Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.974
Filtrar
1.
Sci Data ; 11(1): 334, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575638

RESUMEN

Accurate mapping and monitoring of tropical forests aboveground biomass (AGB) is crucial to design effective carbon emission reduction strategies and improving our understanding of Earth's carbon cycle. However, existing large-scale maps of tropical forest AGB generated through combinations of Earth Observation (EO) and forest inventory data show markedly divergent estimates, even after accounting for reported uncertainties. To address this, a network of high-quality reference data is needed to calibrate and validate mapping algorithms. This study aims to generate reference AGB datasets using field inventory plots and airborne LiDAR data for eight sites in Central Africa and five sites in South Asia, two regions largely underrepresented in global reference AGB datasets. The study provides access to these reference AGB maps, including uncertainty maps, at 100 m and 40 m spatial resolutions covering a total LiDAR footprint of 1,11,650 ha [ranging from 150 to 40,000 ha at site level]. These maps serve as calibration/validation datasets to improve the accuracy and reliability of AGB mapping for current and upcoming EO missions (viz., GEDI, BIOMASS, and NISAR).


Asunto(s)
Bosques , Árboles , Clima Tropical , África Central , Sur de Asia , Biomasa , Reproducibilidad de los Resultados
2.
Nat Commun ; 15(1): 3158, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605006

RESUMEN

Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests' gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE). The West African aridity gradient consistently shows the highest NPP, CUE, GPP, and autotrophic respiration at a medium-aridity site, Bobiri. Notably, NPP and GPP of the site are the highest yet reported anywhere for intact forests. Widely used data products substantially underestimate productivity when compared to biometric measurements in Amazonia and Africa. Our analysis suggests that the high productivity of the African forests is linked to their large GPP allocation to canopy and semi-deciduous characteristics.


Asunto(s)
Bosques , Árboles , Ciclo del Carbono , Ghana , Carbono , Ecosistema , Clima Tropical
3.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605677

RESUMEN

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Asunto(s)
Ecosistema , Clima Tropical , Bosques , Árboles , Carbono
4.
Am Nat ; 203(4): 445-457, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38489774

RESUMEN

AbstractExplaining diversity in tropical forests remains a challenge in community ecology. Theory tells us that species differences can stabilize communities by reducing competition, while species similarities can promote diversity by reducing fitness differences and thus prolonging the time to competitive exclusion. Combined, these processes may lead to clustering of species such that species are niche differentiated across clusters and share a niche within each cluster. Here, we characterize this partial niche differentiation in a tropical forest in Panama by measuring spatial clustering of woody plants and relating these clusters to local soil conditions. We find that species were spatially clustered and the clusters were associated with specific concentrations of soil nutrients, reflecting the existence of nutrient niches. Species were almost twice as likely to recruit in their own nutrient niche. A decision tree algorithm showed that local soil conditions correctly predicted the niche of the trees with up to 85% accuracy. Iron, zinc, phosphorus, manganese, and soil pH were among the best predictors of species clusters.


Asunto(s)
Bosques , Clima Tropical , Madera , Ecología , Panamá , Suelo/química
6.
Curr Biol ; 34(6): R251-R254, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38531320

RESUMEN

An analysis of over 1 million old-growth tropical forest trees reveals that ∼2.2% of species comprise 50% of the individuals in Africa, Amazonia, and Southeast Asia, suggesting that the ecological mechanisms underpinning tree community assembly are ubiquitous across the tropics.


Asunto(s)
Árboles , Clima Tropical , África , Brasil , Ecosistema , Bosques
7.
J Hand Surg Asian Pac Vol ; 29(2): 96-103, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494167

RESUMEN

Background: Various studies have examined occlusive dressings in fingertip amputations and reported good outcomes. Occlusive dressing preserves appropriate pH, cell accumulation and moisture for healing, thereby limiting scar formation and deformity. To our knowledge, no study was performed in tropical Asia. This study aims to demonstrate the viability of healing fingertip amputations through secondary intention using an effective dressing technique, even in warm tropical climates. Methods: All patients who presented to our institution with fingertip amputations from 1 July 2020 to 31 July 2022 were analysed retrospectively. Seventeen patients (15 male, 2 female) of mean age 37.2 ± 9.4 years old with 18 injured digits were retrospectively analysed. Twelve (66.7%) were Allen Type III injuries, and one patient required distal phalangeal K-wire fixation. During the patient's final review, static 2-point discrimination, pulp sensation, fingertip contour and nail deformities alongside the last measured range of motion (ROM) of the injured finger was recorded. Treatment duration and days of leave taken were also summed and assessed. Results: Patients were dressed with semi-occlusive dressing for an average of 20.1 ± 6.83 days. The average total duration of dressing is 36.78 ± 18.88 days over an average of 7.18 ± 4.03 dressing visits. Mean duration of follow-up was 108 ± 63.46 days. Good outcome measures in sensation, pulp contour, nail deformity and ROM similar to existing literature were reported. Conclusions: Occlusive dressing remains a viable and feasible treatment option for fingertip amputation even in a tropical climate. While this simple treatment method may require more effort from patient, wound healing was attained after 36.8 ± 18.9 days of dressing. Level of Evidence: Level IV (Therapeutic).


Asunto(s)
Traumatismos de los Dedos , Enfermedades de la Uña , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Clima Tropical , Estudios Retrospectivos , Intención , Traumatismos de los Dedos/cirugía , Cicatrización de Heridas
8.
Vet Med Sci ; 10(3): e1416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38504607

RESUMEN

Climate change has emerged as a significant occurrence that adversely affects broiler production, especially in tropical climates. Broiler chickens, bred for rapid growth and high meat production, rely heavily on optimal environmental conditions to achieve their genetic potential. However, climate change disrupts these conditions and poses numerous challenges for broiler production. One of the primary impacts of climate change on broiler production is the decreased ability of birds to attain their genetic potential for faster growth. Broilers are bred to possess specific genetic traits that enable them to grow rapidly and efficiently convert feed into meat. However, in tropical climates affected by climate change, the consequent rise in daily temperatures, increased humidity and altered precipitation patterns create an unfavourable environment for broilers. These conditions impede their growth and development, preventing them from reaching their maximum genetic influence, which is crucial for achieving desirable production outcomes. Furthermore, climate change exacerbates the existing challenges faced by broiler production systems. Higher feed costs impact the industry's economic viability and limit the availability of quality nutrition for the birds, further hampering their growth potential. In addition to feed scarcity, climate change also predisposes broiler chickens to thermal stress. This review collates existing information on climate change and its impact on broiler production, including nutrition, immune function, health and disease susceptibility. It also summarizes the challenges of broiler production under hot and humid climate conditions with different approaches to ameliorating the effects of harsh climatic conditions in poultry.


Asunto(s)
Pollos , Cambio Climático , Animales , Clima Tropical , Aves de Corral , Carne
9.
Mol Biol Rep ; 51(1): 447, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536522

RESUMEN

BACKGROUND: Methane (CH4) emissions from rumen fermentation are a significant contributor to global warming. Cattle with high CH4 emissions tend to exhibit lower efficiency in milk and meat production, as CH4 production represents a loss of the gross energy ingested by the animal. The objective of this study was to investigate the taxonomic and functional composition of the rumen microbiome associated with methane yield phenotype in dairy cattle raised in tropical areas. METHODS AND RESULTS: Twenty-two Girolando (F1 Holstein x Gyr) heifers were classified based on their methane yield (g CH4 / kg dry matter intake (DMI)) as High CH4 yield and Low CH4 yield. Rumen contents were collected and analyzed using amplicon sequencing targeting the 16 and 18S rRNA genes. The diversity indexes showed no differences for the rumen microbiota associated with the high and low methane yield groups. However, the sparse partial least squares discriminant analysis (sPLS-DA) revealed different taxonomic profiles of prokaryotes related to High and Low CH4, but no difference was found for protozoa. The predicted functional profile of both prokaryotes and protozoa differed between High- and Low CH4 groups. CONCLUSIONS: Our results suggest differences in rumen microbial composition between CH4 yield groups, with specific microorganisms being strongly associated with the Low (e.g. Veillonellaceae_UCG - 001) and High (e.g., Entodinium) CH4 groups. Additionally, specific microbial functions were found to be differentially more abundant in the Low CH4 group, such as K19341, as opposed to the High CH4 group, where K05352 was more prevalent. This study reinforces that identifying the key functional niches within the rumen is vital to understanding the ecological interplay that drives methane production.


Asunto(s)
Dieta , Microbiota , Bovinos , Animales , Femenino , Metano/metabolismo , Rumen/metabolismo , Clima Tropical , Leche , Microbiota/genética , Lactancia , Fermentación
10.
PLoS One ; 19(3): e0300114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38466663

RESUMEN

This study addresses the understudied dynamics of mortality and recruitment in Tropical Mountain forests, critical determinants of forest structural processes and biomass turnover. We examine how these demographic processes change with elevation and varying degrees of forest recovery by utilizing two forest censuses (2015 and 2019) from 16 plots (0.36 ha) across a 600-3500 m asl elevation gradient in the Ecuadorian Andes. Employing multivariate PCA analyses, we characterize successional forest dynamics and explore relationships between demographic rates, elevation, and indicators of forest recovery using standard linear regression and generalized additive models (GAMs). Contrary to our hypothesis, mortality exhibits a unimodal response, peaking at mid-elevations, with no significant relationship to above-ground biomass productivity (AGBp). In our successional forests, dominance by fast-growing species alters expected patterns, leading to increased mortality rates and AGBp, particularly at low-mid elevations. Forest recovery emerges as a significant driver of mortality and the sole predictor of recruitment, especially across different recovery statuses. Although forest recovery doesn't impact mortality rates, it elucidates the identity of declining species in forests with varying recovery degrees. Our findings underscore that while forest recovery does not alter mortality rates, it provides critical insights into understanding which species are affected under varying recovery conditions. Recruitment, primarily driven by successional dynamics, exhibits higher rates in sites with less recovery. Furthermore, we demonstrate the utility of forest structure indicators, such as above-ground biomass, in inferring successional dynamics when the time since the last disturbance is unknown. The study emphasizes the importance of considering disturbances in comprehending the intricate interplay between the environment and forest dynamics in secondary forests.


Asunto(s)
Árboles , Clima Tropical , Bosques , Biomasa , Modelos Lineales
11.
Glob Chang Biol ; 30(3): e17209, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469989

RESUMEN

Active restoration through silvicultural treatments (enrichment planting, cutting climbers and liberation thinning) is considered an important intervention in logged forests. However, its ability to enhance regeneration is key for long-term recovery of logged forests, which remains poorly understood, particularly for the production and survival of seedlings in subsequent generations. To understand the long-term impacts of logging and restoration we tracked the diversity, survival and traits of seedlings that germinated immediately after a mast fruiting in North Borneo in unlogged and logged forests 30-35 years after logging. We monitored 5119 seedlings from germination for ~1.5 years across a mixed landscape of unlogged forests (ULs), naturally regenerating logged forests (NR) and actively restored logged forests via rehabilitative silvicultural treatments (AR), 15-27 years after restoration. We measured 14 leaf, root and biomass allocation traits on 399 seedlings from 15 species. Soon after fruiting, UL and AR forests had higher seedling densities than NR forest, but survival was the lowest in AR forests in the first 6 months. Community composition differed among forest types; AR and NR forests had lower species richness and lower evenness than UL forests by 5-6 months post-mast but did not differ between them. Differences in community composition altered community-weighted mean trait values across forest types, with higher root biomass allocation in NR relative to UL forest. Traits influenced mortality ~3 months post-mast, with more acquisitive traits and relative aboveground investment favoured in AR forests relative to UL forests. Our findings of reduced seedling survival and diversity suggest long time lags in post-logging recruitment, particularly for some taxa. Active restoration of logged forests recovers initial seedling production, but elevated mortality in AR forests lowers the efficacy of active restoration to enhance recruitment or diversity of seedling communities. This suggests current active restoration practices may fail to overcome barriers to regeneration in logged forests, which may drive long-term changes in future forest plant communities.


A restauração ativa por meio de tratamentos silviculturais (plantio de enriquecimento, corte de trepadeiras e desbaste) é considerada uma intervenção importante em florestas com exploração de madeira. No entanto, sua capacidade de melhorar a regeneração, essencial para a recuperação de longo prazo das florestas exploradas, permanece pouco compreendida, especialmente no que diz respeito à produção e sobrevivência de mudas em gerações subsequentes. Para compreender os impactos de longo prazo da exploração madeireira e da restauração, acompanhamos a diversidade, sobrevivência e características de plântulas que germinaram imediatamente após uma frutificação em massa no norte de Bornéu, em florestas com e sem exploração de madeira, 30-35 anos após o fim da extração. Monitoramos 5119 mudas desde a germinação por aproximadamente 1,5 anos em uma paisagem mista de florestas não exploradas (UL), florestas exploradas em regeneração natural (NR) e florestas exploradas restauradas ativamente por meio de tratamentos silviculturais de reabilitação (AR), 15-27 anos após a restauração. Medimos 14 traços funcionais de folhas, raízes e alocação de biomassa em 399 mudas de 15 espécies. Logo após a frutificação, as florestas UL e AR apresentaram densidades de mudas mais altas do que as florestas NR, mas a sobrevivência foi mais baixa nas florestas AR nos primeiros seis meses. A composição da comunidade diferiu entre os tipos de floresta; as florestas AR e NR teviram menor riqueza de espécies e menor equidade do que as florestas UL 5-6 meses após a frutificação, mas não diferiram entre si. As diferenças na composição da comunidade alteraram os valores de média ponderada pela comunidade das características entre os tipos de floresta com maior alocação de biomassa radicular nas florestas NR em relação às florestas UL. As características influenciaram a mortalidade aproximadamente 3 meses após a frutificação, com traços mais aquisitivos maior investimento em biomassa relativa acima do solo nas florestas AR em relação às florestas UL. Nossas descobertas de redução na sobrevivência e diversidade de plântulas sugerem que há longos retardos no recrutamento após o fim da exploração de madeira, particularmente para alguns táxons. A restauração ativa de florestas exploradas recupera a produção inicial de plântulas, mas a mortalidade elevada nas florestas AR diminui a eficácia da restauração ativa no melhorio do recrutamento e da diversidade das comunidades de mudas. Isso sugere que as práticas atuais de restauração ativa podem não superar as barreiras à regeneração em florestas exploradas, o que pode levar a mudanças de longo prazo nas comunidades florestais no futuro.


Asunto(s)
Agricultura Forestal , Árboles , Bosques , Plantones , Germinación , Clima Tropical
12.
PLoS One ; 19(3): e0299363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478477

RESUMEN

Global, spatially interpolated climate datasets such as WorldClim and CHELSA, widely used in research, are based on station data, which are rare in tropical mountains. However, such biodiversity hotspots are of high ecological interest and require accurate data. Therefore, the quality of such gridded datasets needs to be assessed. This poses a kind of dilemma, as proving the reliability of these potentially weakly modelled data is usually not possible due to the lack of stations. Using a unique climate dataset with 170 stations, mainly from the montane and alpine zones of sixteen mountains in Tanzania including Kilimanjaro, we show that the accuracy of such datasets is very poor. Not only is the maximum amount of mean annual precipitation drastically underestimated (partly more than 50%), but also the elevation of the precipitation maximum deviates up to 850m. Our results show that, at least in tropical regions, they should be used with greater caution than before.


Asunto(s)
Clima , Tiempo (Meteorología) , Temperatura , Reproducibilidad de los Resultados , Tanzanía , Clima Tropical
13.
Environ Geochem Health ; 46(2): 65, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321197

RESUMEN

Rice-based integrated farming system improves the productivity and profitability by recycling resources efficiently. In the sub-humid tropics, rice production without sufficient nutrient replenishment often leads to soil health and fertility degradation. There has been very limited research on soil health and fertility after adopting a multi-enterprising rice-based integrated farming system (IFS), notably in the rice-fish-livestock and agroforestry system, when compared to a conventional farming system (CS). Therefore, the present study analyzed the dynamics of soil properties, soil bacterial community structure and their possible interaction mechanisms, as well as their effect on regulating soil quality and production in IFS, IFSw (water stagnant area of IFS) and CS. The results indicated that soil nutrient dynamics, bacterial diversity indices (Shannon index, Simpson index, Chao 1, ACE and Fisher index) and system productivity were higher in IFSw and IFS compared to CS. Moreover, relative operational taxonomic units of dominant bacterial genera (Chloroflexi, Acidobacteria, Verrucomicrobia, Planctomycetes, Cyanobacteria, Crenarchaeota and Gemmatimonadetes) were also higher in IFSw and IFS compared to CS. Mean soil quality index (SQI) was highest in IFSw (0.780 ± 0.201) followed by IFS (0.770 ± 0.080) and CS (0.595 ± 0.244). Moreover, rice equivalent yields (REY) and rice yields were well correlated with the higher levels of soil biological indices (SQIBiol) in IFS. Overall, our results revealed that rice-based IFS improved the soil health and fertility and ensuing crop productivity through positive interaction with soil bacterial communities and nutrient stoichiometry leading to agroecosystem sustainability.


Asunto(s)
Oryza , Suelo , Suelo/química , Clima Tropical , Agricultura/métodos , Bacterias , Microbiología del Suelo
14.
Nature ; 627(8002): 116-122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355803

RESUMEN

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Asunto(s)
Biodiversidad , Metabolismo Energético , Cadena Alimentaria , Bosque Lluvioso , Animales , Artrópodos/metabolismo , Bacterias/metabolismo , Aves/metabolismo , Secuestro de Carbono , Heces , Hongos/metabolismo , Indonesia , Oligoquetos/metabolismo , Compuestos Orgánicos/metabolismo , Aceite de Palma , Goma , Suelo/química , Clima Tropical
15.
Anim Reprod Sci ; 262: 107426, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377631

RESUMEN

The reproductive management of the buffalo species still faces several unresolved problems, which directly affect the productivity of the herd, one of them being the presence of repeat breeder females. Given this scenario, this study aimed to verify the developmental competence of oocytes obtained from repeat breeder females and submitted to parthenogenetic activation. In addition, embryo gene expression was compared to normally fertile females. Murrah buffaloes were divided into two groups: repeat breeder (RB, n = 8) and normally fertile or control (CR, n = 7). Cumulus-oocyte complexes (COCs) were aspirated by transvaginal ovum pick-up from estrus synchronized females. The COCs were submitted to IVM for 24 h, and subsequently, the oocytes were activated using ionomycin, followed by 6-DMAP. Afterwards, the presumptive parthenotes were cultured for six or seven days in a microenvironment of 5 % CO2, 5 % O2, and 90 % N2 at 38.5 °C. The expression of OCT4, GLUT1, BCL2 and TFAM genes from blastocysts was evaluated. The overall COCs recovery rate was 70.9 % (190/268). The maturation (57.8 vs 71.1), cleavage (45.2 vs 62.2) and blastocyst (30.1 vs 45.9) rates did not differ (P > 0.05) between RB and CR females, respectively. Similarly, no significant difference (P > 0.05) was observed for the expression of studied genes in both RB and CR females. In conclusion, oocytes obtained from RB were as developmentally competent as those collected from CR females, with similar energy metabolism and in vitro development capacity. Thus, the low fertility rate of repeat breeder buffaloes, when compared to normal cyclic females, must be due to subsequent events to the blastocyst stage.


Asunto(s)
Búfalos , Clima Tropical , Femenino , Animales , Búfalos/genética , Fertilización In Vitro/veterinaria , Oocitos/fisiología , Blastocisto/fisiología , Expresión Génica , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Desarrollo Embrionario/fisiología
16.
New Phytol ; 242(2): 351-371, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38416367

RESUMEN

Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.


Las características de las raíces de los bosques tropicales y las estrategias de adquisición de recursos están subrepresentadas en modelos de vegetación, lo que dificulta la predicción del efecto de cambio de clima para estos ecosistemas ricos en carbono. Los bosques tropicales a menudo tienen combinaciones únicas a nivel mundial de alta biodiversidad taxonómica y funcional, estacionalidad de precipitación, y suelos infértiles, dando lugar a patrones distintos en los rasgos y funciones de las raíces en comparación con los ecosistemas de latitudes más altas. Integramos los avances recientes en nuestra comprensión de la función subterránea de los bosques tropicales en modelos de vegetación, centrándonos en la adquisición de agua y nutrientes. Ofrecemos comparaciones de avances recientes en la comprensión empírica y de modelos de las características de las raíces que representan procesos funcionales importantes en los bosques tropicales. Nos centramos en: (1) estrategias de raíces finas para adquisición de recursos del suelo, (2) acoplamiento y compensaciones entre adquisición del agua y de nutrientes, y (3) vínculos entre funciones sobre tierra y debajo del superficie en bosques tropicales. Sugerimos vías para representar estas comunidades de plantas extremadamente diversas en grupos computacionalmente manejables y ecológicamente significativos en modelos. Los bosques tropicales se están calentando, tienen cambios en los regímenes de lluvias, y tienen una exacerbación de la escasez de nutrientes del suelo causada por el elevado CO2 atmosférico. La representación precisa de las funciones de los bosques tropicales en modelos es crucial para comprender las interacciones de este bioma con el clima.


Asunto(s)
Ecosistema , Raíces de Plantas , Nitrógeno , Bosques , Suelo , Plantas , Agua , Clima Tropical , Árboles
17.
Nat Ecol Evol ; 8(3): 477-488, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332027

RESUMEN

Successful alien species may experience a period of quiescence, known as the lag phase, before becoming invasive and widespread. The existence of lags introduces severe uncertainty in risk analyses of aliens as the present state of species is a poor predictor of future distributions, invasion success and impact. Predicting a species' ability to invade and pose negative impacts requires a quantitative understanding of the commonality and magnitude of lags, environmental factors and mechanisms likely to terminate lag. Using herbarium and climate data, we analysed over 5,700 time series (species × regions) in 3,505 naturalized plant species from nine regions in temperate and tropical climates to quantify lags and test whether there have been shifts in the species' climatic space during the transition from the lag phase to the expansion phase. Lags were identified in 35% of the assessed invasion events. We detected phylogenetic signals for lag phases in temperate climate regions and that annual self-fertilizing species were less likely to experience lags. Where lags existed, they had an average length of 40 years and a maximum of 320 years. Lengthy lags (>100 years) were more likely to occur in perennial plants and less frequent in self-pollinating species. For 98% of the species with a lag phase, the climate spaces sampled during the lag period differed from those in the expansion phase based on the assessment of centroid shifts or degree of climate space overlap. Our results highlight the importance of functional traits for the onset of the expansion phase and suggest that climate discovery may play a role in terminating the lag phase. However, other possibilities, such as sampling issues and climate niche shifts, cannot be ruled out.


Asunto(s)
Cambio Climático , Especies Introducidas , Filogenia , Clima Tropical , Plantas
18.
Nature ; 627(8004): 564-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418889

RESUMEN

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Asunto(s)
Biodiversidad , Bosques , Mapeo Geográfico , Árboles , Modelos Biológicos , Especificidad de la Especie , Árboles/clasificación , Árboles/fisiología , Clima Tropical
19.
Trop Anim Health Prod ; 56(2): 82, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368471

RESUMEN

The aim of this study was to compare the performance, intake, digestibility, ruminal parameters, carcass traits, and the yield of commercial cuts of Santa Ines (SI) and Rabo Largo (RL) breeds fed diets with high or low roughage-to-concentrate ratio (R:C) under a tropical climate. Twenty lambs from each breed were individually housed in covered pens and fed the experimental diets for 58 days. The diets were formulated to meet the growth requirements of lambs with a roughage-to-concentrate ratio of 70:30 and 30:70. Significant interactions of breed × diet for nutrient intake were observed (P < 0.05), with SI lambs fed low R:C diet showing higher intake of dry matter, organic matter, crude protein, and total carbohydrates compared to RL lambs fed the same diet. SI lambs fed high R:C diet had higher intake of neutral detergent fiber than RL lambs (P < 0.05). SI lambs displayed better average daily gain and feed efficiency, regardless of diet (P < 0.05). Carcass traits and gastrointestinal components were influenced by breed and diet (P < 0.05). SI lambs fed low R:C diet showed higher subcutaneous fat thickness and better carcass finishing compared to RL lambs (P < 0.05). SI breed lambs exhibited better growth performance, carcass traits, and gastrointestinal characteristics, even when fed diets with a high roughage-to-concentrate ratio.


Asunto(s)
Digestión , Clima Tropical , Ovinos , Animales , Alimentación Animal/análisis , Oveja Doméstica , Dieta/veterinaria , Fibras de la Dieta/metabolismo
20.
Nature ; 627(8003): 335-339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418873

RESUMEN

The latitudinal diversity gradient (LDG) dominates global patterns of diversity1,2, but the factors that underlie the LDG remain elusive. Here we use a unique global dataset3 to show that vascular plants on oceanic islands exhibit a weakened LDG and explore potential mechanisms for this effect. Our results show that traditional physical drivers of island biogeography4-namely area and isolation-contribute to the difference between island and mainland diversity at a given latitude (that is, the island species deficit), as smaller and more distant islands experience reduced colonization. However, plant species with mutualists are underrepresented on islands, and we find that this plant mutualism filter explains more variation in the island species deficit than abiotic factors. In particular, plant species that require animal pollinators or microbial mutualists such as arbuscular mycorrhizal fungi contribute disproportionately to the island species deficit near the Equator, with contributions decreasing with distance from the Equator. Plant mutualist filters on species richness are particularly strong at low absolute latitudes where mainland richness is highest, weakening the LDG of oceanic islands. These results provide empirical evidence that mutualisms, habitat heterogeneity and dispersal are key to the maintenance of high tropical plant diversity and mediate the biogeographic patterns of plant diversity on Earth.


Asunto(s)
Biodiversidad , Mapeo Geográfico , Islas , Plantas , Simbiosis , Animales , Conjuntos de Datos como Asunto , Micorrizas/fisiología , Plantas/microbiología , Polinización , Clima Tropical , Océanos y Mares , Filogeografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...