Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.854
Filtrar
1.
Proc Biol Sci ; 291(2026): 20240868, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955327

RESUMEN

Biotic interactions play a critical role in shaping patterns of global biodiversity. While several macroecological studies provide evidence for stronger predation in tropical regions compared with higher latitudes, results are variable even within the tropics, and the drivers of this variability are not well understood. We conducted two complementary standardized experiments on communities of sessile marine invertebrate prey and their associated predators to test for spatial and seasonal differences in predation across the tropical Atlantic and Pacific coastlines of Panama. We further tested the prediction that higher predator diversity contributes to stronger impacts of predation, using both direct observations of predators and data from extensive reef surveys. Our results revealed substantially higher predation rates and stronger effects of predators on prey in the Pacific than in the Atlantic, demonstrating striking variation within tropical regions. While regional predator diversity was high in the Atlantic, functional diversity at local scales was markedly low. Peak predation strength in the Pacific occurred during the wet, non-upwelling season when ocean temperatures were warmer and predator communities were more functionally diverse. Our results highlight the importance of regional biotic and abiotic drivers that shape interaction strength and the maintenance of tropical communities, which are experiencing rapid environmental change.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Estaciones del Año , Clima Tropical , Animales , Biodiversidad , Panamá , Océano Atlántico , Océano Pacífico , Invertebrados/fisiología
2.
PeerJ ; 12: e17694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952975

RESUMEN

Background: Invasive species are the primary threat to island ecosystems globally and are responsible for approximately two-thirds of all island species extinctions in the past 400 years. Non-native mammals-primarily rats, cats, mongooses, goats, sheep, and pigs-have had devastating impacts on at-risk species and are major factors in population declines and extinctions in Hawai'i. With the development of fencing technology that can exclude all mammalian predators, the focus for some locations in Hawai'i shifted from predator control to local eradication. Methods: This article describes all existing and planned full predator exclusion fences in Hawai'i by documenting the size and design of each fence, the outcomes the predator eradications, maintenance issues at each fence, and the resulting native species responses. Results: Twelve predator exclusion fences were constructed in the Hawaiian Islands from 2011-2023 and six more were planned or under construction; all were for the protection of native seabirds and waterbirds. Fences ranged in length from 304-4,877 m and enclosed 1.2-640 ha. One-third of the 18 fences were peninsula-style with open ends; the remaining two-thirds of the fences were complete enclosures. The purpose of twelve of the fences (67%) was to protect existing bird populations, and six (33%) were initiated for mitigation required under the U.S. Endangered Species Act. Of the six mitigation fences, 83% were for the social attraction of seabirds and one fence was for translocation of seabirds; none of the mitigation fences protected existing bird populations. Rats and mice were present in every predator exclusion fence site; mice were eradicated from five of six sites (83%) where they were targeted and rats (three species) were eradicated from eight of 11 sites (72%). Mongoose, cats, pigs, and deer were eradicated from every site where they were targeted. Predator incursions occurred in every fence. Rat and mouse incursions were in many cases chronic or complete reinvasions, but cat and mongoose incursions were occasional and depended on fence type (i.e., enclosed vs. peninsula). The advent of predator exclusion fencing has resulted in great gains for protecting existing seabirds and waterbirds, which demonstrated dramatic increases in reproductive success and colony growth. With threats from invasive species expected to increase in the future, predator exclusion fencing will become an increasingly important tool in protecting island species.


Asunto(s)
Especies Introducidas , Islas , Animales , Hawaii , Conducta Predatoria , Conservación de los Recursos Naturales , Ecosistema , Aves
3.
PLoS One ; 19(7): e0304257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959233

RESUMEN

An animal's environment contains many risks causing animals to scan their environment for potential predators and threats from conspecifics. How much time they invest in such vigilance depends on environmental and social factors. Most vigilance studies have been conducted in a foraging context with little known about vigilance in other contexts. Here we investigated vigilance of Gouldian finches at waterholes considering environmental and social factors. Gouldian finches are colour polymorphic with two main head colours in both sexes co-occurring in the same population, black-headed and red-headed. Data collection was done on birds sitting in trees surrounding waterholes by measuring the frequency of head movements, which reflects how frequently they change their field of view, i.e., scan different areas in their environment. A higher frequency generally reflects higher vigilance. Gouldian finches had a higher frequency of head movements when at small waterholes and when sitting in open, leafless trees. Moreover, head movements were higher when birds were alone in the tree as compared to groups of birds. Finally, birds in same head colour morph groups had a higher frequency of head movements than birds in mixed head colour groups. Results indicate heightened vigilance with increased perception of predation risk (small waterholes, open exposed perch, when alone) but that social vigilance also played a role (group composition) with particularly the aggressive red-headed birds being more vigilant when together with other red-headed birds. Future research should investigate the effect of smaller waterholes as global warming will cause smaller waterholes to become more common for longer periods of time, which can increase stress in the birds.


Asunto(s)
Pinzones , Árboles , Animales , Masculino , Femenino , Pinzones/fisiología , Conducta Animal/fisiología , Movimientos de la Cabeza/fisiología , Conducta Predatoria/fisiología
4.
Curr Biol ; 34(13): R625-R628, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981427

RESUMEN

The dorsal periaqueductal gray (dPAG) contains a tonically GABAergic network controlling defensive responses. Determining how this intrinsic dPAG inhibitory circuit functions might provide critical insights into how anti-predatory responses are organized.


Asunto(s)
Sustancia Gris Periacueductal , Conducta Predatoria , Animales , Conducta Predatoria/fisiología , Sustancia Gris Periacueductal/fisiología , Reacción de Fuga/fisiología
5.
Braz J Biol ; 84: e283484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985072

RESUMEN

The date palm mite, Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae), is a serious pest of dates in the Middle East and North Africa, inflicting severe economic damage if not controlled early. As predaceous mites are known to be potential biocontrol agents against several pests, so predation capacity, life table, reproduction, and survival of Amblyseius swirskii Athias-Henriot and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae), collected from date palm farms in Qassim Saudi Arabia, were studied under laboratory conditions (25 °C, 30 °C, 35 °C and 50 ± 5% RH) against all motile stages of O. afrasiaticus. For both predators, mean developmental time, oviposition period, and longevity were inversely related to temperature from 25 to 35 °C. Various parameters were studied for A. swirskii and N. cucumeris at 25 °C, 30 °C and 35 °C, i.e. the female developmental time, 9.37, 7.29, 5.56, and 10.67, 8.38, 6.45 d; oviposition period, 19.77, 16.18, 13.94 and 15.90, 13.84, 10.64 d; longevity, 29.39, 24.79, 20.64 and 25.42, 21.94, 17.39 d; fecundity, 31.91, 37.10, 42.16 and 21.75, 26.84, 30.56 eggs per female, respectively. The maximum daily predation rate for both the predators was recorded at 35 °C during the oviposition period. The total predation of A. swirskii and N. cucumeris female was 370.86, 387.54, 405.83, 232.14, 263.32, 248.85 preys at 25 °C, 30 °C and 35 °C respectively. The maximum reproduction rate of A. swirskii and N. cucumeris (3.02, 2.87 eggs/♀/day) was recorded at 35 °C while the minimum (2.00, 1.36 eggs/♀/day) was recorded at 25 °C. The life table parameters were estimated as net reproductive rate (Ro) 21.68, 25.94, 29.52 and 18.95, 20.25, 22.78; the mean generation time (T) 24.92, 21.82, 18.24 and 26.30, 23.60, 20.56 d; the intrinsic rate of increase (rm) 0.181, 0.232, 0.248 and 0.170, 0.185, 0.196; the finite rate of increase (λ) 1.365, 1.551, 1.706 and 1.126, 1.324, 1.428 for A. swirskii and N. cucumeris at 25 °C, 30 °C and 35 °C respectively. The results of this study suggested that the two phytoseiid species are promising biological control agents of O. afrasiaticus at a wide range of temperatures.


Asunto(s)
Ácaros , Control Biológico de Vectores , Phoeniceae , Conducta Predatoria , Animales , Femenino , Conducta Predatoria/fisiología , Masculino , Ácaros/fisiología , Phoeniceae/parasitología , Oviposición/fisiología , Tetranychidae/fisiología , Reproducción/fisiología , Longevidad , Estadios del Ciclo de Vida/fisiología , Rasgos de la Historia de Vida
6.
Proc Biol Sci ; 291(2027): 20240953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013421

RESUMEN

The selective factors that shape phenotypic diversity in prey communities with aposematic animals are diverse and coincide with similar diversity in the strength of underlying secondary defences. However, quantitative assessments of colour pattern variation and the strength of chemical defences in assemblages of aposematic species are lacking. We quantified colour pattern diversity using quantitative colour pattern analysis (QCPA) in 13 dorid nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical defences. We accounted for the physiological properties of a potential predator's visual system (a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from multiple viewing distances (2 and 10 cm). We identified distinct colour pattern properties associated with the presence and strength of chemical defences. Specifically, increases in chemical defences indicated increases in colour pattern boldness (i.e. visual contrast elicited via either or potentially coinciding chromatic, achromatic and/or spatial contrast). Colour patterns were also less variable among species with chemical defences when compared to undefended species. Our results indicate correlations between secondary defences and diverse, bold colouration while showing that chemical defences coincide with decreased colour pattern variability among species. Our study suggests that complex spatiochromatic properties of colour patterns perceived by potential predators can be used to make inferences on the presence and strength of chemical defences.


Asunto(s)
Color , Gastrópodos , Conducta Predatoria , Animales , Gastrópodos/fisiología , Pigmentación , Mimetismo Biológico
7.
J Math Biol ; 89(2): 22, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951257

RESUMEN

Group defense in prey and hunting cooperation in predators are two important ecological phenomena and can occur concurrently. In this article, we consider cooperative hunting in generalist predators and group defense in prey under a mathematical framework to comprehend the enormous diversity the model could capture. To do so, we consider a modified Holling-Tanner model where we implement Holling type IV functional response to characterize grazing pattern of predators where prey species exhibit group defense. Additionally, we allow a modification in the attack rate of predators to quantify the hunting cooperation among them. The model admits three boundary equilibria and up to three coexistence equilibrium points. The geometry of the nontrivial prey and predator nullclines and thus the number of coexistence equilibria primarily depends on a specific threshold of the availability of alternative food for predators. We use linear stability analysis to determine the types of hyperbolic equilibrium points and characterize the non-hyperbolic equilibrium points through normal form and center manifold theory. Change in the model parameters leading to the occurrences of a series of local bifurcations from non-hyperbolic equilibrium points, namely, transcritical, saddle-node, Hopf, cusp and Bogdanov-Takens bifurcation; there are also occurrences of global bifurcations such as homoclinic bifurcation and saddle-node bifurcation of limit cycles. We observe two interesting closed 'bubble' form induced by global bifurcations due to change in the strength of hunting cooperation and the availability of alternative food for predators. A three dimensional bifurcation diagram, concerning the original system parameters, captures how the alternation in model formulation induces gradual changes in the bifurcation scenarios. Our model highlights the stabilizing effects of group or gregarious behaviour in both prey and predator, hence supporting the predator-herbivore regulation hypothesis. Additionally, our model highlights the occurrence of "saltatory equilibria" in ecological systems and capture the dynamics observed for lion-herbivore interactions.


Asunto(s)
Ecosistema , Cadena Alimentaria , Conceptos Matemáticos , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria , Animales , Dinámica Poblacional/estadística & datos numéricos , Conducta Cooperativa , Simulación por Computador , Herbivoria , Modelos Lineales
8.
PLoS One ; 19(7): e0303633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38980882

RESUMEN

Estimating the densities of marine prey observed in animal-borne video loggers when encountered by foraging predators represents an important challenge for understanding predator-prey interactions in the marine environment. We used video images collected during the foraging trip of one chinstrap penguin (Pygoscelis antarcticus) from Cape Shirreff, Livingston Island, Antarctica to develop a novel approach for estimating the density of Antarctic krill (Euphausia superba) encountered during foraging activities. Using the open-source Video and Image Analytics for a Marine Environment (VIAME), we trained a neural network model to identify video frames containing krill. Our image classifier has an overall accuracy of 73%, with a positive predictive value of 83% for prediction of frames containing krill. We then developed a method to estimate the volume of water imaged, thus the density (N·m-3) of krill, in the 2-dimensional images. The method is based on the maximum range from the camera where krill remain visibly resolvable and assumes that mean krill length is known, and that the distribution of orientation angles of krill is uniform. From 1,932 images identified as containing krill, we manually identified a subset of 124 images from across the video record that contained resolvable and unresolvable krill necessary to estimate the resolvable range and imaged volume for the video sensor. Krill swarm density encountered by the penguins ranged from 2 to 307 krill·m-3 and mean density of krill was 48 krill·m-3 (sd = 61 krill·m-3). Mean krill biomass density was 25 g·m-3. Our frame-level image classifier model and krill density estimation method provide a new approach to efficiently process video-logger data and estimate krill density from 2D imagery, providing key information on prey aggregations that may affect predator foraging performance. The approach should be directly applicable to other marine predators feeding on aggregations of prey.


Asunto(s)
Euphausiacea , Conducta Predatoria , Spheniscidae , Animales , Spheniscidae/fisiología , Euphausiacea/fisiología , Conducta Predatoria/fisiología , Regiones Antárticas , Densidad de Población , Grabación en Video/métodos , Procesamiento de Imagen Asistido por Computador/métodos
9.
Parasitol Res ; 123(7): 264, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980469

RESUMEN

Ticks are ectoparasite vectors of pathogens affecting human and animal health worldwide. Rational integration of different control interventions including plant-derived repellents and acaricides, management of natural predators, and vaccines is required for innovative approaches to reduce the risks associated with ticks and tick-borne diseases. How tick populations are naturally controlled is always a question. Tick interactions with other arthropods including predators evolved from ancient times. In this study, Cretaceous (ca. 100 Mya) Burmese amber inclusions were identified as probably related to Compluriscutula vetulum (Acari: Ixodida: Ixodidae) tick larvae and spider silk. As illustrated in this study, ancient interactions between ticks and spiders may support arthropod predatory behavior as a natural control intervention. Rational integrative management of different tick control interventions including natural predators under a One Health perspective will contribute to effectively and sustainably reducing the risks associated with ticks and tick-borne diseases.


Asunto(s)
Conducta Predatoria , Arañas , Animales , Arañas/fisiología , Ixodidae/fisiología , Larva/fisiología
10.
Biol Lett ; 20(7): 20240177, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982849

RESUMEN

While various marine predators form associations, the most commonly studied are those between subsurface predators and seabirds, with gulls, shearwaters or terns frequently co-occurring with dolphins, billfish or tuna. However, the mechanisms underlying these associations remain poorly understood. Three hypotheses have been proposed to explain the prevalence of these associations: (1) subsurface predators herd prey to the surface and make prey accessible to birds, (2) subsurface predators damage prey close to the surface and thereby provide food scraps to birds, and (3) attacks of underwater predators lower the cohesion of prey groups and thereby their collective defences making the prey easier to be captured by birds. Using drone footage, we investigated the interaction between Indo-Pacific sailfish (Istiophorus platypterus) and terns (Onychoprion sp.) preying on schooling fish off the eastern coast of the Malaysian peninsula. Through spatio-temporal analysis of the hunting behaviour of the two predatory species and direct measures of prey cohesion we showed that terns attacked when school cohesion was low, and that this decrease in cohesion was frequently caused by sailfish attacks. Therefore, we propose that sailfish created a by-product benefit for the bird species, lending support to the hypothesis that lowering cohesion can facilitate associations between subsurface predators and seabirds.


Asunto(s)
Conducta Predatoria , Animales , Charadriiformes/fisiología , Peces/fisiología , Malasia , Cadena Alimentaria , Aves/fisiología , Conducta Alimentaria
11.
PeerJ ; 12: e17693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006024

RESUMEN

Background: Driven by habitat loss and fragmentation, large carnivores are increasingly navigating human-dominated landscapes, where their activity is restricted and their behaviour altered. This movement, however, raises significant concerns and costs for people living nearby. While intricately linked, studies often isolate human and carnivore impacts, hindering effective management efforts. Hence, in this study, we brought these two into a common framework, focusing on an interface area between the critical tiger habitat and the human-dominated multiple-use buffer area of a central Indian protected area. Methods: We employed a fine-scale camera trap survey complemented by GPS-collar movement data to understand spatio-temporal activity patterns and adjustments of tigers in response to anthropogenic pressures. We used an occupancy framework to evaluate space use, Bayesian circular GLMs to model temporal activity, and home range and step length analyses to assess the movement patterns of tigers. Further, we used predation-risk models to understand conflict patterns as a function of tiger presence and other habitat variables. Results: Despite disturbance, a high proportion of the sampled area was occupied by 17 unique tigers (ψ = 0.76; CI [0.73-0.92]). The distance to villages (ß ± SE = 0.63 ± 0.21) and the relative abundance of large-bodied wild prey (ß ± SE = 0.72 ± 0.37) emerged as key predictors of tiger space use probability, indicating a preference for wild prey by tigers, while human influences constrained their habitat utilisation. Distance to villages was also identified as the most significant predictor of the tigers' temporal activity (µ ± σ = 3.03 ± 0.06 rad) that exhibited higher nocturnality near villages. A total of 11% of tiger home ranges were within village boundaries, accompanied by faster movement in these areas (displacement 40-82% higher). Livestock depredation probability by tigers increased with proximity to villages (P = 0.002) and highway (P = 0.003). Although tiger space use probability (P = 0.056) and wild prey abundance (P = 0.134) were non-significant at the 0.05 threshold, their presence in the best-fit predation-risk model suggests their contextual relevance for understanding conflict risk. The results highlight the importance of appropriately managing livestock near human infrastructures to effectively mitigate conflict. Conclusions: Shared space of carnivores and humans requires dynamic site-specific actions grounded in evidence-based decision-making. This study emphasises the importance of concurrently addressing the intricate interactions between humans and large carnivores, particularly the latter's behavioural adaptations and role in conflict dynamics. Such an integrated approach is essential to unravel cause-effect relationships and promote effective interface management in human-dominated landscapes.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conducta Predatoria , Tigres , Animales , Tigres/fisiología , Conducta Predatoria/fisiología , Humanos , India , Teorema de Bayes , Efectos Antropogénicos
12.
Nature ; 631(8021): 577-582, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961286

RESUMEN

Current hypotheses of early tetrapod evolution posit close ecological and biogeographic ties to the extensive coal-producing wetlands of the Carboniferous palaeoequator with rapid replacement of archaic tetrapod groups by relatives of modern amniotes and lissamphibians in the late Carboniferous (about 307 million years ago). These hypotheses draw on a tetrapod fossil record that is almost entirely restricted to palaeoequatorial Pangea (Laurussia)1,2. Here we describe a new giant stem tetrapod, Gaiasia jennyae, from high-palaeolatitude (about 55° S) early Permian-aged (about 280 million years ago) deposits in Namibia that challenges this scenario. Gaiasia is represented by several large, semi-articulated skeletons characterized by a weakly ossified skull with a loosely articulated palate dominated by a broad diamond-shaped parasphenoid, a posteriorly projecting occiput, and enlarged, interlocking dentary and coronoid fangs. Phylogenetic analysis resolves Gaiasia within the tetrapod stem group as the sister taxon of the Carboniferous Colosteidae from Euramerica. Gaiasia is larger than all previously described digited stem tetrapods and provides evidence that continental tetrapods were well established in the cold-temperate latitudes of Gondwana during the final phases of the Carboniferous-Permian deglaciation. This points to a more global distribution of continental tetrapods during the Carboniferous-Permian transition and indicates that previous hypotheses of global tetrapod faunal turnover and dispersal at this time2,3 must be reconsidered.


Asunto(s)
Fósiles , Cubierta de Hielo , Conducta Predatoria , Vertebrados , Animales , Historia Antigua , Namibia , Hueso Paladar/anatomía & histología , Filogenia , Cráneo/anatomía & histología , Diente/anatomía & histología , Vertebrados/anatomía & histología , Vertebrados/clasificación , Humedales , Tamaño Corporal
13.
PLoS One ; 19(7): e0307552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028744

RESUMEN

In Japan, stocked chum salmon (Oncorhynchus keta) fry may have become the perfect prey for non-native brown trout (Salmo trutta), which are popular targets of anglers. If this is the case, fry stocking which is intended to boost commercial fishing may be helping to sustain the populations of an invasive predator. We used dietary and biochemical analyses to examine whether brown trout quickly restore their nutritional status following wintertime declines by preying upon chum salmon fry that are stocked in spring. We targeted six rivers in Hokkaido, Japan, three with fry stocking and three without. Changes in brown trout condition factor, triglyceride contents in muscle and serum, serum insulin-like growth factor-1 (IGF-1; an indicator of short-term growth), and docosahexaenoic acid (DHA; an essential fatty acid abundant in fish) content in muscle were examined between before stocking and during the stocking period in the six rivers. Dietary analysis showed that brown trout preyed on fry during the stocking period in all stocked rivers. Their nutritional status tended to be higher during the stocking period than before stocking in stocked rivers, but not in unstocked rivers. These results suggest that the massive stocking of chum salmon fry provides brown trout with the perfect prey to quickly restore their nutritional status and fuel increased growth; this may therefore be a controversial issue among stakeholders.


Asunto(s)
Oncorhynchus keta , Trucha , Animales , Japón , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/análisis , Explotaciones Pesqueras , Triglicéridos/sangre , Triglicéridos/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/análisis , Ríos , Conducta Predatoria , Estaciones del Año
14.
Proc Natl Acad Sci U S A ; 121(30): e2321724121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008672

RESUMEN

Social foraging is very common in the animal kingdom. Numerous studies have documented collective foraging in various species and many reported the attraction of various species to foraging conspecifics. It is nonetheless difficult to quantify the benefits and costs of collective foraging, especially in the wild. We examined the benefits and costs of social foraging using on-board microphones mounted on freely foraging Molossus nigricans bats. This allowed us to quantify the bats' attacks on prey and to assess their success as a function of conspecific density. We found that the bats spent most of their time foraging at low conspecific densities, during which their attacks were most successful in terms of prey items captured per time unit. Notably, their capture rate dropped when conspecific density became either too high or too low. Our findings thus demonstrate a clear social foraging trade-off in which the presence of a few conspecifics probably improves foraging success, whereas the presence of too many impairs it.


Asunto(s)
Quirópteros , Ecolocación , Conducta Predatoria , Conducta Social , Animales , Quirópteros/fisiología , Ecolocación/fisiología , Conducta Predatoria/fisiología , Conducta Alimentaria/fisiología
15.
Am Nat ; 204(2): 191-199, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008836

RESUMEN

AbstractThe sub-Antarctic terrestrial ecosystems survive on isolated oceanic islands in the path of circumpolar currents and winds that have raged for more than 30 million years and are shaped by climatic cycles that surpass the tolerance limits of many species. Surprisingly little is known about how these ecosystems assembled their native terrestrial fauna and how such processes have changed over time. Here, we demonstrate the patterns and timing of colonization and speciation in the largest and dominant arthropod predators in the eastern sub-Antarctic: spiders of the genus Myro. Our results indicate that this lineage originated from Australia before the Plio-Pleistocenic glacial cycles and underwent an adaptive radiation on the Crozet archipelago, from where one native species colonized multiple remote archipelagos via the Antarctic circumpolar current across thousands of kilometers. The results indicate limited natural connectivity between terrestrial macroinvertebrate faunas in the eastern sub-Antarctic and partial survival of repeated glaciations in the Plio-Pleistocene. Furthermore, our findings highlight that by integrating arthropod taxa from multiple continents, the climatically more stable volcanic Crozet archipelago played a critical role in the evolution and distribution of arthropod life in the sub-Antarctic.


Asunto(s)
Distribución Animal , Evolución Biológica , Arañas , Animales , Regiones Antárticas , Arañas/fisiología , Ecosistema , Conducta Predatoria , Filogenia , Artrópodos/fisiología
16.
J Math Biol ; 89(3): 28, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009712

RESUMEN

This paper aims to establish the existence of traveling wave solutions connecting different equilibria for a spatial eco-epidemiological predator-prey system in advective environments. After applying the traveling wave coordinates, these solutions correspond to heteroclinic orbits in phase space. We investigate the existence of the traveling wave solution connecting from a boundary equilibrium to a co-existence equilibrium by using a shooting method. Different from the techniques introduced by Huang, we directly prove the convergence of the solution to a co-existence equilibrium by constructing a special bounded set. Furthermore, the Lyapunov-type function we constructed does not need the condition of bounded below. Our approach provides a different way to study the existence of traveling wave solutions about the co-existence equilibrium. The existence of traveling wave solutions between co-existence equilibria are proved by utilizing the qualitative theory and the geometric singular perturbation theory. Some other open questions of interest are also discussed in the paper.


Asunto(s)
Ecosistema , Cadena Alimentaria , Conceptos Matemáticos , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria , Animales , Dinámica Poblacional/estadística & datos numéricos , Simulación por Computador
17.
Anat Histol Embryol ; 53(4): e13085, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965917

RESUMEN

At the top of many ecosystems, raptors, also known as birds of prey, hold major influence. They shape their surroundings through their powerful hunting skills and complex interactions with their environment. This study investigates the beak morphology of four prominent raptor species, Golden eagle (Aquila chrysaetos), Common buzzard (Buteo buteo), Peregrine falcon (Falco peregrinus) and Common kestrel (Falco tinnunculus), found in Türkiye. By employing geometric morphometric methods, we investigate shape variations in the beaks of these species to unravel the adaptive significance of their cranial structures. This analysis reveals distinct beak morphologies among the studied raptors, reflecting adaptations to their feeding habits, hunting techniques and ecological niches. The results from Principal component analysis and Canonical variate analysis demonstrate significant differences in beak morphology between the Falconiformes and Accipitriformes clades, as well as among all three groups. The overall mean beak shapes of Golden Eagles are quite similar to Common Buzzards, with both species having longer beaks. In contrast, Falcons exhibit a distinctly different beak morphology, characterized by wider and shorter beaks. Changes in beak shape can lead to changes depending on the skull. It is thought that skull shape variations among predator families may have an impact on beak shape. These findings highlight the importance of integrating morphometric analyses with ecological insights to enhance our understanding of the evolutionary processes shaping raptor beak morphology.


Asunto(s)
Pico , Falconiformes , Animales , Pico/anatomía & histología , Falconiformes/anatomía & histología , Falconiformes/fisiología , Rapaces/anatomía & histología , Cráneo/anatomía & histología , Análisis de Componente Principal , Águilas/anatomía & histología , Águilas/fisiología , Conducta Predatoria/fisiología , Especificidad de la Especie
18.
Harmful Algae ; 137: 102678, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003029

RESUMEN

Raphidiopsis blooms are notorious for cyanotoxin formation and strong invasiveness, threatening the stability of aquatic ecosystems and human health. The protozoa Paramecium can potentially serve as an organism for controlling Raphidiopsis blooms owing to its grazing effect. However, the grazing ability of Paramecium is largely determined by the size of the prey, and the population of Raphidiopsis consists of filaments of varying lengths and sizes. The selective grazing behavior of Paramecium toward short-length or small-sized filaments in the Raphidiopsis population, as opposed to long filaments, remains unclear. Therefore, in this study, we co-cultured the predator Paramecium sp. with different initial abundances and the prey Raphidiopsis raciborskii to explore this knowledge gap. Our results suggested that: (1) the population of R. raciborskii declined under the selective grazing effect of Paramecium sp. on short filaments, whereas R. raciborskii with long filaments survived; (2) the growth of Paramecium sp. feeding on the same abundance of R. raciborskii was reduced at higher initial abundances, whereas its carrying capacity exhibited an opposite trend; (3) under ingestion by Paramecium sp., the morphology of R. raciborskii developed in the direction of becoming larger, and higher initial abundances of Paramecium sp. intensified this process; (4) increasing initial abundance of Paramecium sp. aggravated the decline of R. raciborskii photosynthetic activity. Therefore, the grazing effect of Paramecium sp. on R. raciborskii mainly affects filaments of short length or small size. Collectively, these results clarify the inter-species interaction between the protozoa Paramecium and filamentous cyanobacteria Raphidiopsis, including population dynamics and morphological and physiological changes in the predator and prey. Such insights into the interactions between Paramecium and R. raciborskii may have implications for the biological control of blooms caused by filamentous cyanobacteria.


Asunto(s)
Paramecium , Paramecium/fisiología , Cianobacterias/fisiología , Cadena Alimentaria , Conducta Predatoria/fisiología
19.
Exp Appl Acarol ; 93(2): 397-407, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38967735

RESUMEN

Phytoseiid mites have been frequently found in association with the lychee erinose mite, Aceria litchii, on lychee plants in Brazil, suggesting that they are promising candidates as biological control agents against this pest. Here, we investigated whether phytoseiids would suppress A. litchii infestation, i.e. formation of erinea, on lychee plants under field conditions. Four groups of A. litchii-infested plants were randomly distributed in the field, with each group receiving either Phytoseius intermedius, Amblyseius herbicolus, A. herbicolus supplemented with cattail pollen or no predator. During a three-month period, the released predators, along with others present in the surrounding environment, were allowed to freely walk among all plants. In each plant, we evaluated the occurrence of phytoseiid species, their abundance, and the dynamics of erinea formation. A total of 2,097 mites, including 13 other phytoseiid species were identified. The most abundant species were Iphiseiodes zuluagai and Euseius ho, rather than the two predator species that were released. A. herbicolus and P. intermedius failed to establish populations in the majority of the plants, regardless of the presence of pollen, suggesting their ineffectiveness in controlling A. litchii infestations. While there was a significant difference in the proportion of erinea among the four treatments, this contrast was not associated with the presence of phytoseiids, suggesting that other factors might have hindered erinea formation on lychee plants. The reasons behind this outcome are further explored and discussed.


Asunto(s)
Ácaros , Control Biológico de Vectores , Animales , Ácaros/fisiología , Brasil , Litchi , Conducta Predatoria
20.
Environ Sci Pollut Res Int ; 31(33): 45485-45494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967849

RESUMEN

Chironomid (Diptera: Chironomidae) larvae play a key role in aquatic food webs as prey for predators like amphibian and dragonfly larvae. This trophic link may be disrupted by anthropogenic stressors such as Bacillus thuringiensis var. israelensis (Bti), a biocide widely used in mosquito control. In a companion study, we recorded a 41% reduction of non-target larval chironomids abundance in outdoor floodplain pond mesocosms (FPMs) treated with Bti. Therefore, we examined the diet of two top predators in the FPMs, larvae of the palmate newt (Salamandridae: Lissotriton helveticus) and dragonfly (Aeshnidae: predominantly Anax imperator), using bulk stable isotope analyses of carbon and nitrogen. Additionally, we determined neutral lipid fatty acids in newt larvae to assess diet-related effects on their physiological condition. We did not find any effects of Bti on the diet proportions of newt larvae and no significant effects on the fatty acid content. We observed a trend in Aeshnidae larvae from Bti-FPMs consuming a higher proportion of large prey (Aeshnidae, newt, damselfly larvae; ~42%), and similar parts of smaller prey (chironomid, mayfly, Libellulidae, and zooplankton), compared to controls. Our findings may suggest bottom-up effects of Bti on aquatic predators but should be further evaluated, for instance, by using compound-specific stable isotope analyses of fatty acids or metabarcoding approaches.


Asunto(s)
Cadena Alimentaria , Larva , Control de Mosquitos , Estanques , Animales , Estanques/química , Control de Mosquitos/métodos , Conducta Predatoria , Chironomidae , Odonata , Bacillus thuringiensis , Salamandridae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA