more quickly to their initial song posts and resumed singing. Together, these results depict a consistently strong response to strangers during and after playback that is dependent on a male's self-assessment rather than assessment of a rival's strength based on his song frequency. This work provides the first experimental evidence that doves (Columbidae) can use songs for neighbour-stranger discrimination and respond according to a "dear enemy" scheme that keeps the cost of territory defence at a reasonable level.


Asunto(s)
Columbidae , Pájaros Cantores , Masculino , Animales , Vocalización Animal/fisiología , Bosque Lluvioso , Madera , Territorialidad , Pájaros Cantores/fisiología
12.
Sci Total Environ ; 921: 170986, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38373450

RESUMEN

Soil microbial necromass carbon is an important component of the soil organic carbon (SOC) pool which helps to improve soil fertility and texture. However, the spatial pattern and variation mechanisms of fungal- and bacterial-derived necromass carbon at local scales in tropical rainforests are uncertain. This study showed that microbial necromass carbon and its proportion in SOC in tropical montane rainforest exhibited large spatial variation and significant autocorrelation, with significant high-high and low-low clustering patterns. Microbial necromass carbon accounted for approximately one-third of SOC, and the fungal-derived microbial necromass carbon and its proportion in SOC were, on average, approximately five times greater than those of bacterial-derived necromass. Structural equation models indicated that soil properties (SOC, total nitrogen, total phosphorus) and topographic features (elevation, convexity, and aspect) had significant positive effects on microbial necromass carbon concentrations, but negative effects on its proportions in SOC (especially the carbon:nitrogen ratio). Plant biomass also had significant negative effects on the proportion of microbial necromass carbon in SOC, but was not correlated with its concentration. The different spatial variation mechanisms of microbial necromass carbon and their proportions in SOC are possibly related to a slower accumulation rate of microbial necromass carbon than of plant-derived organic carbon. Geographic spatial correlations can significantly improve the microbial necromass carbon model fit, and low sampling resolution may lead to large uncertainties in estimating soil carbon dynamics at specific sites. Our work will be valuable for understanding microbial necromass carbon variation in tropical forests and soil carbon prediction model construction with microbial participation.


Asunto(s)
Bosque Lluvioso , Suelo , Suelo/química , Carbono , Microbiología del Suelo , Bosques , Nitrógeno/análisis
13.
J Environ Manage ; 354: 120354, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394876

RESUMEN

In recent years, the loss of forest in the Brazilian Amazon has taken on alarming proportions, with 2021 recording the largest increase in 13 years, particularly in the Abunã-Madeira Sustainable Development Reserve (SDR). This has significant environmental, social, and economic repercussions globally and for the local communities reliant on the forest. Analyzing deforestation patterns and trends aids in comprehending the dynamics of occupation and deforestation within a critical Amazon region, enabling the inference of potential occupation pathways. This understanding is crucial for identifying deforestation expansion zones and shaping public policies to curb deforestation. Decisions by the Brazilian government regarding landscape management will have profound environmental implications. We conducted an analysis of deforestation patterns and trends up to 2021 in the municipality (county) of Lábrea, located in the southern portion of Amazonas state. Deforestation processes in this area are likely to spread to the adjacent "Trans-Purus" region in western Amazonas, where Amazonia's largest block of remaining rainforest is at risk from planned highways. Annual deforestation polygons from 2008 to 2021 were categorized based on occupation typologies linked to various actors and processes defined for the region (e.g., diffuse, linear, fishbone, geometric, multidirectional, and consolidated). These patterns were represented through 10 × 10 km grid cells. The findings revealed that Lábrea's territory is predominantly characterized by the diffuse pattern (initial occupation stage), mainly concentrated in protected areas. Advanced occupation patterns (multidirectional and consolidated) were the primary contributors to deforestation during this period. Observed change trajectories included consolidation (30.8%) and expansion (19.6%) in the southern portion of the municipality, particularly along the Boi and Jequitibá secondary roads, providing access to large illegal landholdings. Additionally, non-change trajectories (67%) featured initial occupation patterns near rivers and in protected areas, likely linked to riverine and extractive communities. Tailoring measures to control deforestation based on actor types and considering stages of occupation is crucial. The techniques developed in this study provide a comprehensive approach for Amazonia and other tropical regions.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Brasil , Bosque Lluvioso , Desarrollo Sostenible
14.
Nature ; 627(8002): 116-122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355803

RESUMEN

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Asunto(s)
Biodiversidad , Metabolismo Energético , Cadena Alimentaria , Bosque Lluvioso , Animales , Artrópodos/metabolismo , Bacterias/metabolismo , Aves/metabolismo , Secuestro de Carbono , Heces , Hongos/metabolismo , Indonesia , Oligoquetos/metabolismo , Compuestos Orgánicos/metabolismo , Aceite de Palma , Goma , Suelo/química , Clima Tropical
15.
J Environ Manage ; 353: 120288, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38335600

RESUMEN

The spatial distribution of plant, soil, and microbial carbon pools, along with their intricate interactions, presents a great challenge for the current carbon cycle research. However, it is not clear what are the characteristics of the spatial variability of these carbon pools, particularly their cross-scale relationships. We investigated the cross-scale spatial variability of microbial necromass carbon (MNC), soil organic carbon (SOC) and plant biomass (PB), as well as their correlation in a tropical montane rainforest using multifractal analysis. The results showed multifractal spatial variations of MNC, SOC, and PB, demonstrating their adherence to power-law scaling. MNC, especially low MNC, exhibited stronger spatial heterogeneity and weaker evenness compared with SOC and PB. The cross-scale correlation between MNC and SOC was stronger than their correlations at the measurement scale. Furthermore, the cross-scale spatial variability of MNC and SOC exhibited stronger and more stable correlations than those with PB. Additionally, this research suggests that when SOC and PB are both low, it is advisable for reforestations to potentiate MNC formation, whereas when both SOC and PB are high some thinning can be advisable to favour MNC formation. Thus, these results support the utilization of management measures such as reforestation or thinning as nature-based solutions to regulate carbon sequestration capacity of tropical forests by affecting the correlations among various carbon pools.


Asunto(s)
Secuestro de Carbono , Bosque Lluvioso , Carbono , Suelo , Bosques
16.
Sci Rep ; 14(1): 2842, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310149

RESUMEN

Ectomycorrhizal (ECM) fungi are functionally important in biogeochemical cycles in tropical ecosystems. Extracellular enzymatic activity of ECM on a ground-area basis is the product of two attributes; exploration capacity (ECM surface-area) and specific enzymatic activity. Here, we elucidated which attribute better explained the ECM enzymatic activity in response to different levels of soil phosphorus (P) and Nitrogen (N) availability in five Bornean tropical rainforests. We determined the surface area of ECM root tips as well as the enzymatic activities per ECM surface area for carbon (C), N and P degrading enzymes in each site. We evaluated the relationship of ECM enzyme activities with the resource availabilities of C (Above-ground net primary production; ANPP), N, and P of ECM by a generalized linear mixed model. The ECM enzymatic activities on a ground-area basis were more significantly determined by specific enzymatic activity than by the exploration capacity. Specific enzymatic activities were generally negatively affected by C (ANPP) and soil P availability. ECM fungi enhance the specific enzyme activity rather than the exploration capacity to maintain the capacity of nutrient acquisition. The less dependence of ECM fungi on the exploration capacity in these forests may be related to the limitation of C supply from host trees. We highlighted the adaptive mechanisms of ECM fungi on nutrient acquisition in tropical ecosystems through the response of enzymatic activity to nutrient availability across the elements.


Asunto(s)
Ecosistema , Micorrizas , Bosque Lluvioso , Suelo , Fósforo , Micorrizas/fisiología , Árboles/fisiología , Bosques , Nitrógeno , Microbiología del Suelo
17.
Glob Chang Biol ; 30(1): e17077, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273583

RESUMEN

Deforestation of tropical rainforests is a major land use change that alters terrestrial biogeochemical cycling at local to global scales. Deforestation and subsequent reforestation are likely to impact soil phosphorus (P) cycling, which in P-limited ecosystems such as the Amazon basin has implications for long-term productivity. We used a 100-year replicated observational chronosequence of primary forest conversion to pasture, as well as a 13-year-old secondary forest, to test land use change and duration effects on soil P dynamics in the Amazon basin. By combining sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy with soil phosphatase activity assays, we assessed pools and process rates of P cycling in surface soils (0-10 cm depth). Deforestation caused increases in total P (135-398 mg kg-1 ), total organic P (Po ) (19-168 mg kg-1 ), and total inorganic P (Pi ) (30-113 mg kg-1 ) fractions in surface soils with pasture age, with concomitant increases in Pi fractions corroborated by sequential fractionation and XANES spectroscopy. Soil non-labile Po (10-148 mg kg-1 ) increased disproportionately compared to labile Po (from 4-5 to 7-13 mg kg-1 ). Soil phosphomonoesterase and phosphodiesterase binding affinity (Km ) decreased while the specificity constant (Ka ) increased by 83%-159% in 39-100y pastures. Soil P pools and process rates reverted to magnitudes similar to primary forests within 13 years of pasture abandonment. However, the relatively short but representative pre-abandonment pasture duration of our secondary forest may not have entailed significant deforestation effects on soil P cycling, highlighting the need to consider both pasture duration and reforestation age in evaluations of Amazon land use legacies. Although the space-for-time substitution design can entail variation in the initial soil P pools due to atmospheric P deposition, soil properties, and/or primary forest growth, the trend of P pools and process rates with pasture age still provides valuable insights.


Asunto(s)
Bosque Lluvioso , Suelo , Suelo/química , Fósforo , Ecosistema , Conservación de los Recursos Naturales , Bosques
18.
Zootaxa ; 5399(2): 155-162, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38221167

RESUMEN

Three new species of Thiratoscirtus are described from Salonga National Park, D.R. Congo: Thiratoscirtus iyomii (), T. kalisia () and T. khonvoum (). All species were caught on the forest floor during a rapid biodiversity inventory and represent the second report of spider collections from the largest protected tropical rainforest reserve in Africa.


Asunto(s)
Bosque Lluvioso , Arañas , Animales , Bosques , Biodiversidad
20.
Microb Ecol ; 87(1): 29, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191681

RESUMEN

The Cerrado is the most diverse tropical savanna worldwide and the second-largest biome in South America. The objective of this study was to understand the heterogeneity and dynamics of arbuscular mycorrhizal fungi (AMF) in different types of natural Cerrado vegetation and areas that are transitioning to dryer savannas or tropical rainforests and to elucidate the driving factors responsible for the differences between these ecosystems. Twenty-one natural sites were investigated, including typical Cerrado forest, typical Caatinga, Atlantic Rainforest, transitions between Cerrado and Caatinga, Cerrado areas near Caatinga or rainforest, and Carrasco sites. Spores were extracted from the soils, counted, and morphologically analyzed. In total, 82 AMF species were detected. AMF species richness varied between 36 and 51, with the highest richness found in the area transitioning between Cerrado and Caatinga, followed by areas of Cerrado close to Caatinga and typical Cerrado forest. The types of Cerrado vegetation and the areas transitioning to the Caatinga shared the highest numbers of AMF species (32-38). Vegetation, along with chemical and physical soil parameters, affected the AMF communities, which may also result from seasonal rainfall patterns. The Cerrado has a great AMF diversity and is, consequently, a natural refuge for AMF. The plant and microbial communities as well as the diversity of habitats require urgent protection within the Cerrado, as it represents a key AMF hotspot.


Asunto(s)
Microbiota , Micorrizas , Micorrizas/genética , Brasil , Bosques , Bosque Lluvioso , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...