Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181.949
Filtrar
1.
Chemosphere ; 262: 128404, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33182127

RESUMEN

BACKGROUND: Reduced growth velocity before birth increases the risk of adverse health outcomes in adult life. However, until recently, there has been a lack of studies demonstrating the impact of prenatal PM2.5 exposure on fetal growth velocity. METHODS: The current study was embedded in a previous cohort built between January 1, 2014, and April 30, 2015, in Shanghai First Maternity and Infant Hospital, China, in 6129 eligible singleton pregnancies. The PM2.5 concentration was estimated by an inverse distance weighted method according to the residential addresses of the participants. Repeated fetal biometry measurements, including head circumference (HC), abdominal circumference (AC), femur length (FL), and biparietal diameter (BPD), were measured through ultrasound between 14 and 41 gestational weeks. A principal component analysis through conditional expectation for sparse longitudinal data was used to estimate the corresponding velocities. RESULTS: A total of 22782 ultrasound measurements were conducted among 6129 participants with a median of 2 and a maximum of 9 measurements. With each 10 µg/m3 increase in cumulative PM2.5 exposure, the velocity of HC, AC FL and BPD decreased by 0.12 mm/week, 0.17 mm/week, 0.02 mm/week and 0.02 mm/week, respectively, on average. The results of the Generalized Functional Concurrent Model showed that the velocity decreased significantly with PM2.5 exposure between 22 and 32 gestational weeks, which might be the potential sensitive exposure window. CONCLUSIONS: There are negative associations between prenatal exposure to PM2.5 and fetal growth velocity, and the late second trimester and early third trimester might be the potential sensitive window.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición Materna , Material Particulado/toxicidad , Efectos Tardíos de la Exposición Prenatal , Adulto , China , Estudios de Cohortes , Femenino , Desarrollo Fetal , Edad Gestacional , Humanos , Masculino , Material Particulado/análisis , Embarazo , Segundo Trimestre del Embarazo , Tercer Trimestre del Embarazo , Ultrasonografía Prenatal/métodos
2.
Sci Total Environ ; 753: 142158, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33207432

RESUMEN

Increasing threats to freshwater biodiversity from environmental changes and human activities highlight the need to understand the linkages between biological communities and their environment. Species richness has dominated our view of biodiversity patterns for over a century, but it is increasingly recognized that a trait-based, causal view of biodiversity may be more meaningful than species richness or taxonomic composition. This rationale has led to the exploration of functional diversity (FD) indices to quantify variation in traits that mediate species' contributions to ecosystem processes. In the present study, we quantified FD of fish communities in two large shallow lakes in China with different disturbances level using long-term monitoring data sets. Random-Forests regression was applied to examine how changes in FD were related to natural and human-related environmental variables. Fish stocking, water quality, climate, and hydrological changes were identified as the most important predictors of FD long-term trends. However, the major drivers of FD differed between two lakes, i.e., human activities explaining a greater proportion of FD variance in Lake Taihu, whereas physicochemical environmental factors prominently explained FD variance in Lake Hulun. Moreover, FD indices appeared more sensitive than species richness to multiple disturbances, suggesting that functional traits can be used to detect ecosystem alterations. This study offers insight into how FD can improve our understanding of the associations between fish communities and environmental changes of relevance also for lake and fisheries management.


Asunto(s)
Ecosistema , Lagos , Animales , Biodiversidad , China , Peces , Humanos
3.
Sci Total Environ ; 753: 141774, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33207436

RESUMEN

Atmospheric fine particulate matter (PM2.5) causes severe haze in China and is regarded as a threat to human health. The health effects of PM2.5 vary location by location due to the variation in size distribution, chemical composition, and sources. In this study, the cytotoxicity effect, oxidative stress, and gene expression regulation of PM2.5 in Chengdu and Chongqing, two typical urban areas in southern China, were evaluated. Urban PM2.5 in summer and winter significantly inhibited cell viability and increased reactive oxygen species (ROS) levels in A549 cells. Notably, PM2.5 in winter exhibited higher cytotoxicity and ROS level than summer. Moreover, in this study, PM2.5 commonly induced cancer-related gene expression such as cell adhesion molecule 1 (PECAM1), interleukin 24 (IL24), and cytochrome P450 (CYP1A1); meanwhile, PM2.5 commonly acted on cancer-related biological functions such as cell-substrate junction, cell-cell junction, and focal adhesion. In particular, PM2.5 in Chengdu in summer had the highest carcinogenic potential among PM2.5 at the two sites in summer and winter. Importantly, cancer-related genes were uniquely targeted by PM2.5, such as epithelial splicing regulatory protein 1 (ESRP1) and membrane-associated ring-CH-type finger 1 (1-Mar) by Chengdu summer PM2.5; collagen type IX alpha 3 chain (COL9A3) by Chengdu winter PM2.5; SH2 domain-containing 1B (SH2D1B) by Chongqing summer PM2.5; and interleukin 1 receptor-like 1 (IL1RL1) and zinc finger protein 42 (ZNF423) by Chongqing winter PM2.5. Meanwhile, important cancer-related biological functions were specially induced by PM2.5, such as cell cycle checkpoint by Chengdu summer PM2.5; macromolecule methylation by Chengdu winter PM2.5; endoplasmic reticulum-Golgi intermediate compartment membrane by Chongqing summer PM2.5; and cellular lipid catabolic process by Chongqing winter PM2.5. Conclusively, in the typical urban areas of southern China, both summer and winter PM2.5 illustrated significant gene regulation effects. This study contributes to evaluating the adverse health effects of PM2.5 in southern China and providing public health suggestions for policymakers.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , China , Monitoreo del Ambiente , Regulación de la Expresión Génica , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , Estaciones del Año , Factores de Transcripción
4.
Sci Total Environ ; 753: 142289, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33207437

RESUMEN

In the fight against the outbreak of COVID-19 in China, we treated some asymptomatic infected individuals. This study aimed to detect pathogens in biological and environmental samples of these asymptomatic infected individuals and analyse their association. Using a cross-sectional study design, we collected biological and environmental samples from 19 patients treated in the isolation ward of Nanjing No.2 Hospital. Biological samples included saliva, pharyngeal swabs, blood, anal swabs, and exhaled breath condensate. Swab samples from the ward environment included inside masks, outside masks, palm swabs, bedside handrails, bedside tables, cell phone screens, toilet cell phone shelves, toilet pads and toilet lids. We also obtained some samples from public areas. We used RT-PCR to detect pathogens and colloidal gold to detect antibodies. As results, 19 asymptomatic infected individuals participated in the survey, with 8 positives for pathogens and 11 positives only for antibodies. Three positive samples were detected from among 96 environmental samples, respectively, from a cell phone surface, a cell phone shelf and a bedside handrail. No positive samples were detected in the exhaled breath condensate in this work. All patients identified pathogens in the environment had positive anal swabs. There was a statistical association between positive anal swabs and positive environmental samples. The association of positive samples from the surrounding of asymptomatically infected patients with positive anal swabs suggested that patients might secrete the virus for a more extended period.


Asunto(s)
Infecciones por Coronavirus , Pandemias , Neumonía Viral , Betacoronavirus , China/epidemiología , Estudios Transversales , Humanos
5.
Sci Total Environ ; 753: 141980, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33207456

RESUMEN

The algae biological pump (ABP) effect for hydrophobic organic contaminants in deep oligotrophic lakes and oceans has been well studied. Suspended particulate matter (SPM) plays a connective role in ABP processes. However, little is known about the impacts of ABP effect on the occurrence, source apportionment and toxicity of SPM-bound polycyclic aromatic hydrocarbons (PAHs) in a typically shallow eutrophic lake under strong anthropogenic emissions of PAHs. In this study, we study this gap knowledge on the eutrophic Lake Chaohu, China. SPM-bound PAHs in Lake Chaohu were controlled by anthropogenic emissions in all seasons. Apparent ABP effect only occurred in spring and summer in lake area. Algae blooms in spring and summer significantly increased 46.5% ± 7.9% (mean ± standard deviation) and 19.8% ± 2.4% of Σ21 SPM-bound PAHs, and greatly enhanced their toxicity (1.98 ± 0.46 times in spring and 32.9% ± 4.2% in summer). Therefore, there need more attentions focusing on the coupling effect of persistent toxic substances such as PAHs and harmful algae blooms in aquatic environment for sustainable development. The apparent ABP effect had little influence on their source apportionment. However, it may cause a regime shift for the source apportionment on a short-term scale. Further study could pay more attentions on in-depth and short-term studies on ABP effect.


Asunto(s)
Proteínas de Transporte de Membrana , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos/análisis , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
Sci Total Environ ; 751: 142268, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33181977

RESUMEN

Noble scallop Chlamys nobilis is an important marine bivalve that has been extensively cultured in the south coast of China since the 1980s. Unfortunately, since the late 1990s, the farmed scallops often suffered from regional mass mortality, which results in enormous economic losses to farmers and industries. In 2017, another mass mortality event occurred in Nan'ao Island, Shantou, China. In this study, the cause of C. nobilis mass mortality in 2017 was first investigated in the field, and then validated in a laboratory experiment. In the field, three sampling sites were selected according to the scallop mortality rate: Hunter Bay (90% mortality), Baisha Bay (67% mortality) and Longhai (6% mortality). Meanwhile, environmental parameters (temperature, salinity, DO, pH and chlorophyll a) of each site were also measured in situ. Then, water and scallop samples were collected randomly for the analysis of phytoplankton diversity and algal toxin activity using 18S rDNA and PP2A inhibition assay, respectively. In laboratory, healthy scallops were challenged with Karenia mikimotoi (1 × 103 cells/mL) for 30 h. The field results showed that no significant difference in those environmental parameters existed among the three sites, but the relative abundance of K. mikimotoi in seawater and scallops' intestines in Hunter Bay and Baisha Bay was significantly higher than that in Longhai, and sick scallops contained significantly higher algal toxin activity than healthy ones. Laboratory results revealed that challenged scallops with K. mikimotoi showed significantly higher mortality rate and algal toxin activity than healthy ones, and low density of K. mikimotoi (1 × 103 cells/mL) was sufficient to cause >50% scallops' mortality within 26 h. This study provides the first evidence that low K. mikimotoi cell density can cause massive mortality in C. nobilis, and provides useful information as guide to prevent scallop mass mortality in the future.


Asunto(s)
Carotenoides , Pectinidae , Animales , Carotenoides/análisis , China/epidemiología , Clorofila A , Islas
7.
Sci Total Environ ; 751: 142338, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182017

RESUMEN

Bald patches (BPs) are known to accelerate and simultaneously mitigate the process of desertification. However, the mechanisms of these two synchronous actions are little studied in high desert and cold systems; and the incidence of BPs on alpine meadows degradation in Qinghai-Tibetan Plateau (QTP) of China is still unavailable. This study first aims to investigate the soil properties and the erodibility of the system BPs-VPs at the Beiluhe basin in QTP. Then, we adopted dye tracer and HYDRUS-2/3D methods to interpret the water infiltration patterns from point scale to slope scale. The results show that the mattic epipedon layer on the top soil (0-20 cm) of VPs directly reduced the impact of raindrops on alpine meadow; and the adhesion of root system in VPs prevented the soil particles from stripping and washing away by runoff. The soil particles in BPs were easily eroded by rainfall, lowering the ground level of BPs relative to the ground level of VPs. The two patches therefore alternated to form an erosion interface where marginal meadow was likely detached by raindrops, and washed away through runoff. The saturated hydraulic conductivity (Ks) of surface soil (0-10 cm) was 124% higher in BPs than the VPs. Thereby, BPs caused a high spatial variation of infiltration and runoff in QTP. Moreover, this difference in Ks between the two patches conducted to a lateral flow from BPs to VPs, and to soil layers with different water contents. These findings highlight that the water flow features can potentially disturb the processes of freezing-thawing, frost heaves, and thaw slump; and accelerate the alpine meadow degradation. Therefore, land cover such as crop and vegetation should be applied over the bare soil surface to prevent the degradation of alpine meadow.


Asunto(s)
Pradera , Suelo , China , Tibet , Agua
8.
Sci Total Environ ; 750: 141404, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182165

RESUMEN

The toxic effect of high-dose of short-chain chlorinated paraffins (SCCPs) has been extensively studied, however the possible health risks induced by SCCPs at low-dose remain largely unknown. In this study, a comprehensive toxicology analysis of SCCPs was conducted with the exposure levels from the environmental dose to the Lowest Observed Adverse Effect Level (LOAEL) of 100 mg/kg/day. General toxicology analysis revealed inconspicuous toxicity of the environmental dose of SCCPs, high dose SCCP exposure inhibited the growth rate and increased the liver weight of rat. Metabolomics analysis indicated that SCCP-induced toxicity was triggered at environmentally relevant doses. First, inhibition of energy metabolism was observed with the decrease in blood glucose and the dysfunction of TCA cycle, which may have contributed to lower body weight gain in rats exposed to a high dose of SCCPs. Second, the increase of free fatty acids indicated the acceleration of lipid metabolism to compensate for the energy deficiency caused by hypoglycemia. Lipid oxidative metabolism inevitably leads to oxidative stress and stimulates the up-regulation of antioxidant metabolites such as GSH and GSSH. The up-regulation of polyunsaturated fatty acids (PUFAs) and phospholipids composed of arachidonic acid indicates the occurrence of inflammation. Dysfunction of lipid metabolism can be an indicator of SCCP-induced liver injury.


Asunto(s)
Hidrocarburos Clorados , Parafina , Animales , China , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Hidrocarburos Clorados/toxicidad , Metabolismo de los Lípidos , Masculino , Metabolómica , Parafina/análisis , Parafina/toxicidad , Ratas , Ratas Sprague-Dawley
9.
Sci Total Environ ; 750: 142183, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182173

RESUMEN

To evaluate the transboundary pollution of organic aerosols from Northeast Asia, a highly time-resolved measurement of organic compounds was performed in March 2019 at Oki Island located in Japan, which is a remote site and less affected by local anthropogenic sources. PM2.5, water-soluble organic carbon (WSOC) concentrations, and WSOC fraction in PM2.5 showed high values on March 22-23 (high-WSOC period (HWSOC)) when the air mass passed through the area where many fire spots were detected in Northeast China. Biomass burning tracers showed higher concentration, especially levoglucosan exceeded 1 µg/m3 during the HWSOC than the low-WSOC period (LWSOC). Notably, high time-resolved measurements of biomass burning tracers and back trajectory analysis during HWSOC revealed a difference in the variation of lignin pyrolyzed compounds and anhydrous sugars on 22 and 23 March. The air mass passed to different areas in Northeast China in which fire spots were detected, such as the eastern area on the 22nd and the western area on the 23rd. Almost-organic compounds also showed high concentration and strong correlations with levoglucosan and sulfate during HWSOC. Moreover, low-carbon dicarboxylic acids (e.g., adipic acid) and secondary products from anthropogenic volatile organic compounds (e.g., 2,3-dihydroxy-4-oxopentanoic, phthalic, 5-nitrosalicylic acids), also showed a strong correlation with sulfate ions during the HWSOC and LWSOC, respectively. These higher concentrations and strong correlations with levoglucosan and sulfate during the HWSOC propose that their generation could be enhanced by biomass burning. The ratios of organics (e.g., levoglucosan/mannnosan, pinic/3-methylbutane-1,2,3-tricarboxylic acids) suggest that the high concentrations of PM2.5 and WSOC observed during the HWSOC were caused by aged organic aerosols that originated from the combustion of herbaceous plants transported from Northeast China. Our findings indicate that biomass combustion in Northeast China could significantly affect the chemical compositions and the characterization of organic aerosols in downwind regions of Northeast China.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , China , Monitoreo del Ambiente , Islas , Japón , Material Particulado/análisis , Estaciones del Año
10.
Sci Total Environ ; 750: 142323, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182196

RESUMEN

Controlling anthropogenic mercury emissions is an ongoing effort and the effect of atmospheric mercury mitigation is expected to be impacted by accelerating climate change. The lockdown measures to restrict the spread of Coronavirus Disease 2019 (COVID-19) and the following unfavorable meteorology in Beijing provided a natural experiment to examine how air mercury responds to strict control measures when the climate becomes humid and warm. Based on a high-time resolution emission inventory and generalized additive model, we found that air mercury concentration responded almost linearly to the changes in mercury emissions when excluding the impact of other factors. Existing pollution control and additional lockdown measures reduced mercury emissions by 16.7 and 12.5 kg/d during lockdown, respectively, which correspondingly reduced the concentrations of atmospheric mercury by 0.10 and 0.07 ng/m3. Emission reductions from cement clinker production contributed to the largest decrease in atmospheric mercury, implying potential mitigation effects in this sector since it is currently the number one emitter in China. However, changes in meteorology raised atmospheric mercury by 0.41 ng/m3. The increases in relative humidity (9.5%) and temperature (1.2 °C) significantly offset the effect of emission reduction by 0.17 and 0.09 ng/m3, respectively, which highlights the challenge of air mercury control in humid and warm weather and the significance of understanding mercury behavior in the atmosphere and at atmospheric interfaces, especially the impact from relative humidity.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infecciones por Coronavirus , Coronavirus , Mercurio , Pandemias , Neumonía Viral , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , Betacoronavirus , China , Monitoreo del Ambiente , Humanos , Mercurio/análisis , Meteorología
11.
Sci Total Environ ; 750: 142347, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182206

RESUMEN

BACKGROUND: Short-term exposure to PM2.5 has been widely associated with human morbidity and mortality. However, most up-to-date research was conducted at a daily timescale, neglecting the intra-day variations in both exposure and outcome. As an important fraction in PM2.5, PM1 has not been investigated about the very acute effects within a few hours. METHODS: Hourly data for size-specific PMs (i.e., PM1, PM2.5, and PM10), all-cause emergency department (ED) visits and meteorological factors were collected from Guangzhou, China, 2015-2016. A time-stratified case-crossover design with conditional logistic regression analysis was performed to evaluate the hourly association between size-specific PMs and ED visits, adjusting for hourly mean temperature and relative humidity. Subgroup analyses stratified by age, sex and season were conducted to identify potential effect modifiers. RESULTS: A total of 292,743 cases of ED visits were included. The effects of size-specific PMs exhibited highly similar lag patterns, wherein estimated odds ratio (OR) experienced a slight rise from lag 0-3 to 4-6 h and subsequently attenuated to null along with the extension of lag periods. In comparison with PM2.5 and PM10, PM1 induced slightly larger effects on ED visits. At lag 0-3 h, for instance, ED visits increased by 1.49% (95% confidence interval: 1.18-1.79%), 1.39% (1.12-1.66%) and 1.18% (0.97-1.40%) associated with a 10-µg/m3 rise, respectively, in PM1, PM2.5 and PM10. We have detected a significant effect modification by season, with larger PM1-associated OR during the cold months (1.017, 1.013 to 1.021) compared with the warm months (1.010, 1.005 to 1.015). CONCLUSIONS: Our study provided brand-new evidence regarding the adverse impact of PM1 exposure on human health within several hours. PM-associated effects were significantly more potent during the cold months. These findings may aid health policy-makers in establishing hourly air quality standards and optimizing the allocation of emergency medical resources.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Estudios Cruzados , Servicio de Urgencia en Hospital , Exposición a Riesgos Ambientales/análisis , Humanos , Material Particulado/análisis , Material Particulado/toxicidad
12.
Sci Total Environ ; 750: 142252, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182220

RESUMEN

The biogeography of active microbial communities and the underlying mechanisms in marine sediments are important in microbial ecology but remain unclear. Here, using qPCR and high-throughput sequencing, we investigated bacterial and archaeal community abundances and activities by quantifying the abundance and expression of the 16S rRNA gene respectively, RNA-derived bacterial and archaeal community biogeography, assembly mechanisms and co-occurrence relationships in surface sediment samples from the Bohai Sea (BS), South Yellow Sea (SYS) and the north East China Sea (NECS) of the eastern Chinese marginal seas. The results revealed a higher heterogeneity of bacterial and archaeal community activities than of abundances and heterogeneous ecological functions among areas reflected by community compositions. Furthermore, clear geographic groups (i.e., the BS, SYS and NECS groups) were observed for all, abundant and rare active bacterial and archaeal communities, accompanied by significant distance-decay patterns. However, the abundant and rare taxa showed inconsistent geographic patterns. More importantly, deterministic processes played a greater role than stochastic processes in active bacterial and archaeal community assembly. The rare taxa had weaker abilities to disperse and/or adapt and more complex ecological processes than the abundant taxa. In addition, this study also showed that intertaxa competition was the dominant interaction between active bacterial and archaeal members, which could greatly contribute to dispersal limitation. Moreover, active bacterial and archaeal co-occurrence patterns showed significant distance-decay patterns, which were consistent with the community compositions.


Asunto(s)
Archaea , Bacterias , Archaea/genética , Bacterias/genética , China , Sedimentos Geológicos , Océanos y Mares , Filogenia , ARN Ribosómico 16S/genética
13.
J Environ Sci (China) ; 99: 143-150, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183691

RESUMEN

Phosphorus is a vital nutrient for algal growth, thus, a better understanding of phosphorus availability is essential to mitigate harmful algal blooms in lakes. Wind waves are a ubiquitous characteristic of lake ecosystems. However, its effects on the cycling of organic phosphorus and its usage by phytoplankton remain poorly elucidated in shallow eutrophic lakes. A mesocosm experiment was carried out to investigate the responses of alkaline phosphatase activity fractions to wind waves in large, shallow, eutrophic Lake Taihu. Results showed that wind-driven waves induced the release of alkaline phosphatase and phosphorus from the sediment, and dramatically enhanced phytoplanktonic alkaline phosphatase activity. However, compared to the calm conditions, bacterial and dissolved alkaline phosphatase activity decreased in wind-wave conditions. Consistently, the gene copies of Microcystis phoX increased but bacterial phoX decreased under wind-wave conditions. The ecological effects of these waves on phosphorus and phytoplankton likely accelerated the biogeochemical cycling of phosphorus and promoted phytoplankton production in Lake Taihu. This study provides an improved current understanding of phosphorus availability and the phosphorus strategies of plankton in shallow, eutrophic lakes.


Asunto(s)
Lagos , Fósforo , Fosfatasa Alcalina , China , Ecosistema , Monitoreo del Ambiente , Eutrofización , Fósforo/análisis , Viento
14.
J Environ Sci (China) ; 99: 160-167, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183693

RESUMEN

The brackish tidal marsh in the Baimaosha area of the Yangtze River Estuary was severely contaminated by 400 tons of heavy crude petroleum from a tanker that sank in December 2012. The spill accident led to severe environmental damage owing to its high toxicity, persistence and wide distribution. Microbial communities play vital roles in petroleum degradation in marsh sediments. Therefore, taxonomic analysis, high-throughput sequencing and 16S rRNA functional prediction were used to analyze the structure and function of microbial communities among uncontaminated (CK), lightly polluted (LP), heavily polluted (HP), and treated (TD) sediments. The bacterial communities responded with increased richness and decreased diversity when exposed to petroleum contamination. The dominant class changed from Deltaproteobacteria to Gammaproteobacteria after petroleum contamination. The phylum Firmicutes increased dramatically in oil-enriched sediment by 75.78%, 346.19% and 267.26% in LP, HP and TD, respectively. One of the suspected oil-degrading genera, Dechloromonas, increased the most in oil-contaminated sediment, by 540.54%, 711.27% and 656.78% in LP, HP and TD, respectively. Spore protease, quinate dehydrogenase (quinone) and glutathione-independent formaldehyde dehydrogenase, three types of identified enzymes, increased enormously with the increasing petroleum concentration. In conclusion, petroleum contamination altered the community composition and microorganism structure, and promoted some bacteria to produce the corresponding degrading enzymes. Additionally, the suspected petroleum-degrading genera should be considered when restoring oil-contaminated sediment.


Asunto(s)
Contaminación por Petróleo , Petróleo , Bacterias/genética , Biodegradación Ambiental , China , Estuarios , Sedimentos Geológicos , Petróleo/análisis , Petróleo/toxicidad , Contaminación por Petróleo/análisis , ARN Ribosómico 16S/genética , Ríos , Humedales
15.
J Environ Sci (China) ; 99: 187-195, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183696

RESUMEN

Periodically hydrologic alterations driven by seasonal change and water storage capacity management strongly modify physicochemical properties and chlorophyll-a (Chl-a) and their interactions in dam-induced lakes. However, the extent and magnitude of these changes still remain unclear. This study aimed to determine the effects of periodically hydrologic alterations on physicochemical variables and Chl-a in the dam-induced urban Hanfeng Lake, upstream of Three Gorges Reservoir. Shifts in Chl-a and 13 physicochemical variables were recorded monthly in the lake from January 2013 to December 2014. Chl-a was neither seasonal nor inter-annual differences while a few physical variables such as flow velocity (V) exhibited significantly seasonal variabilities, and chemical variables like total nitrogen (TN), nitrate-nitrogen (NO3-N), total phosphorus (TP), dissolved silica (DSi) were markedly inter-annual differences. Higher TN:TP (40:1) and lower NO3-N:DSi (0.8:1) relative to balanced stoichiometric ratios suggested changes in composition of phytoplankton communities and potentially increased proportion of diatom in Hanfeng Lake. Chl-a was predicable by combination of dissolved oxygen (DO), TN and DSi in dry season, and by V alone in wet season. During the whole study period, Chl-a was solely negatively correlated with TN:TP, indicating decline in N concentration and increase in P could therefore increase Chl-a. Our results highlight pronounced decoupling of linkages between Chl-a and physicochemical variables affected by periodically hydrologic alterations in dam-induced aquatic systems.


Asunto(s)
Eutrofización , Lagos , China , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis
16.
J Environ Sci (China) ; 99: 196-209, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183697

RESUMEN

The submicron particulate matter (PM1) and fine particulate matter (PM2.5) are very important due to their greater adverse impacts on the natural environment and human health. In this study, the daily PM1 and PM2.5 samples were collected during early summer 2018 at a sub-urban site in the urban-industrial port city of Tianjin, China. The collected samples were analyzed for the carbonaceous fractions, inorganic ions, elemental species, and specific marker sugar species. The chemical characterization of PM1 and PM2.5 was based on their concentrations, compositions, and characteristic ratios (PM1/PM2.5, AE/CE, NO3-/SO42-, OC/EC, SOC/OC, OM/TCA, K+/EC, levoglucosan/K+, V/Cu, and V/Ni). The average concentrations of PM1 and PM2.5 were 32.4 µg/m3 and 53.3 µg/m3, and PM1 constituted 63% of PM2.5 on average. The source apportionment of PM1 and PM2.5 by positive matrix factorization (PMF) model indicated the main sources of secondary aerosols (25% and 34%), biomass burning (17% and 20%), traffic emission (20% and 14%), and coal combustion (17% and 14%). The biomass burning factor involved agricultural fertilization and waste incineration. The biomass burning and primary biogenic contributions were determined by specific marker sugar species. The anthropogenic sources (combustion, secondary particle formation, etc) contributed significantly to PM1 and PM2.5, and the natural sources were more evident in PM2.5. This work significantly contributes to the chemical characterization and source apportionment of PM1 and PM2.5 in near-port cities influenced by the diverse sources.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , China , Ciudades , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
17.
J Environ Sci (China) ; 99: 28-39, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183707

RESUMEN

This study finds out seasonal and monthly variations in Aerosol Optical Depth (AOD) over eastern and western routes of China Pakistan Economic Corridor (CPEC) and the relationship between AOD and meteorological parameters (i.e., temperature, rainfall and wind speed). The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) data was used from the terra satellite for the period of 2000-2016. This study aims to overtake the conventional view of the purpose of using the satellite datasets. This study takes on to the concept that validated satellite data sets rather should be used for the analysis instead of just validation specifically for our study region. Hence, after comparing MODIS AOD with MISR AOD, only MISR AOD dataset is used for further analysis. The results show a decreasing trend of AOD in summer season, a positive relationship between temperature and AOD during winter and spring seasons whereas a positive relationship between wind speed and AOD in winter and spring seasons over eastern and western routes. Periodic analysis of MODIS AOD and MISR AOD depicts May-Aug as the peak period of aerosol concentration over central Pakistan. The inter-annual analysis shows the aerosol trend remained higher during summer season however rainfall shows the washout effect. Eastern route has higher standard deviation and larger values for aerosol prevalence as compared to western route. The trajectory analysis using the HYSPLIT model suggests the bias of air mass trajectory caused deviation in the aerosol trend in the year 2014.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Pakistán
18.
J Environ Sci (China) ; 99: 346-353, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183713

RESUMEN

The strict control measures and social lockdowns initiated to combat COVID-19 epidemic have had a notable impact on air pollutant concentrations. According to observation data obtained from the China National Environmental Monitoring Center, compared to levels in 2019, the average concentration of NO2 in early 2020 during COVID-19 epidemic has decreased by 53%, 50%, and 30% in Wuhan city, Hubei Province (Wuhan excluded), and China (Hubei excluded), respectively. Simultaneously, PM2.5 concentration has decreased by 35%, 29%, and 19% in Wuhan, Hubei (Wuhan excluded), and China (Hubei excluded), respectively. Less significant declines have also been found for SO2 and CO concentrations. We also analyzed the temporal variation and spatial distribution of air pollutant concentrations in China during COVID-19 epidemic. The decreases in PM2.5 and NO2 concentrations showed relatively consistent temporal variation and spatial distribution. These results support control of NOx to further reduce PM2.5 pollution in China. The concurrent decrease in NOx and PM2.5 concentrations resulted in an increase of O3 concentrations across China during COVID-19 epidemic, indicating that coordinated control of other pollutants is needed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Betacoronavirus , China/epidemiología , Ciudades , Monitoreo del Ambiente , Humanos , Dióxido de Nitrógeno/análisis , Material Particulado/análisis
19.
J Environ Sci (China) ; 99: 354-368, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183714

RESUMEN

In this study, we conducted an observation experiment from May 1 to June 30, 2018 in Zhengzhou, a major city in central China, where ground ozone (O3) pollution has become serious in recent years. The concentrations of O3 and its precursors, as well as H2O2 and meteorological data were obtained from the urban site (Yanchang, YC), suburban (Zhengzhou University, ZZU) and background sites (Ganglishuiku, GLSK). Result showed that the rates of O3 concentration exceeded Chinese National Air Quality Standard Grade II (93.3 ppbv) were 59.0%, 52.5%, and 55.7% at the above three sites with good consistency, respectively, indicating that O3 pollution is a regional problem in Zhengzhou. The daily peak O3 appeared at 15:00-16:00, which was opposite to VOCs, NOx, and CO and consistent with H2O2. The exhaustive statistical analysis of meteorological factors and chemical effects on O3 formation at YC was advanced. The high concentration of precursors, high temperature, low relative humidity, and moderately high wind speed together with the wind direction dominated by south and southeast wind contribute to urban O3 episodes in Zhengzhou. O3 formation analysis showed that reactive alkenes such as isoprene and cis-2-butene contributed most to O3 formation. The VOCs/NOx ratio and smog production model were used to determine O3-VOC-NOx sensitivity. The O3 formation in Zhengzhou during early summer was mainly under VOC-limited and transition regions alternately, which implies that the simultaneous emission reduction of alkenes and NOx is effective in reducing O3 pollution in Zhengzhou.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Peróxido de Hidrógeno , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis
20.
J Environ Sci (China) ; 99: 72-79, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183718

RESUMEN

This study encompassed the regular observation of nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in particulate matter (PM) in Shanghai in summer and winter from 2010 to 2018. The results showed that the mean concentrations of Æ©PAHs in summer decreased by 24.7% in 2013 and 18.1% in 2017 but increased by 10.2% in 2015 compared to the data in 2010. However, the mean concentrations of Æ©PAHs in winter decreased by 39.7% from 2010 (12.8 ± 4.55 ng/m3) to 2018 (7.72 ± 3.33 ng/m3), and the mean concentrations of 1-nitropyrene in winter decreased by 79.0% from 2010 (42.3 ± 16.1 pg/m3) to 2018 (8.90 ± 2.09 pg/m3). Correlation analysis with meteorological conditions revealed that the PAH and NPAH concentrations were both influenced by ambient temperature. The diagnostic ratios of PAHs and factor analysis showed that they were mainly affected by traffic emissions with some coal and/or biomass combustion. The ratio of 2-nitrofluoranthene to 2-nitropyrene was near 10, which indicated that the OH radical-initiated reaction was the main pathway leading to their secondary formation. Moreover, backward trajectories revealed different air mass routes in each sampling period, indicating a high possibility of source effects from the northern area in winter in addition to local and surrounding influences. Meanwhile, the mean total benzo[a]pyrene-equivalent concentrations in Shanghai in winter decreased by 50.8% from 2010 (1860 ± 645 pg/m3) to 2018 (916 ± 363 pg/m3). These results indicated the positive effects of the various policies and regulations issued by Chinese authorities.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA