Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.334
Filtrar
1.
BMC Biol ; 21(1): 18, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726103

RESUMEN

BACKGROUND: The loach (Misgurnus anguillicaudatus), the most widely distributed species of the family Cobitidae, displays a mud-dwelling behavior and intestinal air-breathing, inhabiting the muddy bottom of extensive freshwater habitats. However, lack of high-quality reference genome seriously limits the interpretation of the genetic basis of specialized adaptations of the loach to the adverse environments including but not limited to the extreme water temperature, hypoxic and noxious mud environment. RESULTS: This study generated a 1.10-Gb high-quality, chromosome-anchored genome assembly, with a contig N50 of 3.83 Mb. Multiple comparative genomic analyses found that proto-oncogene c-Fos (fos), a regulator of bone development, is positively selected in loach. Knockout of fos (ID: Mis0086400.1) led to severe osteopetrosis and movement difficulties, combined with the comparison results of bone mineral density, supporting the hypothesis that fos is associated with loach mud-dwelling behavior. Based on genomic and transcriptomic analysis, we identified two key elements involved in the intestinal air-breathing of loach: a novel gene (ID: mis0158000.1) and heat shock protein beta-1 (hspb1). The flavin-containing monooxygenase 5 (fmo5) genes, central to xenobiotic metabolism, undergone expansion in loach and were identified as differentially expressed genes in a drug stress trial. A fmo5-/- (ID: Mis0185930.1) loach displayed liver and intestine injury, indicating the importance of this gene to the adaptation of the loach to the noxious mud. CONCLUSIONS: Our work provides valuable insights into the genetic basis of biological adaptation to adverse environments.


Asunto(s)
Cipriniformes , Animales , Cipriniformes/genética , Cipriniformes/metabolismo , Aclimatación , Perfilación de la Expresión Génica , Cromosomas , Hipoxia/genética
2.
Chromosome Res ; 31(1): 8, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725757

RESUMEN

The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.


Asunto(s)
Núcleo Celular , Cromatina , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromosomas/genética , Matriz Nuclear/metabolismo , Mitosis
3.
BMC Genomics ; 24(1): 17, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639739

RESUMEN

BACKGROUND: Transcriptional enhancers are essential for gene regulation, but how these regulatory elements are best defined remains a significant unresolved question. Traditional definitions rely on activity-based criteria such as reporter gene assays, while more recently, biochemical assays based on chromatin-level phenomena such as chromatin accessibility, histone modifications, and localized RNA transcription have gained prominence. RESULTS: We examine here whether these two types of definitions, activity-based and chromatin-based, effectively identify the same sets of sequences. We find that, concerningly, the overlap between the two groups is strikingly limited. Few of the data sets we compared displayed statistically significant overlap, and even for those, the degree of overlap was typically small (below 40% of sequences). Moreover, a substantial batch effect was observed in which experiment set rather than experimental method was a primary driver of whether or not chromatin-defined enhancers showed a strong overlap with reporter gene-defined enhancers. CONCLUSIONS: Our results raise important questions as to the appropriateness of both old and new enhancer definitions, and suggest that new approaches are required to reconcile the poor agreement among existing methods for defining enhancers.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Cromatina/genética , Genes Reporteros , Cromosomas , Regulación de la Expresión Génica
4.
Elife ; 122023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36621919

RESUMEN

Bidirectional DNA replication complexes initiated from the same origin remain colocalized in a factory configuration for part or all their lifetimes. However, there is little evidence that sister replisomes are functionally interdependent, and the consequence of factory replication is unknown. Here, we investigated the functional relationship between sister replisomes in Escherichia coli, which naturally exhibits both factory and solitary configurations in the same replication cycle. Using an inducible transcription factor roadblocking system, we found that blocking one replisome caused a significant decrease in overall progression and velocity of the sister replisome. Remarkably, progression was impaired only if the block occurred while sister replisomes were still in a factory configuration - blocking one fork had no significant effect on the other replisome when sister replisomes were physically separate. Disruption of factory replication also led to increased fork stalling and requirement of fork restart mechanisms. These results suggest that physical association between sister replisomes is important for establishing an efficient and uninterrupted replication program. We discuss the implications of our findings on mechanisms of replication factory structure and function, and cellular strategies of replicating problematic DNA such as highly transcribed segments.


Asunto(s)
Replicación del ADN , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Cromosomas/metabolismo , ADN , Proteínas de Unión al ADN/metabolismo
5.
Sci Adv ; 9(4): eadd2175, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696508

RESUMEN

Although mitotic chromosomes are highly compacted and transcriptionally inert, some active chromatin features are retained during mitosis to ensure the proper postmitotic reestablishment of maternal transcriptional programs, a phenomenon termed "mitotic bookmarking." However, the dynamics and regulation of mitotic bookmarking have not been systemically surveyed. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we examined 6538 mitotic L02 human liver cells of variable stages and found that chromatin accessibility remained changing throughout cell division, with a constant decrease until metaphase and a gradual increase as chromosomes segregated. In particular, a subset of chromatin regions were identified to remain open throughout mitosis, and genes associated with these bookmarked regions are primarily linked to rapid reactivation upon mitotic exit. We also demonstrated that nuclear transcription factor Y subunit α (NF-YA) preferentially occupied bookmarked regions and contributed to transcriptional reactivation after mitosis. Our study uncovers the dynamic and regulatory blueprint of mitotic bookmarking.


Asunto(s)
Cromatina , Cromosomas , Humanos , Cromatina/genética , Factores de Transcripción/genética , Mitosis/genética
6.
Sci Adv ; 9(4): eadd2873, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706182

RESUMEN

During meiosis, DNA recombination allows the shuffling of genetic information between the maternal and paternal chromosomes. Recombination is initiated by double-strand breaks (DSBs) catalyzed by the conserved enzyme Spo11. How this crucial event is connected to other meiotic processes is unexpectedly variable depending on the species. Here, we knocked down Spo11 by CRISPR in the jellyfish Clytia hemisphaerica. Germ cells in Clytia Spo11 mutants fail to assemble synaptonemal complexes and chiasmata, and in consequence, homologous chromosome pairs in females remain unassociated during oocyte growth and meiotic divisions, creating aneuploid but fertilizable eggs that develop into viable larvae. Clytia thus shares an ancient eukaryotic dependence of synapsis and chromosome segregation on Spo11-generated DSBs. Phylogenetically, Clytia belongs to Cnidaria, the sister clade to Bilateria where classical animal model species are found, so these results provide fresh evolutionary perspectives on meiosis regulation.


Asunto(s)
Cnidarios , Animales , Femenino , Cromosomas , Meiosis/genética , Células Eucariotas
7.
BMC Biol ; 21(1): 2, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36600240

RESUMEN

BACKGROUND: The black cutworm, Agrotis ipsilon, is a serious global underground pest. Its distinct phenotypic traits, especially its polyphagy and ability to migrate long distances, contribute to its widening distribution and increasing difficulty of control. However, knowledge about these traits is still limited. RESULTS: We generated a high-quality chromosome-level assembly of A. ipsilon using PacBio and Hi-C technology with a contig N50 length of ~ 6.7 Mb. Comparative genomic and transcriptomic analyses showed that detoxification-associated gene families were highly expanded and induced after insects fed on specific host plants. Knockout of genes that encoded two induced ABC transporters using CRISPR/Cas9 significantly reduced larval growth rate, consistent with their contribution to host adaptation. A comparative transcriptomic analysis between tethered-flight moths and migrating moths showed expression changes in the circadian rhythm gene AiCry2 involved in sensing photoperiod variations and may receipt magnetic fields accompanied by MagR and in genes that regulate the juvenile hormone pathway and energy metabolism, all involved in migration processes. CONCLUSIONS: This study provides valuable genomic resources for elucidating the mechanisms involved in moth migration and developing innovative control strategies.


Asunto(s)
Mariposas Nocturnas , Animales , Estaciones del Año , Mariposas Nocturnas/genética , Larva , Perfilación de la Expresión Génica , Cromosomas
8.
J Clin Immunol ; 43(2): 247-270, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36648576

RESUMEN

Current practices vary widely regarding the immunological work-up and management of patients affected with defects in thymic development (DTD), which include chromosome 22q11.2 microdeletion syndrome (22q11.2del) and other causes of DiGeorge syndrome (DGS) and coloboma, heart defect, atresia choanae, retardation of growth and development, genital hypoplasia, ear anomalies/deafness (CHARGE) syndrome. Practice variations affect the initial and subsequent assessment of immune function, the terminology used to describe the condition and immune status, the accepted criteria for recommending live vaccines, and how often follow-up is needed based on the degree of immune compromise. The lack of consensus and widely varying practices highlight the need to establish updated immunological clinical practice guidelines. These guideline recommendations provide a comprehensive review for immunologists and other clinicians who manage immune aspects of this group of disorders.


Asunto(s)
Síndrome CHARGE , Síndrome de DiGeorge , Cardiopatías Congénitas , Humanos , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/terapia , Deleción Cromosómica , Cromosomas , Cardiopatías Congénitas/genética
9.
Genome Res ; 33(1): 154-167, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36617680

RESUMEN

Genetic balancers in Caenorhabditis elegans are complex variants that allow lethal or sterile mutations to be stably maintained in a heterozygous state by suppressing crossover events. Balancers constitute an invaluable tool in the C. elegans scientific community and have been widely used for decades. The first/traditional balancers were created by applying X-rays, UV, or gamma radiation on C. elegans strains, generating random genomic rearrangements. Their structures have been mostly explored with low-resolution genetic techniques (e.g., fluorescence in situ hybridization or PCR), before genomic mapping and molecular characterization through sequencing became feasible. As a result, the precise nature of most chromosomal rearrangements remains unknown, whereas, more recently, balancers have been engineered using the CRISPR-Cas9 technique for which the structure of the chromosomal rearrangement has been predesigned. Using short-read whole-genome sequencing (srWGS) and tailored bioinformatic analyses, we previously interpreted the structure of four chromosomal balancers randomly created by mutagenesis processes. Here, we have extended our analyses to five CRISPR-Cas9 balancers and 17 additional traditional balancing rearrangements. We detected and experimentally validated their breakpoints and have interpreted the balancer structures. Many of the balancers were found to be more intricate than previously described, being composed of complex genomic rearrangements (CGRs) such as chromoanagenesis-like events. Furthermore, srWGS revealed additional structural variants and CGRs not known to be part of the balancer genomes. Altogether, our study provides a comprehensive resource of complex genomic variations in C. elegans and highlights the power of srWGS to study the complexity of genomes by applying tailored analyses.


Asunto(s)
Caenorhabditis elegans , Cromosomas , Animales , Caenorhabditis elegans/genética , Hibridación Fluorescente in Situ , Mutación , Genómica
10.
Curr Top Dev Biol ; 151: 127-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36681468

RESUMEN

Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.


Asunto(s)
Cromosomas , Semen , Humanos , Masculino , Cromosomas/genética , Meiosis/genética , Gametogénesis , Segregación Cromosómica/genética
11.
Curr Top Dev Biol ; 151: 217-244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36681471

RESUMEN

Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor cells, requires in most species formation of crossovers physically connecting homologous chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated when chromosomes begin to segregate; tension signals that chromosome movement is proceeding properly. But crossovers too close to each other might result in less sister chromatid cohesion and tension and thus failed meiosis. Interference describes the non-random distribution of crossovers, which occur farther apart than expected from independence. We discuss both genetic and cytological methods of assaying crossover interference and models for interference, whose molecular mechanism remains to be elucidated. We note marked differences among species.


Asunto(s)
Cromosomas , Meiosis , Meiosis/genética , Segregación Cromosómica/genética
12.
Curr Top Dev Biol ; 151: 27-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36681473

RESUMEN

Recent discoveries have advanced our understanding of recombination initiation beyond the placement of double-stranded DNA breaks (DSBs) from germline replication timing to the dynamic reorganization of chromatin, and defined critical players of recombination initiation. This article focuses on recombination initiation in mammals utilizing the PRDM9 protein to orchestrate crucial stages of meiotic recombination initiation by interacting with the local DNA environment and several protein complexes. The Pioneer Complex with the SNF2-type chromatin remodeling enzyme HELLS, exposes PRDM9-bound DNA. At the same time, a Compass-Complex containing EWSR1, CXXC1, CDYL, EHMT2 and PRDM9 facilitates the association of putative hotspot sites in DNA loops with the chromosomal axis where DSB-promoting complexes are located, and DSBs are catalyzed by the SPO11/TOPOVIBL complex. Finally, homology search is facilitated at PRDM9-directed sites by ANKRD31. The Reader-Writer system consists of PRDM9 writing characteristic histone methylation signatures, which are read by ZCWPW1, promoting efficient homology engagement.


Asunto(s)
Cromatina , ADN , Animales , ADN/metabolismo , Cromosomas , Recombinación Homóloga , Roturas del ADN de Doble Cadena , Meiosis/genética , Mamíferos/genética
13.
Curr Top Dev Biol ; 151: 43-68, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36681477

RESUMEN

Meiosis increases genetic diversity in offspring by generating genetically unique haploid gametes with reshuffled chromosomes. This process requires a specialized set of meiotic proteins, which facilitate chromosome recombination and segregation. However, re-expression of meiotic proteins in mitosis can have catastrophic oncogenic consequences and aberrant expression of meiotic proteins is a common occurrence in human tumors. Mechanistically, re-activation of meiotic genes in cancer promotes oncogenesis likely because cancers-conversely to healthy mitosis-are fueled by genetic instability which promotes tumor evolution, and evasion of immune response and treatment pressure. In this review, we explore similarities between meiotic and cancer cells with a particular focus on the oncogenic activation of meiotic genes in cancer. We emphasize the role of histones and their modifications, DNA methylation, genome organization, R-loops and the availability of distal enhancers.


Asunto(s)
Meiosis , Neoplasias , Humanos , Meiosis/genética , Cromosomas , Histonas/genética , Expresión Génica , Neoplasias/genética
14.
Proc Natl Acad Sci U S A ; 120(4): e2210593120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656860

RESUMEN

Mitotic entry correlates with the condensation of the chromosomes, changes in histone modifications, exclusion of transcription factors from DNA, and the broad downregulation of transcription. However, whether mitotic condensation influences transcription in the subsequent interphase is unknown. Here, we show that preventing one chromosome to condense during mitosis causes it to fail resetting of transcription. Rather, in the following interphase, the affected chromosome contains unusually high levels of the transcription machinery, resulting in abnormally high expression levels of genes in cis, including various transcription factors. This subsequently causes the activation of inducible transcriptional programs in trans, such as the GAL genes, even in the absence of the relevant stimuli. Thus, mitotic chromosome condensation exerts stringent control on interphase gene expression to ensure the maintenance of basic cellular functions and cell identity across cell divisions. Together, our study identifies the maintenance of transcriptional homeostasis during interphase as an unexpected function of mitosis and mitotic chromosome condensation.


Asunto(s)
Cromatina , Cromosomas , Cromatina/genética , Cromosomas/genética , Cromosomas/metabolismo , Interfase/genética , Mitosis/genética , Factores de Transcripción/metabolismo
15.
Evolution ; 77(1): 36-48, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36622280

RESUMEN

Understanding the mechanisms that generate genetic variation, and thus contribute to the process of adaptation, is a major goal of evolutionary biology. Mutation and genetic exchange have been well studied as mechanisms to generate genetic variation. However, there are additional factors, such as genome architecture, that may also impact the amount of genetic variation in some populations, and the extent to which these variation generating mechanisms are themselves shaped by natural selection is still an open question. To test the effect of genome architecture on the generation of genetic variation, and hence evolvability, we studied Tetrahymena thermophila, a ciliate with an unusual genome structure and mechanism of nuclear division, called amitosis, whereby homologous chromosomes are randomly distributed to daughter cells. Amitosis leads to genetic variation among the asexual descendants of a newly produced sexual progeny because different progeny cells will contain different combinations of parental alleles. We hypothesize that amitosis thus increases the evolvability of newly produced sexual progeny relative to their unmated parents and species that undergo mitosis. To test this hypothesis, we used experimental evolution and simulations to compare the rate of adaptation in T. thermophila populations founded by a single sexual progeny to parental populations that had not had sex in many generations. The populations founded by a sexual progeny adapted more quickly than parental populations in both laboratory populations and simulated populations. This suggests that the additional genetic variation generated by amitosis of a heterozygote can increase the rate of adaptation following sex and may help explain the evolutionary success of the unusual genetic architecture of Tetrahymena and ciliates more generally.


Asunto(s)
Tetrahymena thermophila , Tetrahymena thermophila/genética , Cromosomas , Mutación , Genoma
16.
J Cell Sci ; 136(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36695333

RESUMEN

The chromosome periphery is a network of proteins and RNAs that coats the outer surface of mitotic chromosomes. Despite the identification of new components, the functions of this complex compartment are poorly characterised. In this study, we identified a novel chromosome periphery-associated protein, CCDC86 (also known as cyclon). Using a combination of RNA interference, microscopy and biochemistry, we studied the functions of CCDC86 in mitosis. CCDC86 depletion resulted in partial disorganisation of the chromosome periphery with alterations in the localisation of Ki-67 (also known as MKI67) and nucleolin (NCL), and the formation of abnormal cytoplasmic aggregates. Furthermore, CCDC86-depleted cells displayed errors in chromosome alignment, altered spindle length and increased apoptosis. These results suggest that, within the chromosome periphery, different subcomplexes that include CCDC86, nucleolin and B23 (nucleophosmin or NPM1) are required for mitotic spindle regulation and correct kinetochore-microtubule attachments, thus contributing to chromosome segregation in mitosis. Moreover, we identified CCDC86 as a MYCN-regulated gene, the expression levels of which represent a powerful marker for prognostic outcomes in neuroblastoma.


Asunto(s)
Mitosis , Huso Acromático , Humanos , Antígeno Ki-67/genética , Huso Acromático/genética , Huso Acromático/metabolismo , Mitosis/genética , Cromosomas/metabolismo , Segregación Cromosómica/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Células HeLa
17.
Cells ; 12(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36672271

RESUMEN

A single missense variant of the TMPO/LAP2α gene, encoding LAP2 proteins, has been associated with cardiomyopathy in two brothers. To further evaluate its role in cardiac muscle, we included TMPO in our cardiomyopathy diagnostic gene panel. A screening of ~5000 patients revealed three novel rare TMPO heterozygous variants in six males diagnosed with hypertrophic or dilated cardiomypathy. We identified in different cellular models that (1) the frameshift variant LAP2α p.(Gly395Glufs*11) induced haploinsufficiency, impeding cell proliferation and/or producing a truncated protein mislocalized in the cytoplasm; (2) the C-ter missense variant LAP2α p.(Ala240Thr) led to a reduced proximity events between LAP2α and the nucleosome binding protein HMGN5; and (3) the LEM-domain missense variant p.(Leu124Phe) decreased both associations of LAP2α/ß with the chromatin-associated protein BAF and inhibition of the E2F1 transcription factor activity which is known to be dependent on Rb, partner of LAP2α. Additionally, the LAP2α expression was lower in the left ventricles of male mice compared to females. In conclusion, our study reveals distinct altered properties of LAP2 induced by these TMPO/LAP2 variants, leading to altered cell proliferation, chromatin structure or gene expression-regulation pathways, and suggests a potential sex-dependent role of LAP2 in myocardial function and disease.


Asunto(s)
Cardiomiopatías , Cromosomas , Femenino , Masculino , Ratones , Animales , Cardiomiopatías/genética , Cromatina , Fenotipo
18.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674736

RESUMEN

A high-resolution chromosome microarray analysis was performed on 154 consecutive individuals enrolled in the DESTINY PWS clinical trial for Prader-Willi syndrome (PWS). Of these 154 PWS individuals, 87 (56.5%) showed the typical 15q11-q13 deletion subtypes, 62 (40.3%) showed non-deletion maternal disomy 15 and five individuals (3.2%) had separate unexpected microarray findings. For example, one PWS male had Klinefelter syndrome with segmental isodisomy identified in both chromosomes 15 and X. Thirty-five (40.2%) of 87 individuals showed typical larger 15q11-q13 Type I deletion and 52 individuals (59.8%) showed typical smaller Type II deletion. Twenty-four (38.7%) of 62 PWS individuals showed microarray patterns indicating either maternal heterodisomy 15 subclass or a rare non-deletion (epimutation) imprinting center defect. Segmental isodisomy 15 was seen in 34 PWS subjects (54.8%) with 15q26.3, 15q14 and 15q26.1 bands most commonly involved and total isodisomy 15 seen in four individuals (6.5%). In summary, we report on PWS participants consecutively enrolled internationally in a single clinical trial with high-resolution chromosome microarray analysis to determine and describe an unbiased estimate of the frequencies and types of genetic defects and address potential at-risk genetic disorders in those with maternal disomy 15 subclasses in the largest PWS cohort studied to date.


Asunto(s)
Síndrome de Prader-Willi , Humanos , Masculino , Síndrome de Prader-Willi/genética , Análisis por Micromatrices , Familia , Cromosomas , Cromosomas Humanos Par 15/genética
19.
Sci Data ; 10(1): 22, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631464

RESUMEN

Takifugu species serve as a model system for evolutionary studies due to their compact genomes and diverse phenotypes. The ocellated puffer (Takifugu ocellatus), characterized by special colouration, is a scarce anadromous species in the genus Takifugu. As an ornamental and tasty fish species, T. ocellatus has moderate economic value. However, the available genomic resources for this pufferfish are still limited. Here, a chromosome-level reference genome, as well as two haploid genomes, was constructed by PacBio HiFi long sequencing and Hi-C technologies. The total length of the reference genome was 375.62 Mb with a contig N50 of 11.55 Mb. The assembled sequences were anchored to 22 chromosomes with an integration efficiency of 93.78%. Furthermore, 28,808 protein-coding genes were predicted. The haplotype-resolved reference genome of T. ocellatus provides a crucial resource for investigating the explosive speciation of the Takifugu genus, such as elucidating evolutionary histories, determining the genetic basis of trait evolution, and supporting future conservation efforts.


Asunto(s)
Cromosomas , Genoma , Takifugu , Animales , Cromosomas/genética , Haplotipos , Anotación de Secuencia Molecular , Filogenia , Takifugu/genética
20.
Sci Data ; 10(1): 36, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36653371

RESUMEN

The Colorado potato beetle (Leptinotarsa decemlineata) is one of the most notorious insect pests of potatoes globally. Here, we generated a high-quality chromosome-level genome assembly of L. decemlineata using a combination of the PacBio HiFi sequencing and Hi-C scaffolding technologies. The genome assembly (-1,008 Mb) is anchored to 18 chromosomes (17 + XO), with a scaffold N50 of 58.32 Mb. It contains 676 Mb repeat sequences and 29,606 protein-coding genes. The chromosome-level genome assembly of L. decemlineata provides in-depth knowledge and will be a helpful resource for the beetle and invasive biology research communities.


Asunto(s)
Escarabajos , Genoma de los Insectos , Animales , Cromosomas , Escarabajos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...