Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.439
Filtrar
1.
BMC Plant Biol ; 22(1): 17, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986803

RESUMEN

BACKGROUND: The elemental defense hypothesis states a new defensive strategy that hyperaccumulators defense against herbivores or pathogens attacks by accumulating heavy metals. Brassica juncea has an excellent ability of cadmium (Cd) accumulation. However, the elemental defense effect and its regulation mechanism in B. juncea remain unclear. RESULTS: In this study, we profiled the elemental defense effect and the molecular regulatory mechanism in Cd-accumulated B. juncea after Alternaria brassicicola infection. B. juncea treated with 180 mg Kg- 1 DW CdCl2 2.5H2O exhibited obvious elemental defense effect after 72 h of infection with A. brassicicola. The expression of some defense-related genes including BjNPR1, BjPR12, BjPR2, and stress-related miRNAs (miR156, miR397, miR398a, miR398b/c, miR408, miR395a, miR395b, miR396a, and miR396b) were remarkably elevated during elemental defense in B. juncea. CONCLUSIONS: The results indicate that Cd-accumulated B. juncea may defend against pathogens by coordinating salicylic acid (SA) and jasmonic acid (JA) mediated systemic acquired resistance (SAR) and elemental defense in a synergistic joint effect. Furthermore, the expression of miRNAs related to heavy metal stress response and disease resistance may regulate the balance between pathogen defense and heavy metal stress-responsive in B. juncea. The findings provide experimental evidence for the elemental defense hypothesis in plants from the perspectives of phytohormones, defense-related genes, and miRNAs.


Asunto(s)
Alternaria/fisiología , Cadmio/farmacología , Planta de la Mostaza/inmunología , Enfermedades de las Plantas/inmunología , Alternaria/efectos de los fármacos , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/genética , Planta de la Mostaza/microbiología , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta , ARN de Planta/metabolismo , Ácido Salicílico/metabolismo , Esporas Fúngicas/efectos de los fármacos
2.
Clin Lab ; 68(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35023667

RESUMEN

BACKGROUND: In this study, we aimed to show that methylated arginines are the predictors of non-clinical atherosclerotic cardiovascular complications in metal workers exposed to Cd. METHODS: The 80 Cd-exposed metal workers and 80 non-exposed workers (control) included in the study were available for measuring arginine, ADMA, SDMA, and L-NMMA levels. RESULTS: The average urine Cd levels (CdU) found were 1.03 ± 0.8 µg/g creatinine (0.84 ± 0.65 µg/L) ranging from 0.01 to 3.00 µg/g creatinine in the control group and 5.41 ± 5.2 µg/g creatinine (4.29 ± 3.81 µg/L) ranged from 0.11 to 27.2 µg/g creatinine in metal workers. On the other hand, the median ratios of the different groups (exposed and control) were found to be 449.35 and 483.88 for arginine/ADMA and 1.28 and 1.33 SDMA/ADMA, respectively. CONCLUSIONS: The present study was undertaken to investigate the relationship between cadmium exposure and methylated arginines such as ADMA/SDMA/L-NMMA parameters which is important for the early detection atherosclerotic cardiovascular diseases.


Asunto(s)
Aterosclerosis , Cadmio , Arginina , Cadmio/toxicidad , Creatinina , Humanos , omega-N-Metilarginina
3.
Huan Jing Ke Xue ; 43(1): 463-471, 2022 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-34989531

RESUMEN

In order to explore the main controlling factors of Cd enrichment in rice under a geological high background in the Guangxi carbonate rock area, this study was based on rice grain-root soil samples from the carbonate rock areas in the southwest and north of Guangxi. Combined with diffusive gradients in thin films technology (DGT), the relationship between soil pH, organic matter, cation exchange capacity (CEC), DGT-Cd, and ω(rice-Cd)-BCF value in rice grains was analyzed and discussed. The main factors were determined by principal component analysis, and a quantitative model was established. The results showed that the average value of ω(soil-Cd) was 0.975 mg·kg-1, and the over-standard rate was 33.33%; the average value of ω(rice-Cd) was 0.020 mg·kg-1, and the average BCF value was 0.038, and the over-standard rate of Cd content in rice grains was 4.2%. The content of Cd in paddy soil was high, but bioavailability was low in the study area. The BCF value of rice grains in the study area was significantly negatively correlated with soil pH and cation exchange capacity at the level of 0.01, positively correlated with DGT-CD at the level of 0.01, and negatively correlated with organic matter at the level of 0.05. The results of principal component analysis showed that the total amount of Cd in the soil, pH, and DGT-Cd were the main factors affecting the accumulation of Cd in rice in the Guangxi carbonate rock area. Taking the total amount of Cd in the soil, pH, and DGT-Cd as variables, the fitting equation of BCF value of rice grains in the Guangxi carbonate rock region was established, and the determination coefficient of the model was 0.717, which could better predict the content of Cd in rice grains in this region.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Carbonatos , China , Suelo , Contaminantes del Suelo/análisis
4.
Huan Jing Ke Xue ; 43(1): 472-480, 2022 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-34989532

RESUMEN

The bioavailability of heavy metals in soil and the physiological activities of rice determine the accumulation of heavy metals in brown rice. In this study, a field experiment was conducted in a rice paddy in which the total amount of Cd in the soil did not exceed the national standard, whereas the Cd in rice grains was at risk of overreaching in the suburbs of Guangzhou city. The bioavailability of heavy metals in the soil and the physiological barrier of rice were taken as the starting point. The early and late rice yield, brown rice heavy metal content, Cd and Pb enrichment coefficient, total soil heavy metals, soil physical and chemical properties, and soil Cd and Pb species distribution were investigated under the Si-rich amendment (JD), Ca-Mg amendment (YY), Si-rich amendment+flooding irrigation (JD+YS), and Ca-Mg amendment+flooding irrigation (YY+YS) treatments. The results showed that:① the total ω(Cd) in the soil was only 0.13 mg·kg-1 in the CK treatment. However, the average ω(Cd) in the grain of early rice reached up to 0.19 mg·kg-1. The early rice varieties (hybrid rice) had a more vital ability to accumulate Cd and total As in brown rice than that in late rice varieties (conventional rice) but a lower capacity for Pb accumulation. ② JD and YY application alone had no noticeable inhibitory effect on the accumulation of Cd and Pb in brown rice; however, JD+YS and YY+YS treatments significantly inhibited the accumulation of Cd and Pb in brown rice in both early and late rice, especially in the JD+YS treatment, which decreased the Cd and Pb accumulation by 65.8% and 68% for early rice and by 71.43% and 49.15% for late rice, respectively. The primary mechanism of JD+YS was to increase soil pH and maintain a low redox potential to promote soil Cd and Pb to be transformed from acid-soluble to a reduced state and residue state, thus decreasing Cd and Pb to migrate from the soil to the rice. At the same time, it effectively suppressed the absorption and transportation of Cd and Pb by early and late rice via the physiological barrier effect of Si nutrition and the competition for transportation channels between calcium and magnesium ions and cadmium and inhibited the accumulation of Cd and Pb in the brown rice of early and late rice. These results provide a theoretical basis for the exploration and application of the control technologies in the brown rice Cd and Pb resistance and have important practical significance for guiding the safe production in the rice-growing area in South China.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Plomo , Suelo , Contaminantes del Suelo/análisis , Agua , Abastecimiento de Agua
5.
Huan Jing Ke Xue ; 43(1): 481-489, 2022 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-34989533

RESUMEN

In recent years, dust pollution has occurred frequently in spring and haze or fog in autumn and winter. The inhalable particulate matters in the atmosphere, especially PM2.5, loaded in heavy metals such as cadmium, lead, and arsenic, are easily taken up by leafy vegetables and accumulate in the edible parts. It is not clear whether the accumulation of heavy metals in the edible parts of leafy vegetables in greenhouses is also affected by atmospheric deposition. Therefore, a field experiment was conducted to explore characteristics and health risk assessment of cadmium, lead, and arsenic accumulation in leafy vegetables planted in a greenhouse using six types of common leafy vegetables (spinach, leaf lettuce, lettuce, pakchoi, Chrysanthemum coronarium, and fennel) in the Beijing-Tianjin-Hebei region. The results showed that C. coronarium, pakchoi, and spinach are the leafy vegetables with a low accumulation of Cd, Pb, and As, respectively. Fennel is the leafy vegetable with a low accumulation of Cd and Pb. In the greenhouse, Pb concentrations in PM2.5 were 42.6 and 8.4 times of Cd and As, respectively. Moreover, PM2.5-Pb contributed on average 36.5% to the edible parts of six kinds of leafy vegetables, which indicated that the Cd, Pb, and As accumulated in leafy vegetables were mainly derived from the soil. Meanwhile, the concentrations of Cd, Pb, and As in the edible parts of vegetables did not exceed the safety limitations of three heavy metals (GB 2762-2017), and Pb accumulation in leafy vegetables does not pose a health risk to humans. However, Cd in the leafy vegetables could threaten the health of adults and children, except for the intake of fennel. Conversely, As in the C. coronarium could threaten the health of adults and children.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Adulto , Cadmio/análisis , Niño , Humanos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Verduras
6.
Analyst ; 147(2): 247-251, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34931211

RESUMEN

Herein, a novel and facile dual-wavelength ratiometric electrochemiluminescence-resonance energy transfer (ECL-RET) sensor for hydrogen sulfide (H2S) detection was constructed based on the interaction between S2- and Cd2+-doped g-C3N4 nanosheets (NSs). Cd2+-doped g-C3N4 NSs exhibited a strong ECL emission at 435 nm. In the presence of H2S, CdS was formed in situ on g-C3N4 NSs by the adsorption of S2- and Cd2+, generating another ECL emission at 515 nm. Furthermore, the overlapping of the absorption spectrum of the formed CdS and the ECL emission spectrum of g-C3N4 NSs led to a feasible RET, thus quenching the ECL intensity from g-C3N4 at 435 nm. Through an ECL decrease at 435 nm and an increase at 515 nm, a dual-wavelength ratiometric ECL-RET system for H2S was designed. The sensor exhibited a lower detection limit of 0.02 µM with a wide linear range of 0.05-100.0 µM. In addition, the applicability of the method was validated by plasma sample analysis with a linear range of 80.0-106.0%. We believe that such a proposal would provide new insight into advanced dual-wavelength ECL ratiometric assays.


Asunto(s)
Técnicas Biosensibles , Sulfuro de Hidrógeno , Cadmio , Técnicas Electroquímicas , Límite de Detección , Mediciones Luminiscentes
7.
Plant Physiol Biochem ; 171: 49-65, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34971955

RESUMEN

The mechanism of the combined action of potassium (K) and melatonin (Mel) in modulating tolerance to cadmium (Cd) stress in plants is not well understood. The present study reveals the synergistic role of K and Mel in enhancing physiological and biochemical mechanisms of Cd stress tolerance in tomato seedlings. The present findings reveal that seedlings subjected to Cd toxicity exhibited disturbed nutrients balance [nitrogen (N) and potassium (K)], chlorophyll (Chl) biosynthesis [reduced δ-aminolevulinic acid (δ-ALA) content and δ-aminolevulinic acid dehydratase (δ-ALAD) activity], pathway of carbon fixation [reduced fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7- bisphosphatase (SBPase) activity] and photosynthesis process in tomato seedlings. However, exogenous application of K and Mel alone as well as together improved physiological and biochemical mechanisms in tomato seedlings, but their combined application proved best by efficiently improving nutrient uptake, photosynthetic pigments biosynthesis (increased Chl a and b, and Total Chl), carbon flow in Calvin cycle, activity of Rubisco, carbonic anhydrase activity, and accumulation of total soluble carbohydrates content in seedlings under Cd toxicity. Furthermore, the combined treatment of K and Mel suppressed overproduction of reactive oxygen species (hydrogen peroxide and superoxide), Chl degradation [reduced chlorophyllase (Chlase) activity] and methylglyoxal content in Cd-stressed tomato seedlings by upregulating glyoxalase (increased glyoxalase I and glyoxalase II activity) and antioxidant systems (increased ascorbate-glutathione metabolism). Thus, the present study provides stronger evidence that the co-application of K and Mel exhibited synergistic roles in mitigating the toxic effect of Cd stress by increasing glyoxalase and antioxidant systems and also by improving photosynthetic efficiency in tomato seedlings.


Asunto(s)
Lycopersicon esculentum , Melatonina , Antioxidantes/metabolismo , Cadmio/toxicidad , Carbono , Fructosa , Fructosa-Bifosfatasa , Heptosas , Lycopersicon esculentum/metabolismo , Fotosíntesis , Potasio , Plantones/metabolismo
8.
J Environ Sci (China) ; 112: 320-330, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34955215

RESUMEN

Spherical porous materials prepared from the emulsion template used in the water treatment have displayed a vast prospect, as the high surface area, abundant porous structure, convenient operation and excellent adsorption performance. But the tedious fabrication process, high consumption of organic solvent and surfactant limited the application widely. Herein, a facile and eco-friendly spherical porous adsorbent (SPA) is fabricated from the green surfactant-free (corn oil)-in-water Pickering medium internal phase emulsions (Pickering MIPEs) via the convenient ion crosslinking procedure. The Pickering MIPEs synergistically stabilized with the semi-coke (SC), which is the natural particle produced from the shale oil distillation, and sodium alginate (SA) has excellent storage and anti-coalescence stability. The as-prepared porous adsorbent possessed the abundant pore structure, which provided favorable conditions for effective mass transfer in adsorption, and could be tuned by varying the SA dosage. The saturation adsorption capacities of Pb(II) and Cd(II) can be achieved with 460.54 and 278.77 mg/g within 45 min at 25°C, respectively. Overall, this study supplied a viable and eco-friendly route for fabricating the spherical porous adsorbent with a tunable porous structure for heavy metal ion wastewater.


Asunto(s)
Cadmio , Purificación del Agua , Emulsiones , Plomo , Porosidad
9.
J Environ Sci (China) ; 111: 141-152, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34949344

RESUMEN

The scientific application of stabilized materials has been considered an effective method for the in situ remediation of Cd-contaminated soil. This study aimed to investigate the persistence of the effect of a combined amendment of limestone and sepiolite (LS) on soil Cd availability and accumulation in rice grown in a mildly Cd-contaminated paddy field (0.45 mg/kg of Cd) over three consecutive rice seasons. 1125-4500 kg/ha of LS was applied to the soil before the first rice planting season and 562.5-2250 kg/ha of LS was supplemented before the third rice planting season. The application of LS (1125-4500 kg/ha) increased the soil pH by 0.44-1.09, 0.18-0.53, and 0.42-0.68 in the first, second, and third season, respectively, and decreased the soil acid-extractable Cd content by 18.2-36.4%, 17.7-33.5%, and 9.6-17.6%. LS application significantly decreased the Cd contents in the rice tissues. The application of 4500 kg/ha of LS decreased the Cd content in brown rice to below the National Food Limit Standard of 0.2 mg/kg (GB 2762-2017) in the three consecutive rice seasons. However, the effect of LS on the soil-rice system was significantly weakened in the third season. The supplementary application of 562.5-2250 kg/ha of LS further decreased the Cd content in brown rice by 26.1-56.5% and decreased the health risk index by 23.7-43.8%. Therefore, it was recommended to apply 4500 kg/ha of LS in the first season and to supplement 2250 kg/ha of LS in the third season to effectively guarantee the clean production of rice in three consecutive rice seasons.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Estaciones del Año , Suelo , Contaminantes del Suelo/análisis
10.
Environ Pollut ; 294: 118659, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896222

RESUMEN

The experiment was conducted to investigate the effects of Cadmium (Cd) on growth performance, blood biochemical parameters, oxidative stress, hepatocyte apoptosis and autophagy of weaned piglets. A total of 12 healthy weaned piglets were randomly assigned to the control and the Cd group, which were fed with a basal diet and the basal diet supplemented with 15 ± 0.242 mg/kg CdCl2 for 30 d, respectively. Our results demonstrated that Cd significantly decreased final body weight, average daily feed intake (ADFI), average daily gain (ADG) and increased feed-to-gain (F/G) ratio (P < 0.05). For blood biochemical parameters, Cd treatment significantly decreased the red blood cell (RBC), hemoglobin (HGB), hematocrit (HCT), total protein, albumin, copper content and iron content (P < 0.05). In addition, liver injury was observed in the Cd-exposed group. Our results also demonstrated that Cd exposure contributed to the production of ROS, activated the AMPK/PPAR-γ/NF-κB pathway (increasing the expressions of P-AMPK/AMPK, NF-κB, I-κB-ß, COX-2, and iNOS, decreasing the expressions of PPAR-γ and I-κB-α), finally induced autophagy (increasing the expressions of Beclin-1, the ratio of LC3-II/LC3-I and p62), and apoptosis (increasing the expressions of Bax, Bak, Caspase-9, and Caspase-3, decreasing the expression of Bcl-2). Overall, these findings revealed the vital role of AMPK/PPAR-γ/NF-κB pathway in Cd-induced liver apoptosis and autophagy, which provided deeper insights into a better understanding of Cd-induced hepatotoxicity.


Asunto(s)
Cadmio , FN-kappa B , Proteínas Quinasas Activadas por AMP , Animales , Apoptosis , Autofagia , Cadmio/toxicidad , Hígado , PPAR gamma , Especies Reactivas de Oxígeno , Porcinos
11.
Environ Res ; 204(Pt A): 111916, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34428450

RESUMEN

Management of basic natural resources and the spent industrial and domestic streams to provide a sustainable safe environment for healthy living is a magnum challenge to scientists and environmentalists. The present remedial approach to the wastewater focuses on recovering pure water for reuse and converting the contaminants into a solid matrix for permanent land disposal. However, the ground water aquifers, over a long period slowly leach the contaminants consequently polluting the ground water. Synthetic adsorbents, mainly consisting of polymeric resins, chelating agents, etc. are efficient and have high specificity, but ultimate disposal is a challenge as most of these materials are non-biodegradable. In this context, it is felt appropriate to review the utility of adsorbents based on natural green materials such as agricultural waste and restricted to few model contaminants: phenols, and heavy metals chromium(VI), and cadmium(II) in view of the vast amount of literature available. The article discusses the features of the agricultural waste material-based adsorbents including the mechanism. It is inferred that agricultural waste materials are some of the common renewable sources available across the globe and can be used as sustainable adsorbents. A discussion on challenges for industrial scale implementation and integration with advanced technologies like magnetic-based approaches and nanotechnology to improve the removal efficiency is included for future prospects.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cadmio , Cromo/análisis , Fenoles , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
12.
J Environ Sci (China) ; 115: 294-307, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969457

RESUMEN

Silicon (Si) has been shown to alleviate Cd stress in rice. Here, we investigated the beneficial effects of foliar Si in an indica rice Huanghuazhan (HHZ). Our results showed that foliar Si increases the dry weight and decreases Cd translocation in Cd-exposed rice at the grain-filling stage only, implying that the filling stage is critical for foliar Si to reduce Cd accumulation. We also investigated the transcriptomics in flag leaves (FLs), spikelets (SPs), and node Is (NIs) of Cd-exposed HHZ after foliar Si application at the filling stage. Importantly, the gene expression profiles associated with the Si-mediated alleviation of Cd stress were tissue specific, while shared pathways were mediated by Si in Cd-exposed rice tissues. Furthermore, after the Si treatment of Cd-exposed rice, the ATP-binding cassette (ABC)-transporters were mostly upregulated in FL and SP, while the bivalent cation transporters were mostly downregulated in FL and NI, possibly helping to reduce Cd accumulation. The genes associated with essential nutrient transporters, carbohydrate and secondary metabolite biosynthesis, and cytochrome oxidase activity were mostly upregulated in Cd-exposed FL and SP, which may help to alleviate oxidative stress and improve plant growth under Cd exposure. Interestingly, genes responsible for signal transduction were negatively regulated in FL, but positively regulated in SP, by foliar Si. Our results provide transcriptomic evidence that foliar Si plays an active role in alleviating the effects of Cd exposure in rice. In particular, foliar Si may alter the expression pattern of genes associated with transport, biosynthesis and metabolism, and oxidation reduction.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Cadmio/toxicidad , Oryza/genética , Silicio , Contaminantes del Suelo/análisis , Transcriptoma
13.
J Environ Sci (China) ; 115: 383-391, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969466

RESUMEN

The combination of intercropping and phytoremediation in the remediation of cadmium contaminated soil is an emerging model in recent years, but the results of previous studies are inconsistent. In the field experiment, eggplant was intercropped with hyperaccumulator Sedum alfredii Hance (inoculated or not inoculated with endophytic bacteria) to study the effects of intercropping on vegetable safety production, phytoremediation efficiency of hyperaccumulator and variation of soil available nutrients. The results showed that the intercropping treatment had a negative effect on the growth of eggplant and Sedum, but endophyte SaMR12 alleviated the inhibition of intercropping on plant growth. Intercropping treatment increases the Cd concentration in edible part of eggplant to 1.34 mg/kg compared with eggplant monoculture (1.19 mg/kg). While the application of SaMR12 reduces the Cd concentration of eggplant fruit to 0.95 mg/kg and significantly promotes the Cd uptake by Sedum. What's more surprising is that compared with eggplant monocropping, the content of soil available nitrogen, phosphorus and potassium in the treatment of intercropping with inoculated Sedum increased significantly. And according to the correlation analysis of various indexes of plants and soil, the Cd content of eggplant is negatively correlated with the available phosphorus and potassium in the soil, while the Cd content of Sedum is positively correlated with it, which suggested that the application of phosphorus and potassium fertilizers in this experimental site was beneficial to reduce Cd content in eggplant and improve Cd phytoextraction of Sedum. Therefore, in the daily production of moderately Cd-contaminated soil, intercropping eggplant with Sedum inoculated with endophytic bacteria is an excellent Phytoextraction Coupled with Agro-safe-production (PCA) pattern.


Asunto(s)
Sedum , Contaminantes del Suelo , Solanum melongena , Bacterias , Biodegradación Ambiental , Cadmio/análisis , Suelo , Contaminantes del Suelo/análisis , Verduras
14.
J Hazard Mater ; 423(Pt B): 127122, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34509743

RESUMEN

The harmless treatment of heavy metal-enriched hyperaccumulator biomass is the main barrier to the industrialization of phytoremediation. Hydrothermal conversion of Sedum alfredii using different solvents (i.e ·H2O and HCl) at 210-300 â„ƒ was performed to investigate the behaviors of Cd and Zn, and the characteristics and potential application of the derived hydrochars were determined. Low temperature and HCl addition favored the removal of Cd/Zn from the solid phase. The highest removal efficiencies of Cd (95.0%) and Zn (89.3%) were achieved at 210 â„ƒ with the presence of HCl. The yield, pH, ash content, element concentration, functional groups, and crystalline minerals of the derived hydrochar were influenced by the reaction temperature and addition of HCl. The leaching risk of Cd and Zn was significantly reduced by hydrothermal conversion. The addition of HCl facilitated the immobilization of Zn, while it enhanced the mobility of Cd. Moreover, the hydrochar derived at 210 â„ƒ showed increased sorption capacity towards Cu, and the addition of HCl greatly improved the energy density of hydrochar. These results suggest that HCl-mediated hydrothermal conversion could be a promising technique to achieve the separation of Cd and Zn from hyperaccumulator biomass as well as the production of value-added hydrochar.


Asunto(s)
Metales Pesados , Sedum , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Zinc/análisis
15.
J Hazard Mater ; 423(Pt B): 126993, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34530269

RESUMEN

Nickel nanoparticles (NiNPs) supported on activated multi-walled carbon nanotubes (MWCNTs) were used as an adsorbent applied towards Pb(II), As(V) and Cd(II) remediation from industrial wastewater. The result revealed the hydrophilic surface of MWCNTs-KOH was enhanced with the incorporation of NiNPs enabling higher surface area, functional groups and pore distribution. Comparatively, the removal of Pb(II), As(V) and Cd(II) on the various adsorbents was reported as NiNPs (58.6 ± 4.1, 46.8 ± 3.7 and 40.5 ± 2.5%), MWCNTs-KOH (68.4 ± 5.0, 65.5 ± 4.2 and 50.7 ± 3.4%) and MWCNTs-KOH@NiNPs (91.2 ± 8.7, 88.5 ± 6.5 and 80.6 ± 5.8%). Using MWCNTs-KOH@NiNPs, the maximum adsorption capacities of 481.0, 440.9 and 415.8 mg/g were obtained for Pb(II), As(V) and Cd(II), respectively. The experimental data were best suited to the Langmuir isotherm and pseudo-second order kinetic model. The fitness of experimental data to the kinetic models in a fixed-bed showed better fitness to Thomas model. The mechanism of metal ion adsorption onto MWCNTs-KOH@NiNPs show a proposed electrostatic attraction, surface adsorption, ion exchange, and pore diffusion due to the incorporated NiNPs. The nanocomposite was highly efficient for 8 adsorption cycles. The results of this study indicate that the synthesized nanocomposite is highly active with capacity for extended use in wastewater treatment.


Asunto(s)
Arsénico , Nanopartículas , Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Cadmio , Cinética , Plomo , Níquel , Aguas Residuales , Contaminantes Químicos del Agua/análisis
16.
J Hazard Mater ; 423(Pt B): 127115, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34537635

RESUMEN

Lipids are the structural constituents of cell membranes and play crucial roles in plant adaptation to abiotic stresses. The aim of this study was to use glycerolipidomic and transcriptomic to analyze the changes in lipids metabolism induced by cadmium (Cd) exposure in wheat. The results indicated that Cd stress did not decrease the concentrations of monogalactosyldiacyglycerol (MGDG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and phosphatidic acid at 6 h, but decreased digalactosyldoacylglycerol (DGDG), MGDG, PC, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and LPC concentrations in wheat root at 24 h. Although the concentrations of highly abundant glycerolipids PC and PE were decreased, the ratios of PC/PE increased thus contributing to wheat adaptation to Cd stress. Cd did not reduce the extent of total lipid unsaturation due to the unchanged concentrations of high abundance species of C36:4, C34:2, C34:3 and C36:6 at 6 h, indicative of their roles in resisting Cd stress. The correlation analysis revealed the glycerolipids species experiencing co-metabolism under Cd stress, which is driven by the activated expression of genes related to glycerolipid metabolism, desaturation and oxylipin synthesis. This study gives insights into the changes of glycerolipids induced by Cd and the roles in wheat adaptation to Cd stress.


Asunto(s)
Cadmio , Triticum , Cadmio/toxicidad , Fosfatidilcolinas , Estrés Fisiológico , Transcriptoma , Triticum/genética
17.
J Hazard Mater ; 423(Pt B): 127132, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34537652

RESUMEN

The abuse of antibiotics has triggered the rise of drug-resistance bacteria, which has seriously threatened public health globally. As a result, carrying out efficient and accurate antibiotic and bacteria identification are quite significant but challenge. Herein, an unprecedented Cd-MOF-based sensor, [CdL]n [1, H2L = 4-(2-methyl-1H-benzo[d]imidazol-1-yl) isophthalic acid] with multiple fluorescence response behaviours towards antibiotics and bacteria was developed. Single-crystal X-ray diffraction revealed that 1 is a mesomeric 2D bilayer, which is comprised of two opposite chiral mono-layers, each assembled by left-handed or right-handed helixes. More interestingly, 1 represented multiplex detection capability towards antibiotics and bacteria through two detection behaviors: toward nitro-antibiotics and chlortetracycline (CTC) via fluorescent quenching, while toward Staphylococcus albus (S. albus) via fluorescent enhancement. Remarkably, 1 showed a low limit of detection (LOD, 47 CFU/mL) accompanied with specificity in the detection of S. albus compared to other bacteria, such as Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. In addition, the LOD could reach to ppm level for nitro-antibiotics and CTC. Moreover, the practical application of 1 was further reinforced through the detection of nitro-antibiotics and CTC, as well as S. albus in fetal calf serum and river water.


Asunto(s)
Antibacterianos , Cadmio , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Staphylococcus epidermidis
18.
J Hazard Mater ; 423(Pt B): 127137, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34560486

RESUMEN

Most natural polymers exhibit limited functional groups, which is not favourable for the adsorption of various ions and their utilisation. To overcome this drawback, a novel in-situ-doped nano-calcium carbonate (CaCO3) chitin hydrogel was synthesised as an efficient adsorbent for Cu (II) and Cd (II) ions. Scanning electron microscopy and Brunauer-Emmett-Teller results revealed that the synthesised CaCO3/chitin hydrogel exhibited loose macropores and mesopores. Subsequently, Fourier transform infrared, Raman, and X-ray diffraction characterisation characterisation proved that chitin was successfully doped with nano-CaCO3. The mechanical properties of CaCO3/chitin hydrogel were superior to those of the unmodified chitin hydrogel and could efficiently adsorb Cu (II) and Cd (II) ions in water. The effect of pH, initial concentration, adsorbent dosage, and temperature was assessed to determine the adsorption properties of the hydrogel. Under suitable experimental conditions, the maximum adsorption rate of the CaCO3/chitin hydrogel was approximately 96%. The time-dependent adsorption kinetics followed a quasi-second order model, and the adsorption process followed the Langmuir model. The maximum adsorption capacities of Cu (II) and Cd (II) according to the Langmuir curve were 194.61 and 191.58 mg/g, respectively. Compared with the binary competitive system, the material exhibited a specific selectivity to the adsorption of Cu (II). X-ray photoelectron spectroscopy (XPS) revealed that nitrogen and oxygen atoms were involved in chelation with the metal ions. The successful compounding of calcium carbonate nanoparticles provided more active adsorption sites for the gel. The novel material exhibited excellent adsorption effects on Cu (II) and Cd (II) ions when applied to a water sample. Thus, the novel material exhibits excellent potential for application. The Cu (II) and Cd (II)ion removal efficiencies after five successive adsorption cycles were higher than 90%, which indicated that the composite material exhibited excellent stability and reproducibility.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Adsorción , Carbonato de Calcio , Quitina , Cobre , Hidrogeles , Concentración de Iones de Hidrógeno , Iones , Cinética , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis
19.
Clin Nucl Med ; 47(1): 14-20, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874345

RESUMEN

PURPOSE: This study aimed to compare 123I-FP-CIT SPECT imaging obtained from a 360° cadmium-zinc-telluride (CZT) camera with different focus configurations and from a conventional Anger camera. METHODS: This prospective study (NCT03980418) included patients referred to 123I-FP-CIT SPECT imaging who consecutively underwent a 30-minute acquisition on a conventional camera immediately followed by two 15-minute acquisitions on the 360°-CZT camera with, respectively, striatum and brain focus and reconstruction parameters to give equivalent contrast ratios, albeit with higher spatial resolution for the CZT camera. Tomographic count sensitivities were calculated. The images were analyzed through visual, according to 5 independent physicians, and automatic semiquantitative analyses. RESULTS: Ninety-two patients were included in this study. The 360°-CZT camera tomographic count sensitivities showed increases of +25% and +18% for striatum and brain focus, respectively, as well as significantly higher quality scores (P ≤ 0.04) in comparison to the conventional camera. The κ scores of consensual visual analysis were 0.80 and 0.85, and correlation coefficients of semiquantitative analysis for striatum uptakes were 0.75 and 0.76 for the comparisons of images obtained with the 2 cameras, with striatum and brain focus, respectively, for the CZT camera. Advanced age was the single predictor of discordant cases (10/92 [11%]) showing systematically abnormal scans with the conventional camera, potentially as a result of partial volume effect. CONCLUSIONS: Irrespective of focus mode, this high-sensitivity 360°-CZT camera provides concordant 123I-FP-CIT SPECT results when compared with a conventional camera, but with shorter acquisition times, higher image quality, and few discordant cases possibly explained by its higher spatial resolution.


Asunto(s)
Imagen de Perfusión Miocárdica , Tomografía Computarizada de Emisión de Fotón Único , Cadmio , Humanos , Análisis por Apareamiento , Estudios Prospectivos , Telurio , Tropanos , Zinc
20.
J Hazard Mater ; 424(Pt A): 127361, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879560

RESUMEN

The excessive accumulation of cadmium (Cd) in rice grains is highly determined by the expression of specific genes in different tissues. Targeted gene regulation in rice plants is a long-standing challenge. Herein, a new strategy for regulating target gene expression responsible for Cd absorption and translocation in roots and leaves was developed by complexing Fe(II) with organic matter (i.e., Fe-OM) with the optimal mass ratio of 1. Results showed that Fe-OM noticeably reduced the grain Cd content from 0.48 ± 0.04 mg kg-1 to 0.25 ± 0.03 mg kg-1, exhibiting a significantly higher capacity in mitigating Cd accumulation in grains than Fe(II) or OM alone. The translocation factor (TF) was reduced from 0.14 (control) to 0.08 by Fe-FA from root to grain, which could be due to the preferential Cd translocation to leaves (i.e., TFroot to leaves was enhanced four times by the complex of Fe(II) with fulvic acid (Fe-FA). Further gene analysis revealed that the cooperative effects of OsNramp1 and OsNramp5 downregulation in roots/stems and OsLCT1 upregulation in leaves contributed to the mitigation of Cd in grains. This work provides a new strategy to regulating target gene expression in specific tissues to alleviate Cd accumulation in grains.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Grano Comestible/química , Expresión Génica , Oryza/genética , Hojas de la Planta/química , Hojas de la Planta/genética , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...