Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.502
Filtrar
1.
Medicine (Baltimore) ; 100(3): e23986, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33545988

RESUMEN

ABSTRACT: Rosacea is a facial chronic inflammatory skin disease with immune and vascular system dysfunction. Paeoniflorin (PF) is a traditional Chinese medicine with anti-inflammatory properties. However, its effects on rosacea remain unknown. Here, we investigated the mechanisms through which PF inhibits the macrophage-related rosacea-like inflammatory response. Immunohistochemical methods were used to detect differences in the inflammatory response and degree of macrophage infiltration in granulomatous rosacea lesions and their peripheral areas. Cell Counting Kit-8 was used to determine the cytotoxicity of PF towards RAW 264.7 cells. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to measure the influence of PF on mRNA and protein expression levels of suppressor of cytokine signaling 3 (SOCS3), apoptosis signal-regulating kinase 1 (ASK1)-p38, Toll-like receptor 2, and cathelicidin antimicrobial peptide ( or LL37) in the lipopolysaccharide (LPS)-induced macrophage-related rosacea-like inflammatory response of RAW 264.7 cells. Inflammatory cell infiltration was more pronounced in granulomatous rosacea lesions than in peripheral areas. LL37 expression increased significantly, and the infiltration of a large number of CD68+ macrophages was observed in the lesions. PF promoted SOCS3 expression in RAW 264.7 cells and inhibited the LPS-induced increase in toll-like receptor 2 and LL37 expression through the ASK1-p38 cascade, thereby alleviating the macrophage-related rosacea-like inflammatory response. These changes could be abrogated by SOCS3 siRNA in vitro.In conclusion, the pathogenesis of rosacea involves abnormal macrophage infiltration within the lesions. PF inhibits the macrophage-related rosacea-like inflammatory response through the SOCS3-ASK1-p38 pathway, demonstrating its potential application as a novel drug for rosacea therapy.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Glucósidos/farmacología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Monoterpenos/farmacología , Rosácea/tratamiento farmacológico , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Animales , Técnicas de Cultivo de Célula , Humanos , Macrófagos/metabolismo , Ratones , Células RAW 264.7 , Piel/citología
2.
Nat Commun ; 12(1): 879, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563986

RESUMEN

Salmonella Typhimurium establishes systemic infection by replicating in host macrophages. Here we show that macrophages infected with S. Typhimurium exhibit upregulated glycolysis and decreased serine synthesis, leading to accumulation of glycolytic intermediates. The effects on serine synthesis are mediated by bacterial protein SopE2, a type III secretion system (T3SS) effector encoded in pathogenicity island SPI-1. The changes in host metabolism promote intracellular replication of S. Typhimurium via two mechanisms: decreased glucose levels lead to upregulated bacterial uptake of 2- and 3-phosphoglycerate and phosphoenolpyruvate (carbon sources), while increased pyruvate and lactate levels induce upregulation of another pathogenicity island, SPI-2, known to encode virulence factors. Pharmacological or genetic inhibition of host glycolysis, activation of host serine synthesis, or deletion of either the bacterial transport or signal sensor systems for those host glycolytic intermediates impairs S. Typhimurium replication or virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Macrófagos/metabolismo , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Sistemas de Secreción Tipo III/metabolismo , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Glucosa/metabolismo , Ácidos Glicéricos/metabolismo , Glucólisis , Factores de Intercambio de Guanina Nucleótido/genética , Macrófagos/microbiología , Ratones , Células RAW 264.7 , Salmonella typhimurium/metabolismo , Serina/biosíntesis , Transducción de Señal , Sistemas de Secreción Tipo III/genética , Virulencia
3.
Nat Commun ; 12(1): 308, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436632

RESUMEN

Accumulating evidence shows that RAGE has an important function in the pathogenesis of sepsis. However, the mechanisms by which RAGE transduces signals to downstream kinase cascades during septic shock are not clear. Here, we identify SLP76 as a binding partner for the cytosolic tail of RAGE both in vitro and in vivo and demonstrate that SLP76 binds RAGE through its sterile α motif (SAM) to mediate downstream signaling. Genetic deficiency of RAGE or SLP76 reduces AGE-induced phosphorylation of p38 MAPK, ERK1/2 and IKKα/ß, as well as cytokine release. Delivery of the SAM domain into macrophages via the TAT cell-penetrating peptide blocks proinflammatory cytokine production. Furthermore, administration of TAT-SAM attenuates inflammatory cytokine release and tissue damage in mice subjected to cecal ligation and puncture (CLP) and protects these mice from the lethality of sepsis. These findings reveal an important function for SLP76 in RAGE-mediated pro-inflammatory signaling and shed light on the development of SLP76-targeted therapeutics for sepsis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Terapia Molecular Dirigida , Fosfoproteínas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Sepsis/tratamiento farmacológico , Animales , Bacteriófago T7/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Péptidos/metabolismo , Unión Proteica , Dominios Proteicos , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor para Productos Finales de Glicación Avanzada/química , Sepsis/patología , Transducción de Señal
4.
Nat Commun ; 12(1): 102, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397994

RESUMEN

Pro-inflammatory activation of adipose tissue macrophages (ATMs) is causally linked to obesity and obesity-associated disorders. A number of studies have demonstrated the crucial role of mitochondrial metabolism in macrophage activation. However, there is a lack of pharmaceutical agents to target the mitochondrial metabolism of ATMs for the treatment of obesity-related diseases. Here, we characterize a near-infrared fluorophore (IR-61) that preferentially accumulates in the mitochondria of ATMs and has a therapeutic effect on diet-induced obesity as well as obesity-associated insulin resistance and fatty liver. IR-61 inhibits the classical activation of ATMs by increasing mitochondrial complex levels and oxidative phosphorylation via the ROS/Akt/Acly pathway. Taken together, our findings indicate that specific enhancement of ATMs oxidative phosphorylation improves chronic inflammation and obesity-related disorders. IR-61 might be an anti-inflammatory agent useful for the treatment of obesity-related diseases by targeting the mitochondria of ATMs.


Asunto(s)
Tejido Adiposo/metabolismo , Sistemas de Liberación de Medicamentos , Macrófagos/metabolismo , Mitocondrias/metabolismo , Obesidad/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Animales , Peso Corporal/efectos de los fármacos , Hígado Graso/genética , Hígado Graso/patología , Inflamación/genética , Inflamación/patología , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Obesidad/genética , Obesidad/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Pérdida de Peso/efectos de los fármacos
5.
AAPS PharmSciTech ; 22(1): 18, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389284

RESUMEN

Engineered cell-derived extracellular vesicles (EVs) such as exosomes and microvesicles hold immense potential as safe and efficient drug carriers due to their lower immunogenicity and inherent homing capabilities to target cells. In addition to innate vesicular cargo such as lipids, proteins, and nucleic acids, EVs are also known to contain functional mitochondria/mitochondrial DNA that can be transferred to recipient cells to increase cellular bioenergetics. In this proof-of-concept study, we isolated naïve EVs and engineered EVs loaded with an exogenous plasmid DNA encoding for brain-derived neurotrophic factor (BDNF-EVs) from hCMEC/D3, a human brain endothelial cell line, and RAW 264.7 macrophages. We tested whether mitochondrial components in naïve or engineered EVs can increase ATP levels in the recipient brain endothelial cells. EVs (e.g., exosomes and microvesicles; EXOs and MVs) were isolated from the conditioned medium of either untreated (naïve) or pDNA-transfected (Luc-DNA or BDNF-DNA) cells using a differential centrifugation method. RAW 264.7 cell line-derived EVs showed a significantly higher DNA loading and increased luciferase expression in the recipient hCMEC/D3 cells at 72 h compared with hCMEC/D3 cell line-derived EVs. Naïve EVs from hCMEC/D3 cells and BDNF-EVs from RAW 264.7 cells showed a small, but a significantly greater increase in the ATP levels of recipient hCMEC/D3 cells at 24 and 48 h post-exposure. In summary, we have demonstrated (1) differences in exogenous pDNA loading into EVs as a function of cell type using brain endothelial and macrophage cell lines and (2) EV-mediated increases in the intracellular ATP levels in the recipient hCMEC/D3 monolayers.


Asunto(s)
Adenosina Trifosfato/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Encéfalo/citología , Línea Celular , ADN Mitocondrial/metabolismo , Portadores de Fármacos , Metabolismo Energético , Humanos , Ratones , Prueba de Estudio Conceptual , Células RAW 264.7
6.
Nat Commun ; 12(1): 440, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469052

RESUMEN

The main challenges for programmed cell death 1(PD-1)/PD-1 ligand (PD-L1) checkpoint blockade lie in a lack of sufficient T cell infiltration, tumor immunosuppressive microenvironment, and the inadequate tumor accumulation and penetration of anti-PD-1/PD-L1 antibody. Resetting tumor-associated macrophages (TAMs) is a promising strategy to enhance T-cell antitumor immunity and ameliorate tumor immunosuppression. Here, mannose-modified macrophage-derived microparticles (Man-MPs) loading metformin (Met@Man-MPs) are developed to efficiently target to M2-like TAMs to repolarize into M1-like phenotype. Met@Man-MPs-reset TAMs remodel the tumor immune microenvironment by increasing the recruitment of CD8+ T cells into tumor tissues and decreasing immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells. More importantly, the collagen-degrading capacity of Man-MPs contributes to the infiltration of CD8+ T cells into tumor interiors and enhances tumor accumulation and penetration of anti-PD-1 antibody. These unique features of Met@Man-MPs contribute to boost anti-PD-1 antibody therapy, improving anticancer efficacy and long-term memory immunity after combination treatment. Our results support Met@Man-MPs as a potential drug to improve tumor resistance to anti-PD-1 therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Micropartículas Derivadas de Células/inmunología , Portadores de Fármacos/farmacología , Neoplasias/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Humanos , /uso terapéutico , Memoria Inmunológica , Masculino , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Células RAW 264.7 , Escape del Tumor/efectos de los fármacos , Escape del Tumor/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , /inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Life Sci ; 269: 119029, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33450256

RESUMEN

AIMS: The present study aimed to disclose a potent and selective GPR120 agonist LXT34 and its anti-diabetic effects. MAIN METHODS: Calcium mobilization assay was used to measure the agonistic potency and selectivity of LXT34 in GPR120 or GPR40-overexpression Chinese hamster ovary (CHO) cells. Glucagon-like peptide-1 (GLP-1) release and glucose-stimulated insulin secretion (GSIS) were evaluated in human colonic epithelial cell line NCI-H716 and mouse insulinoma cell line MIN6 by enzyme-linked immunosorbent assay (ELISA), respectively. The anti-inflammatory effect was determined in lipopolysaccharide (LPS)-induced murine macrophage cell line RAW264.7. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed to assess the anti-diabetic effects of LXT34 in db/db mice, and chronic inflammation in liver and adipose tissues were investigated using histomorphology, immunoblot and gene expression analysis. KEY FINDINGS: LXT34 was a potent GPR120 agonist with negligible activity toward human and mouse GPR40. LXT34 could potentiate GSIS and suppress LPS-induced inflammation in macrophages. LXT34 not only markedly improved glucose tolerance and insulin resistance, but also distinctly reduced macrophages infiltration, pro-inflammatory cytokines expression and JNK phosphorylation of both liver and adipose tissues in db/db mice. SIGNIFICANCE: LXT34, a novel and potent GPR120-selective agonist, showed beneficial effects on improving glucose homeostasis in obesity-related type 2 diabetes.


Asunto(s)
Inflamación/patología , Secreción de Insulina , Receptores Acoplados a Proteínas G/agonistas , Tejido Adiposo/patología , Animales , Enfermedad Crónica , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/farmacología , Inflamación/sangre , Resistencia a la Insulina , Secreción de Insulina/efectos de los fármacos , Lipopolisacáridos/farmacología , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(1): 116-122, 2021 Jan 30.
Artículo en Chino | MEDLINE | ID: mdl-33509763

RESUMEN

OBJECTIVE: To construct a cell model of gsdmd gene knockout in macrophage RAW 264.7 cells using CRISPR/Cas9 system. METHODS: Four specific single guide RNAs (sgRNAs) targeting gsdmd were designed to construct pGL3-sgRNA recombinant plasmids, which were identified by PCR amplification and sequencing.Cas9 and the recombinant plasmids were transfected into RAW 264.7 cells in two steps, and the cellular expression of cas9 was detected with real-time quantitative PCR (qPCR).The positive cell clones with gsdmd gene knockout were screened using puromycin and verified by sequencing and Western blotting.Annexin Ⅴ/PI staining and LDH release assay were performed in gsdmd-/-RAW 264.7 cells after being co-cultured with Salmonella Typhimurium. RESULTS: qPCR results showed that cas9 gene was stably expressed in RAW 264.7-Cas9 cells (P< 0.01).PCR and sequencing results demonstrated successful construction of the recombinant plasmid pGL3-sgRNA. The results of PCR, sequencing and Western blotting all confirmed that gsdmd-/-RAW 264.7 cells were successfully constructed. Annexin Ⅴ/PI staining and LDH release assay showed that gsdmd gene knockout significantly inhibited macrophage death caused by S.Typhimurium infection (P < 0.01). CONCLUSIONS: gsdmd-/-RAW 264.7 cells provide a cell model for studying the mechanisms underlying GSDMD-mediated macrophage death.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guia , Animales , Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes , Ratones , Plásmidos , Células RAW 264.7
9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 37(2): 140-145, 2021 Feb.
Artículo en Chino | MEDLINE | ID: mdl-33504420

RESUMEN

Objective To investigate the effect of miR-21 on the expression of NF-κB and NLR family pyrin domain containing 3 (NLRP3) in RAW264.7 cells stimulated by lipopolysaccharide (LPS) and its possible mechanism. Methods Real-time fluorescent quantitative PCR was used to detect the expression of miR-21 after RAW264.7 cells were stimulated with 100 ng/mL LPS for 24 hours. miR-21 inhibitors or mimics were transfected to regulate the expression of miR-21 in RAW264.7 cells. After miR-21 inhibitors or mimics were stimulated by LPS, real-time quantitative PCR was used to detect its effect on the mRNA expression of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and IL-1ß, and Western blotting was used to detect the effects on the expression of NF-κB, NLRP3 and A20 proteins. Results The expression of miR-21 significantly increased when RAW264.7 cells were stimulated by LPS. The expression of IL-6, TNF-α, IL-1ß, NF-κB and NLRP3 was raised when the expression of miR-21 was up-regulated. The expression of IL-6, TNF-α, IL-1ß, NF-κB and NLRP3 was reduced when the expression of miR-21 was down-regulated. miR-21 targeted the inhibition of A20 expression. Conclusion miR-21 can promote the expression of NF-κB and NLRP3 in RAW264.7 cells and its mechanism may be related to the targeted inhibition of A20.


Asunto(s)
MicroARNs , FN-kappa B , Animales , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Ratones , MicroARNs/genética , MicroARNs/fisiología , FN-kappa B/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Células RAW 264.7
10.
Int J Nanomedicine ; 16: 201-211, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33447035

RESUMEN

Objective: PEGylated superparamagnetic iron oxide (SPIO) is the most promising alternatives to gadolinium-based contrast agents (GBCAs) in MRI. This paper is to explore the imaging effects of PEGylated SPIO, which is influenced by particle sizes and surface polyethylene glycol (PEG) coating, using as MRI contrast agents at different magnetic field intensities. Methods: Firstly, nine PEGylated monocrystalline SPIO nanoparticles with different nanocrystal sizes and different molecular weights PEG coating were prepared, and then physical and biological properties were analyzed. Finally, MRI imaging in vivo was performed to observe the imaging performance. Results: Nine PEGylated monocrystalline SPIO nanoparticles have good relaxivities, serum stability, and biosecurity. At the same time, they show different imaging characteristics at different magnetic field intensities. Eight-nanometer SPIO@PEG5k is an effective T 2 contrast agent at 3.0 T (r 2/r 1 = 14.0), is an ideal T 1-T 2 dual-mode contrast agent at 1.5 T (r 2/r 1 = 6.52), and is also an effective T 1 contrast agent at 0.5 T (r 2/r 1 = 2.49), while 4-nm SPIO@PEG5k is a T 1-T 2 dual-mode contrast agent at 3.0 T (r 2/r 1 = 5.24), and is a useful T 1 contrast agent at 0.5 T (r 2/r 1 = 1.74) and 1.5 T (r 2/r 1 = 2.85). MRI studies in vivo at 3.0 T further confirm that 4-nm SPIO@PEG5k displays excellent T 1-T 2 dual-mode contrast enhancement, whereas 8-nm SPIO@PEG5k only displays T 2 contrast enhancement. Conclusion: PEGylated SPIOs with different nanocrystal sizes and PEG coating can be used as T 1, T 2, or T 1-T 2 dual-mode contrast agents to meet the clinical demands of MRI at specific magnetic fields.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética , Nanocompuestos/química , Polietilenglicoles/química , Animales , Campos Magnéticos , Masculino , Ratones , Nanocompuestos/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Células RAW 264.7 , Ratas Sprague-Dawley , Suero/metabolismo
11.
Nat Commun ; 12(1): 648, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510170

RESUMEN

Controlling nanocarrier interactions with the immune system requires a thorough understanding of the surface properties that modulate protein adsorption in biological fluids, since the resulting protein corona redefines cellular interactions with nanocarrier surfaces. Albumin is initially one of the dominant proteins to adsorb to nanocarrier surfaces, a process that is considered benign or beneficial by minimizing opsonization or inflammation. Here, we demonstrate the surface chemistry of a model nanocarrier can be engineered to stabilize or denature the three-dimensional conformation of adsorbed albumin, which respectively promotes evasion or non-specific clearance in vivo. Interestingly, certain common chemistries that have long been considered to convey stealth properties denature albumin to promote nanocarrier recognition by macrophage class A1 scavenger receptors, providing a means for their eventual removal from systemic circulation. We establish that the surface chemistry of nanocarriers can be specified to modulate adsorbed albumin structure and thereby tune clearance by macrophage scavenger receptors.


Asunto(s)
Macrófagos/metabolismo , Nanopartículas/química , Pliegue de Proteína , Albúmina Sérica Bovina/química , Adsorción , Animales , Bovinos , Microscopía por Crioelectrón , Humanos , Cinética , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Células RAW 264.7 , Receptores Depuradores/química , Receptores Depuradores/metabolismo , Albúmina Sérica Bovina/metabolismo , Propiedades de Superficie
12.
Phytomedicine ; 80: 153382, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33113506

RESUMEN

BACKGROUND: Although gastroprotective drugs have been used for peptic ulcer disease prevention and treatment, side effects have been observed. Finding a safe and effective treatment strategy is important. PURPOSE: Edible Trichodesma khasianum (T. khasianum) Clarke leaves are considered to protect against peptic ulcers. However, scientific evidence of this effect of T. khasianum Clarke leaves remains limited. STUDY DESIGN/METHODS: In this study, we aimed to evaluate the effect of T. khasianum Clarke leaves on ethanol-induced gastric injury and gut microbiota using RAW 264.7 cells, RGM-1 cells, and BALB/c mice, respectively. RESULT: The rosmarinic acid was identified as the major component of T. khasianum Clarke leaves extracted by 80% ethanol (80EETC). The results showed that 80EETC suppressed inflammatory mediator protein levels in LPS-induced RAW 264.7 cells. Additionally, heat shock protein expression, antiapoptotic ability, and wound healing migration capability were increased by 80EETC pretreatment in RGM-1 cells with the ethanol-induced injury. Remarkably, pretreatment with 80EETC (150 mg/kg b.w.) promoted gastric mucosal healing by decreasing oxidative stress, inflammatory response, proapoptotic protein expression, and gastric mucosa damage in ethanol-induced gastric injury in mice. Crucially, no liver or kidney toxicities were observed by 80EETC oral gavage. Moreover, 80EETC increased gut microbiota diversity and short-chain fatty acid production. CONCLUSION: Our results illustrated the remarkable gastroprotective effect by 80EETC treatment in vitro and in vivo. These findings are the first to demonstrate the powerful protective effect of T. khasianum Clarke leaves against gastric mucosal injury development.


Asunto(s)
Boraginaceae/química , Cinamatos/farmacología , Depsidos/farmacología , Mucosa Gástrica/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Administración Oral , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/metabolismo , Cinamatos/análisis , Depsidos/análisis , Etanol/toxicidad , Ácidos Grasos Volátiles/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Úlcera Péptica/prevención & control , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Hojas de la Planta/química , Sustancias Protectoras/química , Células RAW 264.7
13.
Phytomedicine ; 80: 153397, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33130475

RESUMEN

BACKGROUND: The fruit of Zanthoxylum piperitum (ZP) is an herbal medicine as well as a spice agent in Asia to treat carminative, stomachic, anthelmintic and degenerative diseases. Z. piperitum was reported to have anti-oxidant, anti-inflammatory, anti-osteoarthritic and osteosarcoma proliferation-control effects. PURPOSE AND STUDY DESIGN: This study was conducted to determine the anti-osteoporotic effects and mechanisms of action of ZP. METHODS: Female ICR mice underwent ovariectomies (OVX) and were orally administered ZP at 1, 10 and 100 mg/kg for 6 weeks. The femoral and tibial bones were assessed by dual-energy X-ray absorptiometry and histology to analyze the bone mineral density (BMD) and the number of osteoclasts. Raw 264.7 cells were stimulated by 100 ng/ml receptor activator of nuclear factor-κB ligand (RANKL) for 7 days in the presence of ZP. RANKL-induced signaling molecules were analyzed in osteoclasts. RESULTS: The levels of femoral and tibial BMD were significantly increased by ZP administration. Serum biomarkers such as osteocalcin, calcium, alkaline phosphatase and bone-specific alkaline phosphatase concentrations were markedly recovered to normal levels in ZP-treated osteoporotic mice. In addition, the number of osteoclasts in the head, trochanter and body of the femur was obviously decreased in the ZP treatment groups. Moreover, ZP treated-cells showed a reduction in the number of TRAP-positive multinuclear cells in RANKL-stimulated Raw 264.7 cells. ZP decreased the RANKL-activated NFATc1 and c-fos, transcription factors of osteoclast formation. The nuclear translocation of NF-κB and phosphorylation of ERK42/44 were inhibited by the ZP treatment in RANKL-induced osteoclasts. CONCLUSION: Collectively, ZP exerts its inhibitory effect against bone resorption by regulating RANKL-mediated c-fos/NFATc1/NF-κB in osteoclast. ZP may prove to be a therapeutic agent for osteoporosis.


Asunto(s)
Osteoclastos/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Extractos Vegetales/farmacología , Zanthoxylum/química , Animales , Densidad Ósea/efectos de los fármacos , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Femenino , Ratones , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteoporosis/etiología , Osteoporosis/metabolismo , Ovariectomía/efectos adversos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ligando RANK/metabolismo , Células RAW 264.7
14.
Phytomedicine ; 80: 153400, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33157413

RESUMEN

BACKGROUND: Vascular Endothelial Growth Factors (VEGFs) are a group of growth factor in regulating development and maintenance of blood capillary. The VEGF family members include VEGF-A, placenta growth factor (PGF), VEGF-B, VEGF-C and VEGF-D. VEGF receptor activation leads to multiple complex signaling pathways, particularly in inducing angiogenesis. Besides, VEGF is produced by macrophages and T cells, which is playing roles in inflammation. In macrophages, VEGF receptor-3 (VEGFR-3) and its ligand VEGF-C are known to attenuate the release of pro-inflammatory cytokines. METHODS: Immunoprecipitation and molecular docking assays showed the binding interaction of kaempferol-3-O-rutinoside and VEGF-C. Western blotting and qRT-PCR methods were applied to explore the potentiating effect of kaempferol-3-O-rutinoside in VEGF-C-mediated expressions of proteins and genes in endothelial cells and LPS-induced macrophages. Enzyme-linked immunosorbent assay (ELISA) was employed to reveal the release of proinflammatory cytokines in LPS-induced macrophages. Immunofluorescence assay was performed to determine the effect of kaempferol-3-O-rutinoside in regulating nuclear translocation of NF-κB p65 subunit in the VEGF-C-treated cultures. In addition, Transwell® motility assay was applied to detect the ability of cell migration after drug treatment in LPS-induced macrophages. RESULTS: We identified kaempferol-3-O-rutinoside, a flavonoid commonly found in vegetable and fruit, was able to act on cultured macrophages in inhibiting inflammatory response, and the inhibition was mediated by its specific binding to VEGF-C. The kaempferol-3-O-rutinoside-bound VEGF-C showed high potency to trigger the receptor activation. In LPS-treated cultured macrophages, applied kaempferol-3-O-rutinoside potentiated inhibitory effects of exogenous applied VEGF-C on the secretions of pro-inflammatory cytokines, i.e. IL-6 and TNF-α, as well as expressions of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). This inhibition was in parallel to transcription and translocation of NF-κB. Moreover, the binding of kaempferol-3-O-rutinoside with VEGF-C suppressed the LPS-induced migration of macrophage. CONCLUSION: Taken together, our results suggested the pharmacological roles of kaempferol-3-O-rutinoside in VEGF-C-mediated anti-inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Quempferoles/metabolismo , Quempferoles/farmacología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Quempferoles/química , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7
15.
Metabolism ; 114: 154404, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069810

RESUMEN

BACKGROUND: Recent studies have considered the obesity-related lipid environment as the potential cause for M1 macrophage polarization in type 2 diabetes. However, the specific regulatory mechanism is still unclear. Here, we investigated the role and molecular mechanism of histone methyltransferases G9a in lipids-induced M1 macrophage polarization in type 2 diabetes. METHODS: We used saturated fatty acid palmitate to induce macrophage polarization, and performed real-time PCR, western blot, flow cytometry and CHIP assay to study the function and molecular mechanism of G9a. Additionally, we isolated the peripheral blood mononuclear cells (PBMCs) from 187 patients with type 2 diabetes and 68 healthy individuals, and analyzed the expression level of G9a. RESULTS: The palmitate treatment induced the macrophage M1 polarization, and decreased the expression of G9a. The deficiency of G9a could promote the palmitate-induced M1 macrophage polarization, whereas, over-expressing G9a notably suppressed this process. Meanwhile, we observed the regulatory role of G9a on the ER stress which could contribute to M1 macrophage. Furthermore, we identified the fatty acid transport protein CD36 as the potential target of G9a. Dependent on the methyltransferase activity, G9a could negatively regulate the expression of CD36 induced by palmitate. The CD36 inhibitor SSO could significantly attenuate the regulatory effect of G9a on M1 macrophage polarization and ER stress. Importantly, G9a was decreased, and suppressed CD36 and M1 macrophage genes in the PBMCs from individuals with type 2 diabetes. CONCLUSIONS: Our studies demonstrate that G9a plays critical roles in lipid-induced M1 macrophage polarization via negatively regulating CD36.


Asunto(s)
Antígenos CD36/metabolismo , Polaridad Celular/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Histona Metiltransferasas/metabolismo , Macrófagos/metabolismo , Animales , Polaridad Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Ácido Palmítico/farmacología , Células RAW 264.7
16.
Food Chem ; 339: 128159, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152898

RESUMEN

During production in Chinese baijiu fermentation process, huge amounts of the by-product vinasse are generated and generally utilized as low-value animal feed. We applied alkaline extraction in combination with ultrasonication to recover vinasse proteins, which were then hydrolyzed by complex protease Corolase PP for 8 h to obtain peptide fractions (VPH-1, -2, -3) displaying high DPPH radical scavenging activity. VPH-3 (<3 kDa) separated by ultrafiltration had EC50 values lower than those of VPH-1 and -2 for reactive oxygen species (ROS) and reactive nitrogen species (RNS) radicals, and significantly inhibited production of NO and pro-inflammatory cytokines in LPS-stimulated RAW264.7 macrophage cells. Active peptides and their amino acid sequences were identified by LC-MS/MS analysis, and five synthesized peptides (particularly KLPDHPKLPK and VDVPVKVPYS) displayed strong anti-inflammatory activity at concentration 0.25 mg/mL. These findings will be useful in future commercial development of baijiu vinasse, including application as a new source of bioactive peptides.


Asunto(s)
Bebidas Alcohólicas , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Péptidos/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antioxidantes/química , Cromatografía Liquida , Evaluación Preclínica de Medicamentos , Hidrólisis , Ratones , Péptidos/análisis , Péptidos/química , Proteínas de Plantas/análisis , Proteínas de Plantas/farmacología , Hidrolisados de Proteína/análisis , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Células RAW 264.7 , Especies Reactivas de Oxígeno , Espectrometría de Masas en Tándem
17.
Phytochemistry ; 183: 112630, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33378718

RESUMEN

Nine undescribed sesquiterpenes, which include five guaiane and four humulene-type, were isolated from the agarwood of Aquilaria malaccensis. The structures of these undescribed sesquiterpenes were elucidated by spectroscopic methods including UV, HRESI-MS, 1D and 2D-NMR, ECD, and X-ray diffraction (Cu Kα). The isolated compounds were tested for their inhibitory effect against LPS-induced NO production in RAW 264.7 cells. In particular, one sesquiterpene (1α,7α-dihydroxy-8oxo-4αH,5αH-guaia-9(10),11(13)-dien-12-oate) showed significant inhibition of NO production in LPS-stimulated macrophage RAW 264.7 cells with an IC50 value of 18.8 µM.


Asunto(s)
Sesquiterpenos , Thymelaeaceae , Animales , Antiinflamatorios/farmacología , Ratones , Estructura Molecular , Células RAW 264.7 , Sesquiterpenos/farmacología
18.
Gene ; 771: 145340, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33333224

RESUMEN

Diabetic patients are always at a higher risk of ischemic diseases like coronary artery diseases. One such ischemic carotid artery disease is Moyamoya disease (MMD) associated with diabetes Type I and II, but the causality was unclear. Ring Finger Protein 213 (RNF213) is the major susceptible gene for MMD. To understand the association between diabetes mellitus and MMD we chose the major players from both of the anomalies: insulin and RNF213. But before establishing the role of RNF213 in the insulin-regulating pathway we had to understand the involvement of RNF213 within different biological systems. For this, we have adopted a preliminary computational approach to find the prominent interactions of RNF213. Our first objective was to construct an interactome for RNF213. We have analyzed several curated databases and adapted a list of RNF213 interacting partners to develop its interactome. Then to understand the involvement of this interactome in biological functions we have analyzed major biological pathways, biological processes, and prominent clusters related to this interactome through a computational approach. Then to develop a pathway that might give clues for RNF213 involvement in the insulin regulatory pathway we have validated the intercluster and intracluster predictions and identified a regulatory pathway for RNF213. RNF213 interactome was observed to be involved in adaptive immunity with 4 major clusters; one of the clusters involved TNFα. The immune system involves several pathways, and therefore at this point, we have chosen an event-based strategy to obtain an explicit target. Immunity is mediated by pro-inflammatory cytokines like TNFα. TNFα-mediated inflammation, obesity, and insulin resistance are associated. Therefore we chose to explore the role of RNF213 in TNFα-mediated inflammation in macrophages and inflammation-mediated insulin-resistance in adipocytes. We have observed an enhancement of RNF213 gene expression by LPS mediated pro-inflammatory stimuli and suppression by PPARγ-mediated anti-inflammatory, insulin-sensitizing stimuli in macrophages, and also in adipocytes. Administration of the pro-inflammatory cytokine TNFα was able to impede the reduction in RNF213 expression during adipogenesis and this effect was observed to be mediated by PTP1B. Inactivation of PTP1B abolished RNF213 expression which in turn enhanced the adipogenesis process through enhanced PPARγ. Constitutive expression of RNF213 suppressed the adipocyte differentiation by the inhibition of PPARγ. We could show the regulation of RNF213 by TNFα/PTP1B pathway and PPARγ. The constitutive expression of RNF213 during adipogenesis appears to be an adipostatic measure that obese patients acquire to inhibit further adipogenesis. This is verified in silico by analyzing the gene expression data obtained from the Gene Expression Omnibus database, which showed a higher expression of RNF213 in adipose tissue samples of obese people. Overall this study gives new insights into the TNFα-mediated pathway in adipogenesis and suggests the role of RNF213 in adipogenesis via this pathway.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Enfermedad de Moyamoya/metabolismo , PPAR gamma/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células 3T3-L1 , Adenosina Trifosfatasas/genética , Adipogénesis , Animales , Biología Computacional/métodos , Humanos , Inflamación/genética , Lipopolisacáridos/efectos adversos , Ratones , Enfermedad de Moyamoya/genética , Obesidad/genética , Obesidad/metabolismo , Mapas de Interacción de Proteínas , Células RAW 264.7 , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina-Proteína Ligasas/genética
19.
Food Chem ; 340: 127931, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32871358

RESUMEN

Thinned peach is abundant in polyphenols, and has been shown to exhibit various bioactivities. In this study, we evaluated the underlying immunomodulatory activity of polyphenol extracts of thinned peach (PETP) via the NF-κB and Nrf2 signaling pathways in RAW264.7 macrophages. The results demonstrated that the PETP efficiently activated the nuclear translocation of NF-κB and Nrf2, as well as downstream cytokines (IL-1ß, IL-6, TNF-α and IFN-γ), SOD activity and ROS levels in RAW264.7 cells. Specifically, the PETP of natural drying and hot air drying exhibited less efficacy than that of freeze drying in NF-κB pathway. Interestingly, the PETP of hot air drying at 50 °C was more effective than freeze-dried PETP in activating Nrf2 nuclear translocation. Additionally, 50 µg/mL PETP enhanced immune responses, whereas 800 µg/mL PETP inhibited inflammatory development in macrophages. These findings indicated that different PETP affected the immunomodulation effects differently, which associated with the drying methods and incubation concentrations.


Asunto(s)
Desecación/métodos , Factores Inmunológicos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Polifenoles/farmacología , Prunus persica/química , Animales , Citocinas/metabolismo , Liofilización , Factores Inmunológicos/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Polifenoles/química , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
20.
Food Chem ; 340: 128123, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010645

RESUMEN

Six commercial red sorghum varieties (Tong Za 117, 141, 142 and 143, Chi Za 109 and 101) were investigated for their triacylglycerol (TAG) profiles, soluble and bound phenolics, and radical scavenging and anti-inflammatory activities. A total of 21 TAGs were identified in red sorghum oils for the first time. Total phenolic (TPC) and flavonoid contents (TFC) in the soluble or bound phenolic fractions differed among red sorghums. Significant correlation among TPC, TFC and DPPH radical scavenging activities was observed in both fractions. Except for caffeic acid, most of phenolic acids in red sorghums are in the bound form. Soluble 3-deoxyanthocyanidins contents (2.12-57.14 µg/g) were significantly higher than those of bound forms (0.01-0.18 µg/g) regardless of sorghum varieties and types of 3-deoxyanthocyanidins. Moreover, the stronger anti-inflammatory capacity of soluble phenolic fraction in Tong Za 117 correlated with its higher TPC, TFC and radical scavenging activity than those of its bound counterpart.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Depuradores de Radicales Libres/farmacología , Sorghum/química , Triglicéridos/análisis , Triglicéridos/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antioxidantes/química , Ácidos Cafeicos/análisis , Ácidos Cafeicos/química , Diterpenos/análisis , Flavonoides/análisis , Depuradores de Radicales Libres/química , Hidrólisis , Hidroxibenzoatos/análisis , Hidroxibenzoatos/química , Ratones , Fenoles , Extractos Vegetales/química , Aceites Vegetales/análisis , Aceites Vegetales/química , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA