Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.074
Filtrar
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(4): 519-526, 2021 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-33855840

RESUMEN

Objective: To review the pathological effects of cellular senescence in the occurrence and development of osteoarthritis (OA) and potential therapeutic targets. Methods: The role of chondrocyte senescence, synovial cell senescence, mesenchymal stem cells senescence in OA, and the biological mechanism and progress of chondrocyte senescence were summarized by consulting relevant domestic and abroad literature. Results: The existing evidence has basically made clear that chondrocyte senescence, mesenchymal stem cells senescence, and cartilage repair abnormalities, and the occurrence and development of OA have a certain causal relationship, and the role of the senescence of synovial cells, especially synovial macrophages in OA is still unclear. Transcription factors and epigenetics are the main mechanisms that regulate the upstream pathways of cellular senescence. Signal communication between cells can promote the appearance of senescent phenotypes in healthy cells. Targeted elimination of senescent cells and promotion of mesenchymal stem cells rejuvenation can effectively delay the progress of OA. Conclusion: Cellular senescence is an important biological phenomenon and potential therapeutic target in the occurrence and development of OA. In-depth study of its biological mechanism is helpful to the early prevention and treatment of OA.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Osteoartritis , Senescencia Celular , Condrocitos , Humanos , Macrófagos , Osteoartritis/etiología
2.
Cells ; 10(3)2021 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-33799966

RESUMEN

The novel coronavirus severe acute respiratory syndrome-CoV-2 (SARS-CoV-2) is responsible for COVID-19 infection. The COVID-19 pandemic represents one of the worst global threats in the 21st century since World War II. This pandemic has led to a worldwide economic recession and crisis due to lockdown. Biomedical researchers, pharmaceutical companies, and premier institutes throughout the world are claiming that new clinical trials are in progress. During the severe phase of this disease, mechanical ventilators are used to assist in the management of outcomes; however, their use can lead to the development of pneumonia. In this context, mesenchymal stem cell (MSC)-derived exosomes can serve as an immunomodulation treatment for COVID-19 patients. Exosomes possess anti-inflammatory, pro-angiogenic, and immunomodulatory properties that can be explored in an effort to improve the outcomes of SARS-CoV-2-infected patients. Currently, only one ongoing clinical trial (NCT04276987) is specifically exploring the use of MSC-derived exosomes as a therapy to treat SARS-CoV-2-associated pneumonia. The purpose of this review is to provide insights of using exosomes derived from mesenchymal stem cells in management of the co-morbidities associated with SARS-CoV-2-infected persons in direction of improving their health outcome. There is limited knowledge of using exosomes in SARS-CoV-2; the clinicians and researchers should exploit exosomes as therapeutic regime.


Asunto(s)
/terapia , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Neumonía Viral/terapia , /complicaciones , /patología , Citocinas/metabolismo , Citocinas/farmacología , Exosomas/química , Exosomas/genética , Humanos , Inflamación/inmunología , Inflamación/terapia , Inflamación/virología , Células Madre Mesenquimatosas/inmunología , Neovascularización Fisiológica/inmunología , Neumonía Viral/complicaciones , Neumonía Viral/virología , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/terapia , Infecciones del Sistema Respiratorio/virología
3.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802220

RESUMEN

Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac4ManNAz) and N-alkyneacetylmannosamine (Ac4ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac4ManNAz was detectable for up to six days while Ac4ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.


Asunto(s)
Glicocálix , Hexosaminas , Células Madre Mesenquimatosas/metabolismo , Ingeniería Metabólica , Modelos Biológicos , Mioblastos Esqueléticos/metabolismo , Línea Celular Transformada , Glicocálix/química , Glicocálix/metabolismo , Hexosaminas/química , Hexosaminas/metabolismo , Humanos
4.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802984

RESUMEN

Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized. The impact of the preparation methodology and the polysaccharide composition on their morphology, as well as on their mechanical, thermal, water uptake and porosity properties was determined, while their osteoinductive potential was investigated through the evaluation of cell adhesion, viability, and osteogenic differentiation of seeded human adipose-derived mesenchymal stem cells. The results verified the osteoinductive ability of ulvan, showing that its incorporation into the polycaprolactone matrix efficiently promoted cell attachment and viability, thus confirming its potential in the development of biomedical scaffolds for bone tissue regeneration applications.


Asunto(s)
Organismos Acuáticos/química , Huesos/fisiología , Osteogénesis/efectos de los fármacos , Poliésteres/química , Polisacáridos/farmacología , Ingeniería de Tejidos , Andamios del Tejido/química , Huesos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Elasticidad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Polisacáridos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Agua/química
5.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809632

RESUMEN

Over the past two decades, mesenchymal stromal cells (MSCs) have demonstrated great potential in the treatment of inflammation-related conditions. Numerous early stage clinical trials have suggested that this treatment strategy has potential to lead to significant improvements in clinical outcomes. While promising, there remain substantial regulatory hurdles, safety concerns, and logistical issues that need to be addressed before cell-based treatments can have widespread clinical impact. These drawbacks, along with research aimed at elucidating the mechanisms by which MSCs exert their therapeutic effects, have inspired the development of extracellular vesicles (EVs) as anti-inflammatory therapeutic agents. The use of MSC-derived EVs for treating inflammation-related conditions has shown therapeutic potential in both in vitro and small animal studies. This review will explore the current research landscape pertaining to the use of MSC-derived EVs as anti-inflammatory and pro-regenerative agents in a range of inflammation-related conditions: osteoarthritis, rheumatoid arthritis, Alzheimer's disease, cardiovascular disease, and preeclampsia. Along with this, the mechanisms by which MSC-derived EVs exert their beneficial effects on the damaged or degenerative tissues will be reviewed, giving insight into their therapeutic potential. Challenges and future perspectives on the use of MSC-derived EVs for the treatment of inflammation-related conditions will be discussed.


Asunto(s)
Vesículas Extracelulares/metabolismo , Inflamación/patología , Inflamación/terapia , Células Madre Mesenquimatosas/metabolismo , Animales , Humanos , Modelos Biológicos
6.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809663

RESUMEN

Specific stem cell populations within dental mesenchymal tissues guarantee tooth homeostasis and regeneration throughout life. The decision between renewal and differentiation of stem cells is greatly influenced by interactions with stromal cells and extracellular matrix molecules that form the tissue specific stem cell niches. The Cxcl12 chemokine is a general marker of stromal cells and plays fundamental roles in the maintenance, mobilization and migration of stem cells. The aim of this study was to exploit Cxcl12-GFP transgenic mice to study the expression patterns of Cxcl12 in putative dental niches of intact and injured teeth. We showed that endothelial and stromal cells expressed Cxcl12 in the dental pulp tissue of both intact molars and incisors. Isolated non-endothelial Cxcl12+ dental pulp cells cultured in different conditions in vitro exhibited expression of both adipogenic and osteogenic markers, thus suggesting that these cells possess multipotent fates. Taken together, our results show that Cxcl12 is widely expressed in intact and injured teeth and highlight its importance as a key component of the various dental mesenchymal stem cell niches.


Asunto(s)
Quimiocina CXCL12/genética , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Nicho de Células Madre/genética , Traumatismos de los Dientes/genética , Diente/patología , Animales , Quimiocina CXCL12/metabolismo , Pulpa Dental/metabolismo , Incisivo/metabolismo , Ratones Transgénicos , Diente Molar/metabolismo , Receptores CXCR4/metabolismo
7.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809794

RESUMEN

In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide (FNIN)2 (18-mer) and FNIN3 (20-mer) which promote cell adhesion proliferation, and the differentiation of primary cells and stem cells. FNIN2 and 3 were designed based on the in silico interaction studies between FN and its receptors (integrin α5ß1, αvß3, and αIIbß3). Analysis of the proliferation of seventeen-cell types showed that the effects of FNINs depend on their concentration and the existence of expressed integrins. Significant rhodamine-labeled FNIN2 fluorescence on the membranes of HeLa, HepG2, A498, and Du145 cells confirmed physical binding. Double coating with FNIN2 or 3 after polymerized dopamine (pDa) or polymerized tannic acid (pTA) precoating increased HBEpIC cell proliferation by 30-40 percent, suggesting FNINs potently affect primary cells. Furthermore, the proliferation of C2C12 myoblasts and human mesenchymal stem cells (MSCs) treated with FNINs was significantly increased in 2D/3D culture. FNINs also promoted MSC differentiation into osteoblasts. The results of this study offer a new approach to the production of core materials (e.g., cell culture medium components, scaffolds) for cell culture.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fibronectinas/química , Células Madre Mesenquimatosas/citología , Péptidos/farmacología , Alginatos , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células HeLa , Humanos , Integrinas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Modelos Moleculares , Osteogénesis/efectos de los fármacos , Dominios Proteicos , Ratas , Receptores de Superficie Celular/metabolismo
8.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33808970

RESUMEN

Cell-free therapy using extracellular vesicles (EVs) from adipose-derived mesenchymal stromal/stem cells (ASCs) seems to be a safe and effective therapeutic option to support tissue and organ regeneration. The application of EVs requires particles with a maximum regenerative capability and hypoxic culture conditions as an in vitro preconditioning regimen has been shown to alter the molecular composition of released EVs. Nevertheless, the EV cargo after hypoxic preconditioning has not yet been comprehensively examined. The aim of the present study was the characterization of EVs from hypoxic preconditioned ASCs. We investigated the EV proteome and their effects on renal tubular epithelial cells in vitro. While no effect of hypoxia was observed on the number of released EVs and their protein content, the cargo of the proteins was altered. Proteomic analysis showed 41 increased or decreased proteins, 11 in a statistically significant manner. Furthermore, the uptake of EVs in epithelial cells and a positive effect on oxidative stress in vitro were observed. In conclusion, culture of ASCs under hypoxic conditions was demonstrated to be a promising in vitro preconditioning regimen, which alters the protein cargo and increases the anti-oxidative potential of EVs. These properties may provide new potential therapeutic options for regenerative medicine.


Asunto(s)
Vesículas Extracelulares/genética , Proteoma/genética , Proteómica , Medicina Regenerativa/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Regeneración/genética
9.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809214

RESUMEN

Extracellular vesicles (EVs) are generated and secreted by cells into the circulatory system. Stem cell-derived EVs have a therapeutic effect similar to that of stem cells and are considered an alternative method for cell therapy. Accordingly, research on the characteristics of EVs is emerging. EVs were isolated from human epidural fat-derived mesenchymal stem cells (MSCs) and human fibroblast culture media by ultracentrifugation. The characterization of EVs involved the typical evaluation of cluster of differentiation (CD antigens) marker expression by fluorescence-activated cell sorting, size analysis with dynamic laser scattering, and morphology analysis with transmission electron microscopy. Lastly, the secreted levels of cytokines and chemokines in EVs were determined by a cytokine assay. The isolated EVs had a typical size of approximately 30-200 nm, and the surface proteins CD9 and CD81 were expressed on human epidural fat MSCs and human fibroblast cells. The secreted levels of cytokines and chemokines were compared between human epidural fat MSC-derived EVs and human fibroblast-derived EVs. Human epidural fat MSC-derived EVs showed anti-inflammatory effects and promoted macrophage polarization. In this study, we demonstrated for the first time that human epidural fat MSC-derived EVs exhibit inflammatory suppressive potency relative to human fibroblast-derived EVs, which may be useful for the treatment of inflammation-related diseases.


Asunto(s)
Diferenciación Celular/genética , Vesículas Extracelulares/genética , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Polaridad Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Quimiocinas/genética , Citocinas/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Inflamación/genética , Inflamación/terapia , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo
10.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810326

RESUMEN

Musashi-1 (MSI1) is an RNA-binding protein that regulates progenitor cells in adult and developing organisms to maintain self-renewal capacities. The role of musashi-1 in the bone healing environment and its relation with other osteogenic factors is unknown. In the current study, we analyze the expression of MSI1 in an experimental model of rat femoral bone fractures. We also analyze the relation between MSI1 expression and the expression of two osteogenic markers: periostin (POSTN) and runt-related transcription factor 2 (RUNX2). We use histological, immunohistochemical, and qPCR techniques to evaluate bone healing and the expression of MSI1, POSTN, and RUNX2 over time (4, 7, and 14 days). We compare our findings with non-fractured controls. We find that in bone calluses, the number of cells expressing MSI1 and RUNX2 increase over time and the intensity of POSTN expression decreases over time. Within bone calluses, we find the presence of MSI1 expression in mesenchymal stromal cells, osteoblasts, and osteocytes but not in hypertrophic chondrocytes. After 14 days, the expression of MSI1, POSTN, and RUNX2 was significantly correlated. Thus, we conclude that musashi-1 potentially serves in the osteogenic differentiation of mesenchymal stromal cells and bone healing. Therefore, further studies are needed to determine the possibility of musashi-1's role as a clinical biomarker of bone healing and therapeutic agent for bone regeneration.


Asunto(s)
Curación de Fractura , Proteínas del Tejido Nervioso/metabolismo , Osteogénesis , Proteínas de Unión al ARN/metabolismo , Animales , Callo Óseo/citología , Callo Óseo/metabolismo , Callo Óseo/fisiología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Condrocitos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Proteínas del Tejido Nervioso/genética , Osteoblastos/metabolismo , Osteocitos/metabolismo , Proteínas de Unión al ARN/genética , Ratas , Ratas Wistar
11.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810359

RESUMEN

Despite the strong evidence for the immunomodulatory activity of mesenchymal stromal cells (MSCs), clinical trials have so far failed to clearly show benefit, likely reflecting methodological shortcomings and lack of standardization. MSC-mediated tissue repair is commonly believed to occur in a paracrine manner, and it has been stated that extracellular vesicles (EVs) secreted by MSCs (EVMSC) are able to recapitulate the immunosuppressive properties of parental cells. As a next step, clinical trials to corroborate preclinical studies should be performed. However, effective dose in large mammals, including humans, is quite high and EVs industrial production is hindered by the proliferative senescence that affects MSCs during massive cell expansion. We generated a genetically modified MSC cell line overexpressing hypoxia-inducible factor 1-alpha and telomerase to increase the therapeutic potency of EVMSC and facilitate their large-scale production. We also developed a cytokine-based preconditioning culture medium to prime the immunomodulatory response of secreted EVs (EVMSC-T-HIFc). We tested the efficacy of this system in vitro and in a delayed-type hypersensitivity mouse model. MSC-T with an HIF-1α-GFP lentiviral vector (MSC-T-HIF) can be effectively expanded to obtain large amounts of EVs without major changes in cell phenotype and EVs composition. EVMSC-T-HIFc suppressed the proliferation of activated T-cells more effectively than did EVs from unmodified MSC in vitro, and significantly blunted the ear-swelling response in vivo by inhibiting cell infiltration and improving tissue integrity. We have developed a long-lived EV source that secretes high quantities of immunosuppressive EVs, facilitating a more standard and cost-effective therapeutic product.


Asunto(s)
Vesículas Extracelulares/trasplante , Hipersensibilidad Retardada/terapia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunomodulación , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Linfocitos T/inmunología , Animales , Línea Celular , Proliferación Celular , Células Cultivadas , Citocinas/farmacología , Pulpa Dental/citología , Vesículas Extracelulares/inmunología , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lentivirus/genética , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Linfocitos T/fisiología , Telomerasa/genética , Telomerasa/metabolismo , Adulto Joven
12.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803546

RESUMEN

Alginate as a versatile naturally occurring biomaterial has found widespread use in the biomedical field due to its unique features such as biocompatibility and biodegradability. The ability of its semipermeable hydrogels to provide a favourable microenvironment for clinically relevant cells made alginate encapsulation a leading technology for immunoisolation, 3D culture, cryopreservation as well as cell and drug delivery. The aim of this work is the evaluation of structural properties and swelling behaviour of the core-shell capsules for the encapsulation of multipotent stromal cells (MSCs), their 3D culture and cryopreservation using slow freezing. The cells were encapsulated in core-shell capsules using coaxial electrospraying, cultured for 35 days and cryopreserved. Cell viability, metabolic activity and cell-cell interactions were analysed. Cryopreservation of MSCs-laden core-shell capsules was performed according to parameters pre-selected on cell-free capsules. The results suggest that core-shell capsules produced from the low viscosity high-G alginate are superior to high-M ones in terms of stability during in vitro culture, as well as to solid beads in terms of promoting formation of viable self-assembled cellular structures and maintenance of MSCs functionality on a long-term basis. The application of 0.3 M sucrose demonstrated a beneficial effect on the integrity of capsules and viability of formed 3D cell assemblies, as compared to 10% dimethyl sulfoxide (DMSO) alone. The proposed workflow from the preparation of core-shell capsules with self-assembled cellular structures to the cryopreservation appears to be a promising strategy for their off-the-shelf availability.


Asunto(s)
Alginatos/química , Hidrogeles/química , Andamios del Tejido/química , Animales , Callithrix , Cápsulas , Supervivencia Celular , Criopreservación , Dermis/citología , Humanos , Células Madre Mesenquimatosas/citología , Tamaño de la Partícula , Espectrometría Raman , Factores de Tiempo , Agua/química
13.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803805

RESUMEN

During biomineralization, the cells generating the biominerals must be able to sense the external physical stimuli exerted by the growing mineralized tissue and change their intracellular protein composition according to these stimuli. In molluscan shell, the myosin-chitin synthases have been suggested to be the link for this communication between cells and the biomaterial. Hyaluronan synthases (HAS) belong to the same enzyme family as chitin synthases. Their product hyaluronan (HA) occurs in the bone and is supposed to have a regulatory function during bone regeneration. We hypothesize that HASes' expression and activity are controlled by fluid-induced mechanotransduction as it is known for molluscan chitin synthases. In this study, bone marrow-derived human mesenchymal stem cells (hMSCs) were exposed to fluid shear stress of 10 Pa. The RNA transcriptome was analyzed by RNA sequencing (RNAseq). HA concentrations in the supernatants were measured by ELISA. The cellular structure of hMSCs and HAS2-overexpressing hMSCs was investigated after treatment with shear stress using confocal microscopy. Fluid shear stress upregulated the expression of genes that encode proteins belonging to the HA biosynthesis and bone mineralization pathways. The HAS activity appeared to be induced. Knowledge about the regulation mechanism governing HAS expression, trafficking, enzymatic activation and quality of the HA product in hMSCs is essential to understand the biological role of HA in the bone microenvironment.


Asunto(s)
Hialuronano Sintasas/metabolismo , Células Madre Mesenquimatosas/enzimología , Reología , Estrés Mecánico , Anciano , Anciano de 80 o más Años , Forma de la Célula , Células Cultivadas , Humanos , Ácido Hialurónico/biosíntesis , Masculino , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad , Transcripción Genética , Regulación hacia Arriba/genética
14.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804138

RESUMEN

Mesenchymal stem (MS) cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells are known for their ability to differentiate into different lineages, including chondrocytes in culture. However, the existing protocol for chondrocyte differentiation is time consuming and labor intensive. To improve and simplify the differentiation strategy, we have explored the effects of interactions between growth factors (transforming growth factor ß1 (Tgfb1) and colony stimulating factor 3 (Csf3), and culture environments (2D monolayer and 3D nanofiber scaffold) on chondrogenic differentiation. For this, we have examined cell morphologies, proliferation rates, viability, and gene expression profiles, and characterized the cartilaginous matrix formed in the chondrogenic cultures under different treatment regimens. Our data show that 3D cultures support higher proliferation rate than the 2D cultures. Tgfb1 promotes cell proliferation and viability in both types of culture, whereas Csf3 shows positive effects only in 3D cultures. Interestingly, our results indicate that the combined treatments of Tgfb1 and Csf3 do not affect cell proliferation and viability. The expression of cartilaginous matrix in different treatment groups indicates the presence of chondrocytes. We found that, at the end of differentiation stage 1, pluripotent markers were downregulated, while the mesodermal marker was upregulated. However, the expression of chondrogenic markers (col2a1 and aggrecan) was upregulated only in the 3D cultures. Here, we report an efficient, scalable, and convenient protocol for chondrogenic differentiation of iPS cells, and our data suggest that a 3D culture environment, combined with tgfb1 and csf3 treatment, promotes the chondrogenic differentiation.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Condrogénesis/genética , Receptores del Factor Estimulante de Colonias/genética , Factor de Crecimiento Transformador beta1/genética , Animales , Cartílago/crecimiento & desarrollo , Diferenciación Celular/genética , Proliferación Celular/genética , Condrocitos/citología , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Ratones
15.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799588

RESUMEN

We have been studying mesenchymal stem cells (MSCs) in synovial fluid and the intra-articular injection of synovial MSCs in osteoarthritis (OA) knees. Here, mainly based on our own findings, we overview the characteristics of endogenous MSCs in the synovial fluid of OA knees and their mode of action when injected exogenously into OA knees. Many MSCs similar to synovial MSCs were detected in the synovial fluid of human OA knees, and their number correlated with the radiological OA grade. Our suspended synovium culture model demonstrated the release of MSCs from the synovium through a medium into a non-contacting culture dish. In OA knees, endogenous MSCs possibly mobilize in a similar manner from the synovium through the synovial fluid and act protectively. However, the number of mobilized MSCs is limited; therefore, OA progresses in its natural course. Synovial MSC injections inhibited the progression of cartilage degeneration in a rat OA model. Injected synovial MSCs migrated into the synovium, maintained their MSC properties, and increased the gene expressions of TSG-6, PRG-4, and BMP-2. Exogenous synovial MSCs can promote anti-inflammation, lubrication, and cartilage matrix synthesis in OA knees. Based on our findings, we have initiated a human clinical study of synovial MSC injections in OA knees.


Asunto(s)
Condrogénesis/genética , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Osteoartritis de la Rodilla/terapia , Líquido Sinovial/fisiología , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Inyecciones Intraarticulares , Células Madre Mesenquimatosas/citología , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Proteoglicanos/genética , Proteoglicanos/metabolismo , Ratas , Líquido Sinovial/citología , Trasplante Heterólogo , Resultado del Tratamiento
16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(2): 387-392, 2021 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-33913300

RESUMEN

Mesenchymal stem cells (MSCs) are pluripotent stem cells with high self-proliferation and multidirectional differentiation potential. They also have other functions including immune regulation, paracrine and so on, playing an important role in repairing injured tissues. In recent years, a lot of research has been done on how MSCs promote skin injury repair, and a lot of progress has been made. Compared with direct injection of MSCs in the wound area, some special treatments or transplantation methods could enhance the ability of MSCs to repair skin injury. This paper mainly discusses the role of MSCs in skin injury repair and technical ways to improve its repairing capacity, and discusses the existing problems in this field and prospects for future research directions.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Diferenciación Celular , Piel
17.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800912

RESUMEN

Arrhythmogenic Cardiomyopathy (ACM) is characterized by the replacement of the myocardium with fibrotic or fibro-fatty tissue and inflammatory infiltrates in the heart. To date, while ACM adipogenesis is a well-investigated differentiation program, ACM-related fibrosis remains a scientific gap of knowledge. In this study, we analyze the fibrotic process occurring during ACM pathogenesis focusing on the role of cardiac mesenchymal stromal cells (C-MSC) as a source of myofibroblasts. We performed the ex vivo studies on plasma and right ventricular endomyocardial bioptic samples collected from ACM patients and healthy control donors (HC). In vitro studies were performed on C-MSC isolated from endomyocardial biopsies of both groups. Our results revealed that circulating TGF-ß1 levels are significantly higher in the ACM cohort than in HC. Accordingly, fibrotic markers are increased in ACM patient-derived cardiac biopsies compared to HC ones. This difference is not evident in isolated C-MSC. Nevertheless, ACM C-MSC are more responsive than HC ones to TGF-ß1 treatment, in terms of pro-fibrotic differentiation and higher activation of the SMAD2/3 signaling pathway. These results provide the novel evidence that C-MSC are a source of myofibroblasts and participate in ACM fibrotic remodeling, being highly responsive to ACM-characteristic excess TGF-ß1.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/fisiopatología , Endocardio/patología , Células Madre Mesenquimatosas/patología , Miofibroblastos/patología , Factor de Crecimiento Transformador beta1/fisiología , Adulto , Displasia Ventricular Derecha Arritmogénica/sangre , Displasia Ventricular Derecha Arritmogénica/patología , Diferenciación Celular , Endocardio/metabolismo , Femenino , Fibrosis , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , ARN Mensajero/biosíntesis , Transducción de Señal/fisiología , Proteína Smad2/fisiología , Proteína smad3/fisiología , Factor de Crecimiento Transformador beta1/sangre
18.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33803999

RESUMEN

The purpose of the present pilot study was to evaluate the effect of a hydrogel composed of hyaluronic acid (HA) and platelet-rich plasma (PRP) as a carrier for human mesenchymal stem cells (hMSCs) for intervertebral disc (IVD) regeneration using a disc organ culture model. HA was mixed with batroxobin (BTX) and PRP to form a hydrogel encapsulating 1 × 106 or 2 × 106 hMSCs. Bovine IVDs were nucleotomized and filled with hMSCs suspended in ~200 µL of the PRP/HA/BTX hydrogel. IVDs collected at day 0 and nucleotomized IVDs with no hMSCs and/or hydrogel alone were used as controls. hMSCs encapsulated in the hydrogel were also cultured in well plates to evaluate the effect of the IVD environment on hMSCs. After 1 week, tissue structure, scaffold integration, hMSC viability and gene expression of matrix and nucleus pulposus (NP) cell markers were assessed. Histological analysis showed a better preservation of the viability of the IVD tissue adjacent to the gel in the presence of hMSCs (~70%) compared to the hydrogel without hMSCs. Furthermore, disc morphology was maintained, and the hydrogel showed signs of integration with the surrounding tissues. At the gene expression level, the hydrogel loaded with hMSCs preserved the normal metabolism of the tissue. The IVD environment promoted hMSC differentiation towards a NP cell phenotype by increasing cytokeratin-19 (KRT19) gene expression. This study demonstrated that the hydrogel composed of HA/PRP/BTX represents a valid carrier for hMSCs being able to maintain a good cell viability while stimulating cell activity and NP marker expression.


Asunto(s)
Ácido Hialurónico/farmacología , Degeneración del Disco Intervertebral/terapia , Disco Intervertebral/trasplante , Queratina-19/genética , Trasplante de Células Madre Mesenquimatosas , Animales , Batroxobina/farmacología , Bovinos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ácido Hialurónico/química , Hidrogeles/química , Hidrogeles/farmacología , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/patología , Células Madre Mesenquimatosas/citología , Núcleo Pulposo/crecimiento & desarrollo , Núcleo Pulposo/trasplante , Técnicas de Cultivo de Órganos , Plasma Rico en Plaquetas/química
19.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806897

RESUMEN

Adipose tissue and more specifically micro-fragmented adipose tissue (MFAT) obtained from liposuction has recently been shown to possess interesting medicinal properties whereby its application supports pain reduction and may enhance tissue regeneration particularly in osteoarthritis. Here we have characterised samples of MFAT produced using the Lipogems® International Spa system from eight volunteer individuals in order to understand the critical biological mechanisms through which they act. A variation was found in the MFAT cluster size between individual samples and this translated into a similar variation in the ability of purified mesenchymal stem cells (MSCs) to form colony-forming units. Almost all of the isolated cells were CD105/CD90/CD45+ indicating stemness. An analysis of the secretions of cytokines from MFAT samples in a culture using targeted arrays and an enzyme-linked immunosorbent assay (ELISA) showed a long-term specific and significant expression of proteins associated with anti-inflammation (e.g., interleukin-1 receptor alpha (Il-1Rα) antagonist), pro-regeneration (e.g., hepatocyte growth factor), anti-scarring and pro-angiogenesis (e.g., transforming growth factor beta 1 and 2 (TGFß1/2) and anti-bacterial (e.g., chemokine C-X-C motif ligand-9 (CXCL-9). Angiogenesis and angiogenic signalling were notably increased in primary bovine aortic endothelial cells (BAEC) to a different extent in each individual sample of the conditioned medium whilst a direct capacity of the conditioned medium to block inflammation induced by lipopolysaccharides was shown. This work characterises the biological mechanisms through which a strong, long-lasting, and potentially beneficial effect can be observed regarding pain reduction, protection and regeneration in osteoarthritic joints treated with MFAT.


Asunto(s)
Tejido Adiposo/química , Inductores de la Angiogénesis/química , Inductores de la Angiogénesis/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Inductores de la Angiogénesis/aislamiento & purificación , Animales , Antiinflamatorios/aislamiento & purificación , Bovinos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Citocinas/biosíntesis , Células Endoteliales , Inmunofenotipificación , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806895

RESUMEN

Skeletal muscle regeneration is highly dependent on the inflammatory response. A wide variety of innate and adaptive immune cells orchestrate the complex process of muscle repair. This review provides information about the various types of immune cells and biomolecules that have been shown to mediate muscle regeneration following injury and degenerative diseases. Recently developed cell and drug-based immunomodulatory strategies are highlighted. An improved understanding of the immune response to injured and diseased skeletal muscle will be essential for the development of therapeutic strategies.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Músculo Esquelético/fisiología , Regeneración/inmunología , Factores de Edad , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Susceptibilidad a Enfermedades , Humanos , Inmunomodulación , Leucocitos/inmunología , Leucocitos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Desarrollo de Músculos/genética , Desarrollo de Músculos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...