Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111.165
Filtrar
3.
Vet Rec ; 190(1): 5, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34994458
4.
Behav Brain Res ; 417: 113630, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34656691

RESUMEN

Social isolation gained discussion momentum due to the COVID-19 pandemic. Whereas many studies address the effects of long-term social isolation in post-weaning and adolescence and for periods ranging from 4 to 12 weeks, little is known about the repercussions of adult long-term social isolation in middle age. Thus, our aim was to investigate how long-term social isolation can influence metabolic, behavioural, and central nervous system-related areas in middle-aged mice. Adult male C57Bl/6 mice (4 months-old) were randomly divided into Social (2 cages, n = 5/cage) and Isolated (10 cages, n = 1/cage) housing groups, totalizing 30 weeks of social isolation, which ended concomitantly with the onset of middle age of mice. At the end of the trial, metabolic parameters, short-term memory, anxiety-like behaviour, and physical activity were assessed. Immunohistochemistry in the hippocampus (ΔFosB, BDNF, and 8OHDG) and hypothalamus (ΔFosB) was also performed. The Isolated group showed impaired memory along with a decrease in hippocampal ΔFosB at dentate gyrus and in BDNF at CA3. Food intake was also affected, but the direction depended on how it was measured in the Social group (individually or in the group) with no alteration in ΔFosB at the hypothalamus. Physical activity parameters increased with chronic isolation, but in the light cycle (inactive phase), with some evidence of anxiety-like behaviour. Future studies should better explore the timepoint at which the alterations found begin. In conclusion, long-term social isolation in adult mice contributes to alterations in feeding, physical activity pattern, and anxiety-like behaviour. Moreover, short-term memory deficit was associated with lower levels of hippocampal ΔFosB and BDNF in middle age.


Asunto(s)
Ansiedad/etiología , COVID-19 , Conducta Alimentaria , Hipocampo/metabolismo , Locomoción , Trastornos de la Memoria/etiología , Aislamiento Social , Factores de Edad , Animales , Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo , COVID-19/prevención & control , Modelos Animales de Enfermedad , Conducta Alimentaria/fisiología , Vivienda para Animales , Hipotálamo/metabolismo , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo
5.
Sci Total Environ ; 805: 150223, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34537710

RESUMEN

Light and noise pollution from human activity are increasing at a dramatic rate. These sensory stimuli can have a wide range of effects on animal behavior, reproductive success, and physiology. However, less is known about the functional and community-level consequences of these sensory pollutants, especially when they co-occur. Using camera traps in a manipulative field experiment, we studied the effects of anthropogenic light and noise, singularly and in tandem, on richness and community turnover at both the taxa and functional group level as well as foraging activity. We showed that both light and noise pollution did alter taxonomic richness and that these effects can differ depending on the scale of observation. Increases in light levels had a negative effect on richness at the camera-level scale, but light-treated sites had the highest pooled (i.e., cumulative) richness of all treatment types. In contrast, noise was found to have a negative effect on cumulative richness; however, when both stimuli were present, the addition of night-lighting mitigated the effects of noise. Artificial light and moonlight had the strongest influence on community turnover, and results remained consistent at both the taxa and functional group level. Additionally, increases in ambient noise and moonlight, but not artificial light, reduced foraging activity. Our study provides evidence that alterations to the sensory environment can alter the richness and composition of communities and that effects can be scale-dependent and also alter foraging behavior. Unexpectedly, the addition of artificial light may have mitigated the negative effects of noise on cumulative taxonomic richness. This highlights the importance of researching the consequences of co-exposure to these globally common pollutants.


Asunto(s)
Iluminación , Ruido , Animales , Conducta Animal , Humanos , Luz , Iluminación/efectos adversos , Ruido/efectos adversos , Reproducción , Vertebrados
6.
Life Sci ; 289: 120223, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34896160

RESUMEN

Gamma-aminobutyric acid (GABA) is a well-known inhibitory neurotransmitter implicated in numerous physiological and pathological behaviors including social interest. Dysregulation of the median raphe region (MRR), a main serotoninergic nucleus, is also characterized by increased social problems. As the majority of MRR cells are GABAergic, we aimed to reveal the social role of these cells. Chemogenetic techniques were used in vesicular GABA transporter Cre mice and with the help of adeno-associated virus vectors artificial receptors (DREADDs, stimulatory, inhibitory or control, containing only a fluorophore) were expressed in MRR GABAergic cells confirmed by immunohistochemistry. Four weeks after viral injection a behavioral test battery (sociability; social interaction; resident-intruder) was conducted. The artificial ligand (clozapine-N-oxide, 1 mg/10 ml/kg) was administrated 30 min before the tests. As possible confounding factors, locomotion (open field/OF), anxiety-like behavior (elevated plus maze/EPM), and short-term memory (Y-maze) were also evaluated. Stimulation of the GABAergic cells in MRR had no effect on locomotion or working and social memory; however, it increased social interest during sociability and social interaction but not in resident-intruder tests. Accordingly, c-Fos elevation in MRR-GABAergic cells was detected after sociability, but not resident-intruder tests. In the EPM test, the inhibitory group entered into the open arms later, suggesting an anxiogenic-like tendency. We confirmed the role of MRR-GABAergic cells in promoting social interest. However, different subpopulations (e.g. long vs short projecting, various neuropeptide containing) might have divergent roles, which might remain hidden and requires further studies.


Asunto(s)
Conducta Animal , Neuronas GABAérgicas/metabolismo , Conducta Social , Animales , Masculino , Ratones , Ratones Transgénicos
7.
Life Sci ; 289: 120217, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34896162

RESUMEN

AIMS: In patients with colitis, the high comorbidity of depressive disorders is well-known, but the detailed mechanisms remain unresolved. In this study, we examined whether colitis induced by dextran sulfate sodium (DSS) increased the susceptibility to chronic unpredictable mild stress (CUMS) in C57BL/6J mice with resilience to CUMS. MAIN METHODS: To induce experimental colitis and depressive-like behaviors, male 7-weeks old C57BL/6J mice were administered ad libitum 1% DSS solution for 11 days, and subjected to various mild stressors in a chronic, inevitable and unpredictable way according to a random schedule for 21 days, respectively. KEY FINDINGS: In naïve mice exposed to CUMS, their immobility times in a forced swim (FS) test were almost equal to those in control mice. The DSS administration to naïve mice induced colitis without depressive-like behavior, and at 18 days after termination of the DSS administration, the colitis had recovered to control levels, while altered diversity and composition of bacterial genera such as Bacteroides spp., Alistipes spp., etc., were found in the gut microbiota. Exposure of mice with DSS-induced colitis to CUMS (DSS + CUMS) significantly increased the immobility times in the FS test. In the gut microbiota of DSS + CUMS mice, the alteration profile of the relative abundance of bacterial genera differed from in the DSS ones. SIGNIFICANCE: These findings indicate that mice with colitis exhibit increased susceptibility to psychological stress, resulting in induction of depressive-like behavior, and this might be due, at least in part, to altered characteristics of the gut microbiota.


Asunto(s)
Conducta Animal/efectos de los fármacos , Colitis , Depresión , Sulfato de Dextran/toxicidad , Estrés Psicológico , Animales , Colitis/inducido químicamente , Colitis/fisiopatología , Colitis/psicología , Depresión/inducido químicamente , Depresión/fisiopatología , Depresión/psicología , Susceptibilidad a Enfermedades/inducido químicamente , Susceptibilidad a Enfermedades/fisiopatología , Susceptibilidad a Enfermedades/psicología , Masculino , Ratones , Estrés Psicológico/inducido químicamente , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología
8.
Neural Netw ; 145: 107-120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34735889

RESUMEN

It is one of the ultimate goals of ethology to understand the generative process of animal behavior, and the ability to reproduce and control behavior is an important step in this field. However, it is not easy to achieve this goal in systems with complex and stochastic dynamics such as animal behavior. In this study, we have shown that MDN-RNN,a type of probabilistic deep generative model, is able to reproduce stochastic animal behavior with high accuracy by modeling the behavior of C. elegans. Furthermore, we found that the model learns different dynamics in a disentangled representation as a time-evolving Gaussian mixture. Finally, by combining the model and reinforcement learning, we were able to extract a behavioral policy of goal-directed behavior in silico, and showed that it can be used for regulating the behavior of real animals. This set of methods will be applicable not only to animal behavior but also to broader areas such as neuroscience and robotics.


Asunto(s)
Caenorhabditis elegans , Redes Neurales de la Computación , Animales , Conducta Animal , Aprendizaje , Modelos Estadísticos
9.
FASEB J ; 36(1): e21981, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907601

RESUMEN

The global consumption of highly processed, calorie-dense foods has contributed to an epidemic of overweight and obesity, along with negative consequences for metabolic dysfunction and disease susceptibility. As it becomes apparent that overweight and obesity have ripple effects through generations, understanding of the processes involved is required, in both maternal and paternal epigenetic inheritance. We focused on the patrilineal effects of a Western-style high-fat (21%) and high-sugar (34%) diet (WD) compared to control diet (CD) during adolescence and investigated F0 and F1 mice for physiological and behavioral changes. F0 males (fathers) showed increased body weight, impaired glycemic control, and decreased attractiveness to females. Paternal WD caused significant phenotypic changes in F1 offspring, including higher body weights of pups, increased Actinobacteria abundance in the gut microbiota (ascertained using 16S microbiome profiling), a food preference for WD pellets, increased male dominance and attractiveness to females, as well as decreased behavioral despair. These results collectively demonstrate the long-term intergenerational effects of a Western-style diet during paternal adolescence. The behavioral and physiological alterations in F1 offspring provide evidence of adaptive paternal programming via epigenetic inheritance. These findings have important implications for understanding paternally mediated intergenerational inheritance, and its relevance to offspring health and disease susceptibility.


Asunto(s)
Conducta Animal , Dieta Occidental , Microbioma Gastrointestinal , Herencia Paterna , Conducta Social , Estrés Fisiológico , Animales , Femenino , Masculino , Ratones
10.
Methods Mol Biol ; 2303: 487-493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626403

RESUMEN

Nerves and muscle interact to perform learned motor behavior such as birdsong. Glycosaminoglycans play a major role in the function of muscle as well as the formation and function of the neuromuscular junction. The alteration of GAG chains provides a unique opportunity to alter muscle behavior and thus motor control of a behavior. This chapter provides a method for observing the effects on mature birdsong of removal of GAG chains within syringeal muscle.


Asunto(s)
Músculos , Animales , Conducta Animal , Glicosaminoglicanos , Aprendizaje , Unión Neuromuscular , Vocalización Animal
11.
J Math Biol ; 84(1-2): 6, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936043

RESUMEN

We propose and analyze a class of vectorial crystallization problems, with applications to crystallization of anisotropic molecules and collective behavior such as birds flocking and fish schooling. We focus on two-dimensional systems of "oriented" particles: Admissible configurations are represented by vectorial empirical measures with density in [Formula: see text]. We endow such configurations with a graph structure, where the bonds represent the "convenient" interactions between particles, and the proposed variational principle consists in maximizing their number. The class of bonds is determined by hard sphere type pairwise potentials, depending both on the distance between the particles and on the angles between the segment joining two particles and their orientations, through threshold criteria. Different ground states emerge by tuning the angular dependence in the potential, mimicking ducklings swimming in a row formation and predicting as well, for some specific values of the angular parameter, the so-called diamond formation in fish schooling.


Asunto(s)
Conducta Animal , Animales , Cristalización , Peces , Natación
12.
Braz J Biol ; 84: e251255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34909919

RESUMEN

Amphisbaenians are fossorial reptiles that have a cylindrical and elongated body covered with scales arranged in rings, and are all apodal, except for the three species of the genus Bipes. The amphisbaenian diet consists of a variety of invertebrates and small vertebrates. As these animals live underground, many aspects of their natural history are difficult to study. Most feeding studies of amphisbaenians have focused on the composition of the diet and feeding ecology, and the data available on feeding behavior are based on precursory observations. The present study describes the food capture behavior of Leposternon microcephalum Wagler, 1824 in captivity. In this experiment we used non-live bait (moist cat food), which was placed near a burrow opening, on the surface of the substrate. Three animals were monitored visually and filmed using cellphone cameras deployed at fixed points, to capture images from the dorsal and lateral perspectives of the study subjects. Two principal types of behavior were observed: the capture of food and defense mechanisms. The strategies used to capture the food were similar to those observed in other fossorial species. Although the backward movement has already been observed and described, we were able to record this movement being used as an escape strategy. These findings enrich our knowledge on different aspects of the natural history of the amphisbaenians.


Asunto(s)
Alimentación Animal , Conducta Animal , Lagartos , Animales , Serpientes , Especificidad de la Especie
14.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34911751

RESUMEN

Epileptic encephalopathy (EE) is characterized by seizures that respond poorly to antiseizure drugs, psychomotor delay, and cognitive and behavioral impairments. One of the frequently mutated genes in EE is KCNQ2, which encodes the Kv7.2 subunit of voltage-gated Kv7 potassium channels. Kv7 channels composed of Kv7.2 and Kv7.3 are enriched at the axonal surface, where they potently suppress neuronal excitability. Previously, we reported that the de novo dominant EE mutation M546V in human Kv7.2 blocks calmodulin binding to Kv7.2 and axonal surface expression of Kv7 channels via their intracellular retention. However, whether these pathogenic mechanisms underlie epileptic seizures and behavioral comorbidities remains unknown. Here, we report conditional transgenic cKcnq2 +/M547V mice, in which expression of mouse Kv7.2-M547V (equivalent to human Kv7.2-M546V) is induced in forebrain excitatory pyramidal neurons and astrocytes. These mice display early mortality, spontaneous seizures, enhanced seizure susceptibility, memory impairment, and repetitive behaviors. Furthermore, hippocampal pathology shows widespread neurodegeneration and reactive astrocytes. This study demonstrates that the impairment in axonal surface expression of Kv7 channels is associated with epileptic seizures, cognitive and behavioral deficits, and neuronal loss in KCNQ2-related EE.


Asunto(s)
Síndromes Epilépticos/genética , Canal de Potasio KCNQ2/genética , Proteínas del Tejido Nervioso/genética , Animales , Conducta Animal , Disfunción Cognitiva , Síndromes Epilépticos/patología , Síndromes Epilépticos/psicología , Femenino , Gliosis , Hipocampo/patología , Canal de Potasio KCNQ2/metabolismo , Ácido Kaínico , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo
15.
Nat Commun ; 12(1): 7326, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916500

RESUMEN

Migrating animals may benefit from social or experiential learning, yet whether and how these learning processes interact or change over time to produce observed migration patterns remains unexplored. Using 16 years of satellite-tracking data from 105 reintroduced whooping cranes, we reveal an interplay between social and experiential learning in migration timing. Both processes dramatically improved individuals' abilities to dynamically adjust their timing to track environmental conditions along the migration path. However, results revealed an ontogenetic shift in the dominant learning process, whereby subadult birds relied on social information, while mature birds primarily relied on experiential information. These results indicate that the adjustment of migration phenology in response to the environment is a learned skill that depends on both social context and individual age. Assessing how animals successfully learn to time migrations as environmental conditions change is critical for understanding intraspecific differences in migration patterns and for anticipating responses to global change.


Asunto(s)
Migración Animal , Aves/fisiología , Animales , Conducta Animal , Ontologías Biológicas , Cambio Climático , Aprendizaje , Estaciones del Año
16.
Nutrients ; 13(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34960026

RESUMEN

Diet-induced obesity models are widely used to investigate dietary interventions for treating obesity. This study was aimed to test whether a dietary intervention based on a calorie-restricted cafeteria diet (CAF-R) and a polyphenolic compound (Oleuropein, OLE) supplementation modified sucrose intake, preference, and taste reactivity in cafeteria diet (CAF)-induced obese rats. CAF diet consists of high-energy, highly palatable human foods. Male rats fed standard chow (STD) or CAF diet were compared with obese rats fed CAF-R diet, alone or supplemented with an olive tree leaves extract (25 mg/kg*day) containing a 20.1% of OLE (CAF-RO). Biometric, food consumption, and serum parameters were measured. CAF diet increased body weight, food and energy consumption and obesity-associated metabolic parameters. CAF-R and CAF-RO diets significantly attenuated body weight gain and BMI, diminished food and energy intake and improved biochemical parameters such as triacylglycerides and insulin resistance which did not differ between CAF-RO and STD groups. The three cafeteria groups diminished sucrose intake and preference compared to STD group. CAF-RO also diminished the hedonic responses for the high sucrose concentrations compared with the other groups. These results indicate that CAF-R diet may be an efficient strategy to restore obesity-associated alterations, whilst OLE supplementation seems to have an additional beneficial effect on sweet taste function.


Asunto(s)
Conducta Animal/efectos de los fármacos , Restricción Calórica , Suplementos Dietéticos , Metabolismo Energético/efectos de los fármacos , Glucósidos Iridoides/farmacología , Obesidad/terapia , Animales , Antiinfecciosos/farmacología , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos , Masculino , Ratas , Ratas Sprague-Dawley , Sacarosa/administración & dosificación , Sacarosa/farmacología
18.
PLoS One ; 16(12): e0261790, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34936692

RESUMEN

Domestic dogs display behavioural patterns towards their owners that fulfil the four criteria of attachment. As such, they use their owners as a secure base, exploring the environment and manipulating objects more when accompanied by their owners than when alone. Although there are some indications that owners serve as a better secure base than other human beings, the evidence regarding a strong owner-stranger differentiation in a manipulative context is not straightforward. In the present study, we conducted two experiments in which pet dogs were tested in an object-manipulation task in the presence of the owner and of a stranger, varying how the human partner would behave (i.e. remaining silent or encouraging the dog, Experiment 1), and when alone (Experiment 2). Further, to gain a better insight into the mechanisms behind a potential owner-stranger differentiation, we investigated the effect of dogs' previous life history (i.e. having lived in a shelter or having lived in the same household since puppyhood). Overall, we found that strangers do not provide a secure base effect and that former shelter dogs show a stronger owner-stranger differentiation than other family dogs. As former shelter dogs show more behavioural signs correlated with anxiety towards the novel environment and the stranger, we concluded that having been re-homed does not necessarily affect the likelihood of forming a secure bond with the new owner but might have an impact on how dogs interact with novel stimuli, including unfamiliar humans. These results confirm the owner's unique role in providing security to their dogs and have practical implications for the bond formation in pet dogs with a past in a shelter.


Asunto(s)
Perros , Vínculo Humano-Animal , Mascotas , Animales , Conducta Animal , Perros/fisiología , Conducta Exploratoria , Femenino , Humanos , Masculino , Mascotas/fisiología
19.
Cell ; 184(26): 6313-6325.e18, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34942099

RESUMEN

How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required. Instead, local secretion of hyaluronan, made by the enzymes uridine 5'-diphosphate dehydrogenase (ugdh) and hyaluronan synthase 3 (has3), drives canal morphogenesis. Charged hyaluronate polymers osmotically swell with water and generate isotropic extracellular pressure to deform the overlying epithelium into buds. The mechanical anisotropy needed to shape buds into tubes is conferred by a polarized distribution of actomyosin and E-cadherin-rich membrane tethers, which we term cytocinches. Most work on tissue morphogenesis ascribes actomyosin contractility as the driving force, while the extracellular matrix shapes tissues through differential stiffness. Our work inverts this expectation. Hyaluronate pressure shaped by anisotropic tissue stiffness may be a widespread mechanism for powering morphological change in organogenesis and tissue engineering.


Asunto(s)
Espacio Extracelular/química , Ácido Hialurónico/farmacología , Morfogénesis , Especificidad de Órganos , Presión , Canales Semicirculares/citología , Canales Semicirculares/embriología , Actomiosina/metabolismo , Animales , Anisotropía , Conducta Animal , Matriz Extracelular/metabolismo , Ácido Hialurónico/biosíntesis , Modelos Biológicos , Morfogénesis/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Presión Osmótica , Canales Semicirculares/diagnóstico por imagen , Conducta Estereotipada , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
20.
Cells ; 10(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34943885

RESUMEN

Acute peripheral vestibulopathy leads to a cascade of symptoms involving balance and gait disorders that are particularly disabling for vestibular patients. Vestibular rehabilitation protocols have proven to be effective in improving vestibular compensation in clinical practice. Yet, the underlying neurobiological correlates remain unknown. The aim of this study was to highlight the behavioural and cellular consequences of a vestibular rehabilitation protocol adapted to a rat model of unilateral vestibular neurectomy. We developed a progressive sensory-motor rehabilitation task, and the behavioural consequences were quantified using a weight-distribution device. This analysis method provides a precise and ecological analysis of posturolocomotor vestibular deficits. At the cellular level, we focused on the analysis of plasticity mechanisms expressed in the vestibular nuclei. The results obtained show that vestibular rehabilitation induces a faster recovery of posturolocomotor deficits during vestibular compensation associated with a decrease in neurogenesis and an increase in microgliogenesis in the deafferented medial vestibular nucleus. This study reveals for the first time a part of the underlying adaptative neuroplasticity mechanisms of vestibular rehabilitation. These original data incite further investigation of the impact of rehabilitation on animal models of vestibulopathy. This new line of research should improve the management of vestibular patients.


Asunto(s)
Microglía/patología , Neurogénesis , Neuronitis Vestibular/rehabilitación , Núcleos Vestibulares/patología , Animales , Conducta Animal , Recuento de Células , Diferenciación Celular , Modelos Animales de Enfermedad , Masculino , Ratas Long-Evans , Factores de Tiempo , Urografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...