Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.748
Filtrar
1.
Vet Parasitol ; 328: 110191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723410

RESUMEN

Small ruminants (sheep and goats) constantly suffer from endoparasitoses caused by gastrointestinal nematodes. Among these, the species Haemonchus contortus (Rudolphi, 1803) is considered to be the one of greatest importance within sheep farming. This nematode is difficult to control due to its resistance to most commercial anthelmintics. The aim of the present study was to assess the potential of macrochelid mites as macrobiological agents for controlling endoparasitoses of sheep caused by the nematode, H. contortus. For this, novel in vitro methodology was used, in which assessments were made not only of the predatory ability but also the population growth of mite species (Macrocheles merdarius, Macrocheles robustulus and Holostaspella bifoliata) when offered larvae of the nematode, H. contortus. The predatory ability of the mites, M. merdarius and H. bifoliata were efficient regarding their predatory ability against H. contortus nematode larvae. The mite, M. merdarius exhibited the highest predation rate with mean distribution values for the treated group of 18656 ± 10091 and for the control group of 1178 ± 712 (P < 0.0001). The species, H. bifoliata presented the highest population growth rate, with a percentage acarid recovery rate of 263% in relation to the number added initially. The data from this in vitro predation experiment suggest that, M. merdarius and H. bifoliata showed promise as macrobiological agents for controlling gastrointestinal endoparasitoses of sheep caused by the nematode, H. contortus given that both species reduced the population of this helminth by more 70% and the number of mites recovered was three times greater than the number added.


Asunto(s)
Hemoncosis , Ácaros , Control Biológico de Vectores , Enfermedades de las Ovejas , Haemonchus , Hemoncosis/prevención & control , Ácaros/fisiología , Larva , Conducta Predatoria , Control Biológico de Vectores/normas , Crecimiento Demográfico , Femenino , Animales , Ovinos , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/prevención & control , Heces/parasitología , Especificidad de la Especie , Técnicas In Vitro
2.
Nat Commun ; 15(1): 4240, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762491

RESUMEN

Despite a wealth of studies documenting prey responses to perceived predation risk, researchers have only recently begun to consider how prey integrate information from multiple cues in their assessment of risk. We conduct a systematic review and meta-analysis of studies that experimentally manipulated perceived predation risk in birds and evaluate support for three alternative models of cue integration: redundancy/equivalence, enhancement, and antagonism. One key insight from our analysis is that the current theory, generally applied to study cue integration in animals, is incomplete. These theories specify the effects of increasing information level on mean, but not variance, in responses. In contrast, we show that providing multiple complementary cues of predation risk simultaneously does not affect mean response. Instead, as information richness increases, populations appear to assess risk more accurately, resulting in lower among-population variance in response to manipulations of perceived predation risk. We show that this may arise via a statistical process called maximum-likelihood estimation (MLE) integration. Our meta-analysis illustrates how explicit consideration of variance in responses can yield important biological insights.


Asunto(s)
Aves , Conducta Predatoria , Animales , Conducta Predatoria/fisiología , Aves/fisiología , Medición de Riesgo , Señales (Psicología) , Cadena Alimentaria , Funciones de Verosimilitud
3.
Biol Lett ; 20(5): 20240050, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773926

RESUMEN

Larval Lepidoptera gain survival advantages by aggregating, especially when combined with aposematic warning signals, yet reductions in predation risk may not be experienced equally across all group members. Hamilton's selfish herd theory predicts that larvae that surround themselves with their group mates should be at lower risk of predation, and those on the periphery of aggregations experience the greatest risk, yet this has rarely been tested. Here, we expose aggregations of artificial 'caterpillar' targets to predation from free-flying, wild birds to test for marginal predation when all prey are equally accessible and for an interaction between warning coloration and marginal predation. We find that targets nearer the centre of the aggregation survived better than peripheral targets and nearby targets isolated from the group. However, there was no difference in survival between peripheral and isolated targets. We also find that grouped targets survived better than isolated targets when both are aposematic, but not when they are non-signalling. To our knowledge, our data provide the first evidence to suggest that avian predators preferentially target peripheral larvae from aggregations and that prey warning signals enhance predator avoidance of groups.


Asunto(s)
Larva , Conducta Predatoria , Animales , Larva/fisiología
4.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38722696

RESUMEN

Animals deliver and withstand physical impacts in diverse behavioral contexts, from competing rams clashing their antlers together to archerfish impacting prey with jets of water. Though the ability of animals to withstand impact has generally been studied by focusing on morphology, behaviors may also influence impact resistance. Mantis shrimp exchange high-force strikes on each other's coiled, armored telsons (tailplates) during contests over territory. Prior work has shown that telson morphology has high impact resistance. I hypothesized that the behavior of coiling the telson also contributes to impact energy dissipation. By measuring impact dynamics from high-speed videos of strikes exchanged during contests between freely moving animals, I found that approximately 20% more impact energy was dissipated by the telson as compared with findings from a prior study that focused solely on morphology. This increase is likely due to behavior: because the telson is lifted off the substrate, the entire body flexes after contact, dissipating more energy than exoskeletal morphology does on its own. While variation in the degree of telson coil did not affect energy dissipation, proportionally more energy was dissipated from higher velocity strikes and from strikes from more massive appendages. Overall, these findings show that analysis of both behavior and morphology is crucial to understanding impact resistance, and suggest future research on the evolution of structure and function under the selective pressure of biological impacts.


Asunto(s)
Crustáceos , Animales , Fenómenos Biomecánicos , Crustáceos/fisiología , Crustáceos/anatomía & histología , Metabolismo Energético , Conducta Predatoria/fisiología , Conducta Animal/fisiología , Grabación en Video
5.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726757

RESUMEN

Differences in the physical and behavioral attributes of prey are likely to impose disparate demands of force and speed on the jaws of a predator. Because of biomechanical trade-offs between force and speed, this presents an interesting conundrum for predators of diverse prey types. Loggerhead shrikes (Lanius ludovicianus) are medium-sized (∼50 g) passeriform birds that dispatch and feed on a variety of arthropod and vertebrate prey, primarily using their beaks. We used high-speed video of shrikes biting a force transducer in lateral view to obtain corresponding measurements of bite force, upper and lower bill linear and angular displacements, and velocities. Our results show that upper bill depression (about the craniofacial hinge) is more highly correlated with bite force, whereas lower bill elevation is more highly correlated with jaw-closing velocity. These results suggest that the upper and lower jaws might play different roles for generating force and speed (respectively) in these and perhaps other birds as well. We hypothesize that a division of labor between the jaws may allow shrikes to capitalize on elements of force and speed without compromising performance. As expected on theoretical grounds, bite force trades-off against jaw-closing velocity during the act of biting, although peak bite force and jaw-closing velocity across individual shrikes show no clear signs of a force-velocity trade-off. As a result, shrikes appear to bite with jaw-closing velocities and forces that maximize biting power, which may be selectively advantageous for predators of diverse prey that require both jaw-closing force and speed.


Asunto(s)
Fuerza de la Mordida , Maxilares , Animales , Fenómenos Biomecánicos , Maxilares/fisiología , Passeriformes/fisiología , Conducta Predatoria/fisiología , Pico/fisiología , Grabación en Video
6.
PeerJ ; 12: e17235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708337

RESUMEN

The low survival rate of leverets may significantly contribute to steep population declines and slow recovery of European hares (Lepus europaeus). However, the leveret survival rate in farmlands with different landscape structures is poorly understood, and the existing evidence comes mainly from Western Europe. In this study, we explored the survival of leveret hare dummies along linear semi-natural habitats in homogeneous Central European arable farmland during the main part of the European hare reproduction period (March-April) in 2019 and 2020. The survival rate of hare leverets during the 14-day period was only 22.2%, and all predation events were recorded during the first six days of the experiment. Mammalian predators were responsible for 53.1% of predation events, avian predators for 40.8%, and agricultural operations for 6.1%. The red fox (Vulpes vulpes) was the dominant predator in our study area and was the primary cause of leveret dummy mortality (32.7%), but it also had the highest use-intensity and visit frequency of all of the study plots. Predation by avian predators was associated with patches of lower vegetation height and cover (such as plowed fields) and during daylight hours, whereas the opposite was true for mammalian predators. We propose that improving the habitat quality of arable landscapes by increasing the proportion and quality of extensively used non-farmed habitats (e.g., set-asides, wildflower areas, extensive meadows, fallow land, and semi-natural habitats on arable land) providing cover and shelter for leverets could be an effective management measure for reducing predation risk on leverets.


Asunto(s)
Ecosistema , Liebres , Conducta Predatoria , Animales , Granjas , Dinámica Poblacional , Aves , Zorros , Europa (Continente) , Agricultura
7.
Elife ; 132024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711355

RESUMEN

Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.


From wolves to ants, many animals are known to be able to hunt as a team. This strategy may yield several advantages: going after bigger preys together, for example, can often result in individuals spending less energy and accessing larger food portions than when hunting alone. However, it remains unclear whether this behavior relies on complex cognitive processes, such as the ability for an animal to represent and anticipate the actions of its teammates. It is often thought that 'collaborative hunting' may require such skills, as this form of group hunting involves animals taking on distinct, tightly coordinated roles ­ as opposed to simply engaging in the same actions simultaneously. To better understand whether high-level cognitive skills are required for collaborative hunting, Tsutsui et al. used a type of artificial intelligence known as deep reinforcement learning. This allowed them to develop a computational model in which a small number of 'agents' had the opportunity to 'learn' whether and how to work together to catch a 'prey' under various conditions. To do so, the agents were only equipped with the ability to link distinct stimuli together, such as an event and a reward; this is similar to associative learning, a cognitive process which is widespread amongst animal species. The model showed that the challenge of capturing the prey when hunting alone, and the reward of sharing food after a successful hunt drove the agents to learn how to work together, with previous experiences shaping decisions made during subsequent hunts. Importantly, the predators started to exhibit the ability to take on distinct, complementary roles reminiscent of those observed during collaborative hunting, such as one agent chasing the prey while another ambushes it. Overall, the work by Tsutsui et al. challenges the traditional view that only organisms equipped with high-level cognitive processes can show refined collaborative approaches to hunting, opening the possibility that these behaviors may be more widespread than originally thought ­ including between animals of different species.


Asunto(s)
Aprendizaje Profundo , Conducta Predatoria , Refuerzo en Psicología , Animales , Conducta Cooperativa , Humanos , Simulación por Computador , Toma de Decisiones
8.
Nature ; 629(8011): 290, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702527
9.
PLoS One ; 19(5): e0302981, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709740

RESUMEN

An understanding of species-environmental relationships is invaluable for effective conservation and management under anthropogenic climate change, especially for biodiversity hotspots such as riparian habitats. Species distribution models (SDMs) assess present species-environmental relationships which can project potential suitable environments through space and time. An understanding of environmental factors associated with distributions can guide conservation management strategies under a changing climate. We generated 260 ensemble SDMs for five species of Thamnophis gartersnakes (n = 347)-an important riparian predator guild-in a semiarid and biogeographically diverse region under impact from climate change (Arizona, United States). We modeled present species-environmental relationships and projected changes to suitable environment under 12 future climate scenarios per species, including the most and least optimistic greenhouse gas emission pathways, through 2100. We found that Thamnophis likely advanced northward since the turn of the 20th century and overwinter temperature and seasonal precipitation best explained present distributions. Future ranges of suitable environment for Thamnophis are projected to decrease by ca. -37.1% on average. We found that species already threatened with extinction or those with warm trailing-edge populations likely face the greatest loss of suitable environment, including near or complete loss of suitable environment. Future climate scenarios suggest an upward advance of suitable environment around montane areas for some low to mid-elevation species, which may create pressures to ascend. The most suitable environmental areas projected here can be used to identify potential safe zones to prioritize conservation refuges, including applicable critical habitat designations. By bounding the climate pathway extremes to, we reduce SDM uncertainties and provide valuable information to help conservation practitioners mitigate climate-induced threats to species. Implementing informed conservation actions is paramount for sustaining biodiversity in important aridland riparian systems as the climate warms and dries.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biodiversidad , Conservación de los Recursos Naturales/métodos , Conducta Predatoria , Modelos Teóricos
10.
PLoS One ; 19(5): e0302941, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709777

RESUMEN

Insecticidal Bacillus thuringiensis Berliner (Bt) toxins produced by transgenic cotton (Gossypium hirsutum L.) plants have become an essential component of cotton pest management. Bt toxins are the primary management tool in transgenic cotton for lepidopteran pests, the most important of which is the bollworm (Helicoverpa zea Boddie) (Lepidoptera: Noctuidae) in the United States (U.S.). However, bollworm larvae that survive after consuming Bt toxins may experience sublethal effects, which could alter interactions with other organisms, such as natural enemies. Experiments were conducted to evaluate how sublethal effects of a commercial Bt product (Dipel) incorporated into artificial diet and from Bt cotton flowers impact predation from the convergent lady beetle (Hippodamia convergens Guérin-Méneville) (Coleoptera: Coccinellidae), common in cotton fields of the mid-southern U.S. Sublethal effects were detected through reduced weight and slower development in bollworm larvae which fed on Dipel incorporated into artificial diet, Bollgard II, and Bollgard 3 cotton flowers. Sublethal effects from proteins incorporated into artificial diet were found to significantly alter predation from third instar lady beetle larvae. Predation of bollworm larvae also increased significantly after feeding for three days on a diet incorporated with Bt proteins. These results suggest that the changes in larval weight and development induced by Bt can be used to help predict consumption of bollworm larvae by the convergent lady beetle. These findings are essential to understanding the potential level of biological control in Bt cotton where lepidopteran larvae experience sublethal effects.


Asunto(s)
Bacillus thuringiensis , Escarabajos , Flores , Gossypium , Larva , Plantas Modificadas Genéticamente , Conducta Predatoria , Animales , Escarabajos/efectos de los fármacos , Escarabajos/fisiología , Gossypium/parasitología , Gossypium/genética , Conducta Predatoria/efectos de los fármacos , Larva/efectos de los fármacos , Control Biológico de Vectores , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas de Bacillus thuringiensis
11.
Biol Lett ; 20(5): 20240058, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715463

RESUMEN

Predation exerts a significant selection pressure on prey, shaping a multitude of traits that serve as antipredator defences. In turn, natural selection could favour combinations of antipredator defences with synergistic effects that enhance prey survival. An especially interesting antipredator defence is death feigning (DF), present in a wide variety of taxa and usually characterized by the prey lying motionless often along with defaecation, musking and autohaemorrhaging (AH). All these aspects of the DF display should work in conjunction with one another, intensifying the overall effect of the display and in turn facilitating quicker escape. To confirm this hypothesis, we tested 263 dice snakes (Natrix tessellata) directly in the field. We noted the occurrence of smearing faeces, musk and AH, and we measured the duration of DF, expecting to see a negative association between the occurrence of these behaviours and the duration of DF. Our results affirm our hypothesis: dice snakes that smeared themselves in musk and faeces prior to DF and had AH during DF spent significantly less time in DF. Our results highlight the functional integration of antipredator behaviours across different phases of predator-prey interactions, emphasizing the need for future research to prioritize studying the sequential display of behaviours.


Asunto(s)
Conducta Predatoria , Animales , Colubridae/fisiología , Heces , Reacción de Fuga/fisiología , Masculino
12.
PLoS One ; 19(5): e0302728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696517

RESUMEN

Although behavioural defensive responses have been recorded several times in both laboratory and natural habitats, their neural mechanisms have seldom been investigated. To explore how chemical, water-borne cues are conveyed to the forebrain and instruct behavioural responses in anuran larvae, we conditioned newly hatched agile frog tadpoles using predator olfactory cues, specifically either native odonate larvae or alien crayfish kairomones. We expected chronic treatments to influence the basal neuronal activity of the tadpoles' mitral cells and alter their sensory neuronal connections, thereby impacting information processing. Subsequently, these neurons were acutely perfused, and their responses were compared with the defensive behaviour of tadpoles previously conditioned and exposed to the same cues. Tadpoles conditioned with odonate cues differed in both passive and active cell properties compared to those exposed to water (controls) or crayfish cues. The observed upregulation of membrane conductance and increase in both the number of active synapses and receptor density at the postsynaptic site are believed to have enhanced their responsiveness to external stimuli. Odonate cues also affected the resting membrane potential and firing rate of mitral cells during electrophysiological patch-clamp recordings, suggesting a rearrangement of the repertoire of voltage-dependent conductances expressed in cell membranes. These recorded neural changes may modulate the induction of an action potential and transmission of information. Furthermore, the recording of neural activity indicated that the lack of defensive responses towards non-native predators is due to the non-recognition of their olfactory cues.


Asunto(s)
Señales (Psicología) , Larva , Conducta Predatoria , Animales , Larva/fisiología , Conducta Predatoria/fisiología , Anuros/fisiología , Neuronas Receptoras Olfatorias/fisiología , Astacoidea/fisiología
13.
Ecol Lett ; 27(5): e14427, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698677

RESUMEN

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Asunto(s)
Artrópodos , Biodiversidad , Aves , Clima , Conducta Predatoria , Árboles , Animales , Artrópodos/fisiología , Aves/fisiología , Cadena Alimentaria , Larva/fisiología
14.
J Exp Biol ; 227(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690629

RESUMEN

Identifying the kinematic and behavioral variables of prey that influence evasion from predator attacks remains challenging. To address this challenge, we have developed an automated escape system that responds quickly to an approaching predator and pulls the prey away from the predator rapidly, similar to real prey. Reaction distance, response latency, escape speed and other variables can be adjusted in the system. By repeatedly measuring the response latency and escape speed of the system, we demonstrated the system's ability to exhibit fast and rapid responses while maintaining consistency across successive trials. Using the live predatory fish species Coreoperca kawamebari, we show that escape speed and reaction distance significantly affect the outcome of predator-prey interactions. These findings indicate that the developed escape system is useful for identifying kinematic and behavioral features of prey that are critical for predator evasion, as well as for measuring the performance of predators.


Asunto(s)
Reacción de Fuga , Conducta Predatoria , Animales , Reacción de Fuga/fisiología , Fenómenos Biomecánicos , Automatización , Tiempo de Reacción/fisiología
15.
PLoS One ; 19(5): e0302028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718094

RESUMEN

Determining the dietary spectrum of European insectivorous bats over time is the cornerstone of their conservation, as it will aid our understanding of foraging behavior plasticity in response to plummeting insect populations. Despite the global decline in insects, a restricted number of arthropod pest species thrive. Yet past research has overlooked the potential of European bats to suppress pests harmful to woodlands or livestock, in spite of their economic relevance. Here we investigated the diet composition, its breeding season variations and pest consumption of an insectivorous bat species (Myotis emarginatus), at the northern edge of its range (Wallonia, Belgium). We also explored the prey ecology to gain insight into the hunting strategies and foraging habitats of this bat species. We used DNA metabarcoding to amplify two COI markers within 195 bat droppings collected in June, July and August, thereby identifying 512 prey taxa predominated by Diptera, Araneae and Lepidoptera. Overall, in 97% of the samples we detected at least one of the 58 potential pest taxa, 41 of which targeting trees. The June samples were marked by a diet rich in orb-weaver spiders, in accordance with the archetypal diet of M. emarginatus bats. However, during the highly energy demanding July-August parturition and lactation period, roughly 55% of the dropping samples contained two cattle fly pests (Stomoxys calcitrans and Musca domestica). Moreover, among the 88 Diptera species preyed upon by M. emarginatus in July and August, these flies accounted for around 50% of the taxa occurrences. This plasticity-the switch from a spider-rich to a fly-rich diet-seems providential considering the dramatic ongoing drop in insect populations but this involves ensuring bat-friendly cattle farming. Our results revealed that bats widely consume pest entomofauna, thereby highlighting their potential role as allies of forest managers and farmers.


Asunto(s)
Quirópteros , Conducta Predatoria , Arañas , Animales , Quirópteros/parasitología , Quirópteros/fisiología , Bovinos , Arañas/fisiología , Conducta Alimentaria , Estaciones del Año , Dieta , Dípteros/fisiología , Bélgica , Ecosistema
16.
Sci Rep ; 14(1): 11736, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778018

RESUMEN

Behaviors can vary throughout an animal's life and this variation can often be explained by changes associated with learning and/or maturing. Currently, there is little consensus regarding how these processes interact to affect behaviors. Here we proposed a heuristic approach to disentangle the effects of learning and maturation on behavior and applied it to the predatory behaviors of Physocyclus globosus spiderlings. We varied the degree of prey difficulty and familiarity spiderlings received along the first instar and across the molt to the second instar and quantified the time spiderlings spent wrapping prey, as a proxy for prey capture efficiency. We found no overall evidence for learning or maturation. Changes in efficiency were mainly due to the switch from difficult to easy prey, or vice versa. However, there was one treatment where spiderlings improved in efficiency before and after the molt, without a switch in prey type. This provides some indication that difficult prey may offer more opportunity for learning or maturation to impact behavior. Although we found little effect of learning or maturation on prey capture efficiency, we suggest that our heuristic approach is effective and could be useful in investigating these processes in other behaviors and other animals.


Asunto(s)
Aprendizaje , Conducta Predatoria , Arañas , Animales , Arañas/fisiología , Conducta Predatoria/fisiología , Aprendizaje/fisiología , Heurística
17.
Proc Natl Acad Sci U S A ; 121(23): e2322674121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38768327

RESUMEN

Predators and prey benefit from detecting sensory cues of each other's presence. As they move through their environment, terrestrial animals accumulate electrostatic charge. Because electric charges exert forces at a distance, a prey animal could conceivably sense electrical forces to detect an approaching predator. Here, we report such a case of a terrestrial animal detecting its predators by electroreception. We show that predatory wasps are charged, thus emit electric fields, and that caterpillars respond to such fields with defensive behaviors. Furthermore, the mechanosensory setae of caterpillars are deflected by these electrostatic forces and are tuned to the wingbeat frequency of their insect predators. This ability unveils a dimension of the sensory interactions between prey and predators and is likely widespread among terrestrial animals.


Asunto(s)
Conducta Predatoria , Avispas , Animales , Conducta Predatoria/fisiología , Avispas/fisiología , Aire , Electricidad Estática
18.
Bull Math Biol ; 86(7): 79, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777905

RESUMEN

Consumers respond differently to external nutrient changes than producers, resulting in a mismatch in elemental composition between them and potentially having a significant impact on their interactions. To explore the responses of herbivores and omnivores to changes in elemental composition in producers, we develop a novel stoichiometric model with an intraguild predation structure. The model is validated using experimental data, and the results show that our model can well capture the growth dynamics of these three species. Theoretical and numerical analyses reveal that the model exhibits complex dynamics, including chaotic-like oscillations and multiple types of bifurcations, and undergoes long transients and regime shifts. Under moderate light intensity and phosphate concentration, these three species can coexist. However, when the light intensity is high or the phosphate concentration is low, the energy enrichment paradox occurs, leading to the extinction of ciliate and Daphnia. Furthermore, if phosphate is sufficient, the competitive effect of ciliate and Daphnia on algae will be dominant, leading to competitive exclusion. Notably, when the phosphorus-to-carbon ratio of ciliate is in a suitable range, the energy enrichment paradox can be avoided, thus promoting the coexistence of species. These findings contribute to a deeper understanding of species coexistence and biodiversity.


Asunto(s)
Cilióforos , Daphnia , Cadena Alimentaria , Conceptos Matemáticos , Modelos Biológicos , Conducta Predatoria , Animales , Daphnia/fisiología , Cilióforos/fisiología , Fosfatos/metabolismo , Simulación por Computador , Dinámica Poblacional , Biodiversidad , Fósforo/metabolismo
19.
Proc Biol Sci ; 291(2023): 20232849, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775542

RESUMEN

Recent experiments have demonstrated that carnivores and ungulates in Africa, Asia, Europe and North America fear the human 'super predator' far more than other predators. Australian mammals have been a focus of research on predator naiveté because it is suspected they show atypical antipredator responses. To experimentally test if mammals in Australia also most fear humans, we quantified the responses of four native marsupials (eastern grey kangaroo, Bennett's wallaby, Tasmanian pademelon, common brushtail possum) and introduced fallow deer to playbacks of predator (human, dog, Tasmanian devil, wolf) or non-predator control (sheep) vocalizations. Native marsupials most feared the human 'super predator', fleeing humans 2.4 times more often than the next most frightening predator (dogs), and being most, and significantly, vigilant to humans. These results demonstrate that native marsupials are not naïve to the peril humans pose, substantially expanding the taxonomic and geographic scope of the growing experimental evidence that wildlife worldwide generally perceive humans as the planet's most frightening predator. Introduced fallow deer fled humans, but not more than other predators, which we suggest may result from their being introduced. Our results point to both challenges concerning marsupial conservation and opportunities for exploiting fear of humans as a wildlife management tool.


Asunto(s)
Ciervos , Miedo , Marsupiales , Conducta Predatoria , Animales , Ciervos/fisiología , Humanos , Marsupiales/fisiología , Australia , Especies Introducidas , Lobos/fisiología , Perros , Vocalización Animal
20.
PeerJ ; 12: e17307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742097

RESUMEN

Invasive species threaten biodiversity globally. Amphibians are one of the most threatened vertebrate taxa and are particularly sensitive to invasive species, including other amphibians. African clawed frogs (Xenopus laevis) are native to Southern Africa but have subsequently become invasive on multiple continents-including multiple parts of North America-due to releases from the pet and biomedical trades. Despite their prevalence as a global invader, the impact of X. laevis remains understudied. This includes the Pacific Northwest of the USA, which now hosts multiple expanding X. laevis populations. For many amphibians, chemical cues communicate important information, including the presence of predators. Here, we tested the role chemical cues may play in mediating interactions between feral X. laevis and native amphibians in the Pacific Northwest. We tested whether native red-legged frog (Rana aurora) tadpoles display an antipredator response to non-native frog (X. laevis) or native newt (rough-skinned newts, Taricha granulosa) predator chemical stimuli. We found that R. aurora tadpoles exhibited pronounced anti-predator responses when exposed to chemical cues from T. granulosa but did not display anti-predator response to invasive X. laevis chemical cues. We also began experimentally testing whether T. granulosa-which produce a powerful neurotoxin tetrodotoxin (TTX)-may elicit an anti-predator response in X. laevis, that could serve to deter co-occupation. However, our short-duration experiments found that X. laevis were attracted to newt chemical stimuli rather than deterred. Our findings show that X. laevis likely poses a threat to native amphibians, and that these native species may also be particularly vulnerable to this invasive predator, compared to native predators, because toxic native newts may not limit X. laevis invasions. Our research provides some of the first indications that native Pacific Northwest species may be threatened by feral X. laevis and provides a foundation for future experiments testing potential management techniques for X. laevis.


Asunto(s)
Señales (Psicología) , Especies Introducidas , Salamandridae , Xenopus laevis , Animales , Washingtón , Salamandridae/fisiología , Larva , Conducta Predatoria , Ranidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...