Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57.987
Filtrar
1.
Physiol Plant ; 176(4): e14416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952344

RESUMEN

Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Frutas/genética , Frutas/efectos de los fármacos , Frutas/metabolismo , Vanadio/farmacología , Estrés Fisiológico/genética , Caragana/genética , Caragana/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Perfilación de la Expresión Génica , Sequías , Transcriptoma/genética , Transcriptoma/efectos de los fármacos , Cactaceae
2.
BMC Plant Biol ; 24(1): 623, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951751

RESUMEN

BACKGROUND: Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS: Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION: The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.


Asunto(s)
Fragaria , Frutas , Lípidos de la Membrana , Ceras , Fragaria/crecimiento & desarrollo , Fragaria/genética , Fragaria/metabolismo , Fragaria/enzimología , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Ceras/metabolismo , Lípidos de la Membrana/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
BMC Public Health ; 24(1): 1739, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951824

RESUMEN

BACKGROUND: Providing children with the opportunity to learn about nutrition is critical in helping them establish a healthy lifestyle and eating behaviours that would remain with them till adulthood. We determined the effect of a school-based food and nutrition education (SFNE) intervention on the nutrition-related knowledge, attitudes, dietary habits, physical activity levels and the anthropometric indices (BMI-for-age z scores, %Body fat and waist circumference) of school-age children in northern Ghana. METHODS: Following a controlled before-and-after study design, we recruited school-age children in primary 4 and 5 from public and private schools and assigned them non-randomly to intervention and control groups (4 schools total). A SFNE intervention called 'Eat Healthy, Grow Healthy (EHGH)' was implemented in intervention schools. Components of the intervention included children, teachers, school officials, and the school environment. Nutrition education didactic sessions, active discussions, nutrition games, charades, art work, and physical activity sessions were among the teaching and learning activities implemented. At 0 and 6 months, primary (anthropometry) and secondary (fruit, vegetable, and breakfast consumption) outcomes were obtained. RESULTS: Mean BMI-for-age z-scores did not differ significantly between intervention and control groups (F1,261 = 0.45, P = 0.503, η2 = 0.01). However, significantly greater nutrition-related knowledge scores were recorded in the intervention group than in the control group at post-intervention (M = 6.07 SD = 2.17 vs. M = 5.22 SD = 1.92; p = 0.002). Mean number of days intervention children consumed fruits differed across time (F1, 263 = 33.04, p = 0.002, η2 = 0.04) but not between the control and intervention groups (F1, 263 = 0.28, p = 0.60, η2 = 0.00). CONCLUSIONS: The EHGH intervention had positive effects on the nutrition-related knowledge and the consumption of fruits among children although it did not impact their anthropometric indices.


Asunto(s)
Frutas , Educación en Salud , Conocimientos, Actitudes y Práctica en Salud , Servicios de Salud Escolar , Humanos , Ghana , Femenino , Masculino , Niño , Conducta Alimentaria , Instituciones Académicas
4.
ScientificWorldJournal ; 2024: 4782328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957455

RESUMEN

The purpose of this review was to investigate the application of metal nanoparticles in fruit shelf life extension. Despite growing interest in nanoparticles and their potential applications, there are currently few effective methods for prolonging the shelf life of fruits. The study concentrated on the principles underlying the shelf life extension of metallic nanoparticles, including copper oxide, zinc oxide, silver, and titanium oxide. The biological properties of nanoparticles, especially those with antibacterial qualities, have drawn interest as possible fruit preservation solutions. Many conventional preservation methods have drawbacks, including expensive production costs, short shelf lives, undesirable residues, and the incapacity to properly keep perishable fruits in their natural environments. Techniques for extending shelf life based on nanotechnology have the potential to get around these problems. The review focused on the effective use of environmentally benign, green synthesis-produced nanoparticles to extend the fruit shelf life. The ability of these nanoparticles to successfully preserve fresh fruits was established. The results imply that fruit preservation by the use of nanoparticle synthesis techniques may be a viable strategy, offering a more effective and sustainable substitute for traditional procedures.


Asunto(s)
Conservación de Alimentos , Frutas , Mangifera , Nanopartículas del Metal , Nanopartículas del Metal/química , Mangifera/química , Frutas/química , Conservación de Alimentos/métodos , Almacenamiento de Alimentos/métodos
5.
Sci Rep ; 14(1): 15153, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956206

RESUMEN

Durian (Durio zibethinus L.) fruit pulp is a rich source of γ-glutamylcysteine (γ-EC), a direct precursor to the antioxidant glutathione (GSH). This study elucidated the in vitro neuroprotective potential of unripe durian fruit pulp extract (UDE) against H2O2-induced neurotoxicity in SH-SY5Y cells and neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells. Treatments with γ-EC, GSH standards, or UDE exhibited no cytotoxicity in SH-SY5Y and BV-2 cells, except at high concentrations. A 4-h pretreatment with 100 µM γ-EC or UDE containing 100 µM γ-EC significantly increased SH-SY5Y cell viability post H2O2 induction. Moreover, a similar pretreatment reduced LPS-stimulated production of proinflammatory cytokines in BV-2 cells. The neuroprotective effect of UDE is primarily attributed to γ-EC provision and the promotion of GSH synthesis, which in turn elevates intracellular GSH levels and reduces proinflammatory cytokines. This study identifies γ-EC in UDE as a potential neuroprotective biomarker boosting intracellular GSH levels, providing insights into UDE's therapeutic potential.


Asunto(s)
Frutas , Glutatión , Fármacos Neuroprotectores , Estrés Oxidativo , Extractos Vegetales , Glutatión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Fármacos Neuroprotectores/farmacología , Humanos , Frutas/química , Animales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Neuroprotección/efectos de los fármacos , Ratones , Supervivencia Celular/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Antioxidantes/farmacología , Línea Celular Tumoral , Línea Celular , Citocinas/metabolismo , Dipéptidos/farmacología
6.
PLoS One ; 19(7): e0304335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959219

RESUMEN

Inflammation is an immune system response that identifies and eliminates foreign material. However, excessive and persistent inflammation could disrupt the healing process. Plant-derived exosome-like nanoparticles (PDENs) are a promising candidate for therapeutic application because they are safe, biodegradable and biocompatible. In this study, papaya PDENs were isolated by a PEG6000-based method and characterized by dynamic light scattering (DLS), transmission Electron Microscopy (TEM), bicinchoninic acid (BCA) assay method, GC-MS analysis, total phenolic content (TPC) analysis, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. For the in vitro test, we conducted internalization analysis, toxicity assessment, determination of nitrite concentration, and assessed the expression of inflammatory cytokine genes using qRT-PCR in RAW 264.7 cells. For the in vivo test, inflammation was induced by caudal fin amputation followed by analysis of macrophage and neutrophil migration in zebrafish (Danio rerio) larvae. The result showed that papaya PDENs can be well isolated using the optimized differential centrifugation method with the addition of 30 ppm pectolyase, 15% PEG, and 0.2 M NaCl, which exhibited cup-shaped and spherical morphological structure with an average diameter of 168.8±9.62 nm. The papaya PDENs storage is stable in aquabidest and 25 mM trehalose solution at -20˚C until the fourth week. TPC estimation of all papaya PDENs ages did not show a significant change, while the DPPH test exhibited a significant change in the second week. The major compounds contained in Papaya PDENs is 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). Papaya PDENs can be internalized and is non-cytotoxic to RAW 264.7 cells. Moreover, LPS-induced RAW 264.7 cells treated with papaya PDENs showed a decrease in NO production and downregulation mRNA expression of pro-inflammatory cytokine genes (IL-1B and IL-6) and an upregulation in mRNA expression of anti-inflammatory cytokine gene (IL-10). In addition, in vivo tests conducted on zebrafish treated with PDENs papaya showed inhibition of macrophage and neutrophil cell migration. These findings suggest that PDENs papaya possesses anti-inflammatory properties.


Asunto(s)
Antiinflamatorios , Carica , Exosomas , Frutas , Nanopartículas , Pez Cebra , Carica/química , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Exosomas/metabolismo , Células RAW 264.7 , Nanopartículas/química , Frutas/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Citocinas/metabolismo
7.
BMC Plant Biol ; 24(1): 626, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961401

RESUMEN

BACKGROUND: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION: A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.


Asunto(s)
Calmodulina , Flores , Frutas , Passiflora , Filogenia , Proteínas de Plantas , Passiflora/genética , Passiflora/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genes de Plantas , Perfilación de la Expresión Génica
8.
Sci Rep ; 14(1): 15507, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969713

RESUMEN

The mass and volume of Rosa roxburghii fruits are essential for fruit grading and consumer selection. Physical characteristics such as dimension, projected area, mass, and volume are interrelated. Image-based mass and volume estimation facilitates the automation of fruit grading, which can replace time-consuming and laborious manual grading. In this study, image processing techniques were used to extract fruit dimensions and projected areas, and univariate (linear, quadratic, exponential, and power) and multivariate regression models were used to estimate the mass and volume of Rosa roxburghii fruits. The results showed that the quadratic model based on the criterion projected area (CPA) estimated the best mass (R2 = 0.981) with an accuracy of 99.27%, and the equation is M = 0.280 + 0.940CPA + 0.071CPA2. The multivariate regression model based on three projected areas (PA1, PA2, and PA3) estimated the best volume (R2 = 0.898) with an accuracy of 98.24%, and the equation is V = - 8.467 + 0.657PA1 + 1.294PA2 + 0.628PA3. In practical applications, cost savings can be realized by having only one camera position. Therefore, when the required accuracy is low, estimating mass and volume simultaneously from only the dimensional information of the side view or the projected area information of the top view is recommended.


Asunto(s)
Frutas , Procesamiento de Imagen Asistido por Computador , Rosa , Procesamiento de Imagen Asistido por Computador/métodos
9.
Allergy Asthma Proc ; 45(4): e31-e37, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38982605

RESUMEN

Background: Fruit allergy usually presents with mild-to-moderate symptoms but serious systemic reactions, e.g., anaphylaxis, may also occur. Objective: This study aimed to examine the clinical and laboratory characteristics of patients with fruit allergy and fruit-induced anaphylaxis. Methods: Patients diagnosed with fruit allergy at Diskapi Hematology and Oncology Hospital and Bilkent City Hospital between January 2017 and January 2023 were included in the study. The diagnosis of anaphylaxis was made according to the European Allergy and Clinical Immunology Anaphylaxis Guideline. Results: During the study period, skin-prick tests with food allergens were performed on 9432 patients in our clinic, and fruit allergy was detected in 78 patients (0.82%). Five patients with inaccessible medical records were excluded from the study. 40 (54.8%) were boys. The median (interquartile range) age at the onset of symptoms was 72 months (12.5-144 months). Sixty-eight of the patients (93.2%) had a concomitant allergic disease, the most common of which was allergic rhinitis (n = 48 [65.8%]). The 73 patients had a history of reaction to 126 fruits. Twenty-five patients (19.8%) were allergic to multiple fruits. The most common fruit allergen was banana (22/126 [17.4%]), followed by peach (18/126 [14.2%]) and kiwi (17/126 [13.5%]). Mucocutaneous findings were observed most frequently after fruit consumption (120/126 [95.2%]). Anaphylaxis occurred in 17 patients (23.2%) with 21 fruits.The fruits most commonly associated with anaphylaxis were banana (6/21 [28.6%]) and kiwi (6/21 [28.6%]). Conclusion: Fruit allergy generally presents with mild symptoms, e.g., oral allergy syndrome, but severe systemic symptoms, e.g., anaphylaxis, can also be observed. Kiwi and banana are the fruits that most commonly cause anaphylaxis. Although more comprehensive studies are needed to comment on the development of tolerance, especially in patients with anaphylaxis, responsible fruit avoidance is still the most important strategy.


Asunto(s)
Alérgenos , Anafilaxia , Hipersensibilidad a los Alimentos , Frutas , Pruebas Cutáneas , Humanos , Anafilaxia/diagnóstico , Anafilaxia/etiología , Anafilaxia/epidemiología , Masculino , Femenino , Niño , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/complicaciones , Hipersensibilidad a los Alimentos/epidemiología , Frutas/efectos adversos , Frutas/inmunología , Preescolar , Alérgenos/inmunología , Lactante , Adolescente
10.
J Texture Stud ; 55(4): e12845, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992972

RESUMEN

In this study, Provence tomato variety was chosen for investigating the environmental causes of tomato fruit cracking, cracks characteristics, and their propagation prediction in a greenhouse. Fruit bagging approach was used to alter the temperature and humidity and to create a microclimate around the fruit to induce fruit cracking for testing. Results showed that the fruit cracking rate increased when the environment temperature exceeded 30°C, and the difference between the highest and lowest temperature values in a day was greater than 20°C. The cracking rate was aggravated when the difference between the highest and lowest humidity values in a day was less than 20%. The proportions of top cracking, longitudinal cracking, ring cracking, radial cracking, and combined cracking were 5.4%, 16.1%, 28.3%, 26.8%, and 32.1%, respectively. The fruit shoulder was the most susceptible region to crack, followed by fruit belly and top regions, whereas longer cracks were observed in the fruit belly region indicating a higher propensity to crack propagation in that region. Finally, the measured data were used to validate an extended finite element method developed to effectively predict cracking susceptibility and propagation in tomato fruit with a relative error of 4.68%.


Asunto(s)
Frutas , Solanum lycopersicum , Temperatura , Humedad , Ambiente
11.
Plant Mol Biol ; 114(4): 84, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995453

RESUMEN

Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.


Asunto(s)
Pared Celular , Frutas , Proteínas de Plantas , Pared Celular/metabolismo , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polisacáridos/metabolismo
12.
J Mass Spectrom ; 59(8): e5073, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38989767

RESUMEN

The fruits of Forsythia suspensa (F. suspensa) have been used as a traditional Chinese medicine for 2000 years. Currently, the quality control of F. suspensa strictly follows the instructions of Chinese Pharmacopeia, which mainly controls the content of forsythoside A, phillyrin, and volatile oil. In this study, air pressure MALDI mass spectrometry imaging (AP-MALDI MSI) was used to evaluate the quality of F. suspensa fruits and the distribution of dozens of active ingredients. The variation of active ingredients was measured for more than 30 batches of samples, regarding harvest time, cultivated environment, shelf-life, and habitat. Fifty-three active ingredients could be detected in F. suspensa fruits with AP-MALDI MSI. Seven active ingredients were upregulated, four ingredients downregulated, and 15 ingredients did not change in ripe fruits. A sharp variation of active ingredients in late September was observed for the Caochuan fruits harvested in 2019, which is closely related to the appearance of the ginger color of the pericarp under the microscope observation. The microscope observation is a reliable way to classify ripe and green fruits instead of outlook. Just considering forsythoside A and phillyrin, it is found that wild fruits are better than cultivated fruits, but cultivated fruits have high contents of other ingredients. The shelf-life of F. suspensa fruits is proposed to be 3 years, considering the 26 ingredients investigated. It was found that Luoning wild fruits are better than those from Caochuan with a new evaluation method. Mass spectrometry imaging is an easy, objective, and effective method to evaluate the quality of F. suspensa fruits.


Asunto(s)
Forsythia , Frutas , Glicósidos , Control de Calidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Forsythia/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Frutas/química , Glicósidos/análisis , Glucósidos/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Aceites Volátiles/análisis , Aceites Volátiles/química
13.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000287

RESUMEN

Cytochrome P450 enzymes are monooxygenases widely diffused in nature ranging from viruses to man. They can catalyze a very wide range of reactions, including the ketonization of C-H bonds, N/O/S-dealkylation, C-C bond cleavage, N/S-oxidation, hydroxylation, and the epoxidation of C=C bonds. Their versatility makes them valuable across various fields such as medicine, chemistry, and food processing. In this review, we aim to highlight the significant contribution of P450 enzymes to fruit quality, with a specific focus on the ripening process, particularly in grapevines. Grapevines are of particular interest due to their economic importance in the fruit industry and their significance in winemaking. Understanding the role of P450 enzymes in grapevine fruit ripening can provide insights into enhancing grape quality, flavor, and aroma, which are critical factors in determining the market value of grapes and derived products like wine. Moreover, the potential of P450 enzymes extends beyond fruit ripening. They represent promising candidates for engineering crop species that are resilient to both biotic and abiotic stresses. Their involvement in metabolic engineering offers opportunities for enhancing fruit quality attributes, such as taste, nutritional content, and shelf life. Harnessing the capabilities of P450 enzymes in crop improvement holds immense promise for sustainable agriculture and food security.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Frutas , Vitis , Sistema Enzimático del Citocromo P-450/metabolismo , Frutas/enzimología , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Vitis/enzimología , Vitis/metabolismo , Proteínas de Plantas/metabolismo
14.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000347

RESUMEN

Persimmon (Diospyros kaki Thunb.) fruit size variation is abundant. Studying the size of the persimmon fruit is helpful in improving its economic value. At present, the regulatory mechanism of persimmon fruit size formation is still unclear. In this study, the mechanism of fruit size formation was investigated through morphological, cytological and transcriptomic analyses, as well as exogenous ethrel and aminoethoxyinylglycine (AVG: ethylene inhibitor) experiments using the large fruit and small fruit of 'Yaoxianwuhua'. The results showed that stages 3-4 (June 11-June 25) are the crucial morphological period for differentiation of large fruit and small fruit in persimmon. At this crucial morphological period, the cell number in large fruit was significantly more than that in small fruit, indicating that the difference in cell number is the main reason for the differentiation of persimmon fruit size. The difference in cell number was caused by cell division. CNR1, ANT, LAC17 and EB1C, associated with cell division, may be involved in regulating persimmon fruit size. Exogenous ethrel resulted in a decrease in fruit weight, and AVG treatment had the opposite effect. In addition, LAC17 and ERF114 were upregulated after ethrel treatment. These results indicated that high ethylene levels can reduce persimmon fruit size, possibly by inhibiting cell division. This study provides valuable information for understanding the regulation mechanism of persimmon fruit size and lays a foundation for subsequent breeding and artificial regulation of fruit size.


Asunto(s)
Diospyros , Frutas , Regulación de la Expresión Génica de las Plantas , Diospyros/genética , Diospyros/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Perfilación de la Expresión Génica , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000469

RESUMEN

Coronavirus can cause various diseases, from mild symptoms to the recent severe COVID-19. The coronavirus RNA genome is frequently mutated due to its RNA nature, resulting in many pathogenic and drug-resistant variants. Therefore, many medicines should be prepared to respond to the various coronavirus variants. In this report, we demonstrated that Forsythia viridissima fruit ethanol extract (FVFE) effectively reduces coronavirus replication. We attempted to identify the active compounds and found that actigenin from FVFE effectively reduces human coronavirus replication. Arctigenin treatment can reduce coronavirus protein expression and coronavirus-induced cytotoxicity. These results collectively suggest that arctigenin is a potent natural compound that prevents coronavirus replication.


Asunto(s)
Forsythia , Frutas , Furanos , Lignanos , Extractos Vegetales , Replicación Viral , Forsythia/química , Lignanos/farmacología , Replicación Viral/efectos de los fármacos , Furanos/farmacología , Humanos , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Antivirales/farmacología , Antivirales/química , Animales , Chlorocebus aethiops , Células Vero
16.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000588

RESUMEN

Sand pear is the main cultivated pear species in China, and brown peel is a unique feature of sand pear. The formation of brown peel is related to the activity of the cork layer, of which lignin is an important component. The formation of brown peel is intimately associated with the biosynthesis and accumulation of lignin; however, the regulatory mechanism of lignin biosynthesis in pear peel remains unclear. In this study, we used a newly bred sand pear cultivar 'Xinyu' as the material to investigate the biosynthesis and accumulation of lignin at nine developmental stages using metabolomic and transcriptomic methods. Our results showed that the 30 days after flowering (DAF) to 50DAF were the key periods of lignin accumulation according to data analysis from the assays of lignin measurement, scanning electron microscope (SEM) observation, metabolomics, and transcriptomics. Through weighted gene co-expression network analysis (WGCNA), positively correlated modules with lignin were identified. A total of nine difference lignin components were identified and 148 differentially expressed genes (DEGs), including 10 structural genes (PAL1, C4H, two 4CL genes, HCT, CSE, two COMT genes, and two CCR genes) and MYB, NAC, ERF, and TCP transcription factor genes were involved in lignin metabolism. An analysis of RT-qPCR confirmed that these DEGs were involved in the biosynthesis and regulation of lignin. These findings further help us understand the mechanisms of lignin biosynthesis and provide a theoretical basis for peel color control and quality improvement in pear breeding and cultivation.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Lignina , Metaboloma , Pyrus , Transcriptoma , Lignina/biosíntesis , Lignina/metabolismo , Pyrus/genética , Pyrus/metabolismo , Pyrus/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Redes y Vías Metabólicas , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Sci Rep ; 14(1): 16848, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039263

RESUMEN

Pomegranate is an important fruit crop that is usually managed manually through experience. Intelligent management systems for pomegranate orchards can improve yields and address labor shortages. Fast and accurate detection of pomegranates is one of the key technologies of this management system, crucial for yield and scientific management. Currently, most solutions use deep learning to achieve pomegranate detection, but deep learning is not effective in detecting small targets and large parameters, and the computation speed is slow; therefore, there is room for improving the pomegranate detection task. Based on the improved You Only Look Once version 5 (YOLOv5) algorithm, a lightweight pomegranate growth period detection algorithm YOLO-Granada is proposed. A lightweight ShuffleNetv2 network is used as the backbone to extract pomegranate features. Using grouped convolution reduces the computational effort of ordinary convolution, and using channel shuffle increases the interaction between different channels. In addition, the attention mechanism can help the neural network suppress less significant features in the channels or space, and the Convolutional Block Attention Module attention mechanism can improve the effect of attention and optimize the object detection accuracy by using the contribution factor of weights. The average accuracy of the improved network reaches 0.922. It is only less than 1% lower than the original YOLOv5s model (0.929) but brings a speed increase and a compression of the model size. and the detection speed is 17.3% faster than the original network. The parameters, floating-point operations, and model size of this network are compressed to 54.7%, 51.3%, and 56.3% of the original network, respectively. In addition, the algorithm detects 8.66 images per second, achieving real-time results. In this study, the Nihui convolutional neural network framework was further utilized to develop an Android-based application for real-time pomegranate detection. The method provides a more accurate and lightweight solution for intelligent management devices in pomegranate orchards, which can provide a reference for the design of neural networks in agricultural applications.


Asunto(s)
Algoritmos , Frutas , Redes Neurales de la Computación , Granada (Fruta) , Granada (Fruta)/química , Aprendizaje Profundo
18.
Food Microbiol ; 123: 104581, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038887

RESUMEN

The rot caused by pathogens during the storage of table grapes is an important factor that affects the development of the grape industry and food safety, and it cannot be ignored. The development of innovative methods for pathogen control should be based on a comprehensive understanding of the overall microbial community changes that occur during grape storage. The study aims to investigate the relationship between the native microbiota (including beneficial, pathogenic and spoilage microorganisms) on grape surfaces and the development of disease during grape storage. In this study, the bacteria and fungi present on grape surfaces were analyzed during storage under room temperature conditions using high-throughput sequencing. During the storage of grapes at room temperature, observable diseases and a noticeable decrease in quality were observed at 8 days. Microbial community analysis showed that 4996 bacterial amplicon sequence variants (ASVs) and 488 fungal ASVs were determined. The bacterial richness exhibited an initial increase followed by a subsequent decrease. However, the diversity exhibited a distinct pattern of gradual decrease. The fungal richness and community diversity both exhibit a gradual decrease during the storage of grapes. Fungal ß-diversity analysis showed that despite the absence of rot and the healthy state of grapes on the first and fourth days, the fungal ß-diversity exhibited a significant difference. The analysis of changes in genera abundances suggested that Candidatus Profftella and Aspergillus exhibited dominance in the rotting grape at 16 days, which are the main pathogens that caused disease in the present study. The co-occurrence networks among the microbial showed that the Candidatus proftella genera has a positive correlation with Aspergillus niger, indicating that they work together to cause disease and promote growth in grapes. Predicting the function of bacterial communities found that the microorganisms associated with lipid metabolism at 4 days play an important role in the process of postharvest decay of grapes.


Asunto(s)
Bacterias , Almacenamiento de Alimentos , Hongos , Microbiota , Vitis , Vitis/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/crecimiento & desarrollo , Frutas/microbiología , Enfermedades de las Plantas/microbiología , Microbiología de Alimentos , Secuenciación de Nucleótidos de Alto Rendimiento , Biodiversidad
19.
Food Microbiol ; 123: 104582, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038888

RESUMEN

One of the best-known Hungarian products on world wine market is Aszú, which belongs to the family of Tokaj wine specialties and is made from aszú berries. An important condition for the formation of aszú berries is the noble rot of technologically mature grapes, which is caused by Botrytis cinerea. At the same time botrytized sweet wines are produced not only in Hungary, but in many locations of wine-producing areas of Europe as well as in certain wine growing regions of other continents. The determination of botrytization is mostly based on sensory evaluations, which is a highly subjective procedure and largely depends on the training and experience of the evaluator. Currently, the classification of aszú berries (class I and class II) is based only on visual inspection and determination of sugar content. Based on these facts the primary goal of our work was to develop a qPCR assay capable for objective rating and classification of aszú berries. The developed qPCR is highly specific and sensitive as can clearly distinguish between B. cinerea and other filamentous fungi and yeast species occur on grapes. Moreover, it is suitable for categorizing berries colonized by B. cinerea to varying degrees. Thus, the developed qPCR method can be a useful technique for classification of the grape berries into four quality groups: healthy, semi-shrivelled, Aszú Class II and Aszú Class I.


Asunto(s)
Botrytis , Frutas , Vitis , Vino , Vitis/microbiología , Vino/microbiología , Vino/análisis , Frutas/microbiología , Botrytis/genética , Botrytis/clasificación , Botrytis/aislamiento & purificación , Hungría , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Enfermedades de las Plantas/microbiología
20.
Food Microbiol ; 123: 104592, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038884

RESUMEN

Vegetable and fruit contamination is recognized as a significant parasite transmission route. This review presents the current state of vegetables ad fruits contamination with food-borne parasitic protozoa worldwide. We consider the methodologies and strategies for detecting parasitic stages developed in the last decade and the contamination data. Asia had the highest number of reports (94 studies), followed by Africa (74 studies). At the country level, with 41 studies, Iran had the most reports among other countries, followed by Nigeria (28 studies). According to the studies included in the current review, 41.22% of vegetables and fruits were contaminated with different species of protozoan parasites. Among different continents, Asia accounted for the highest contamination rate of protozoan parasites (57.12%). Giardia spp. (10%) had the highest contamination rate in vegetables and fruits, followed by Entamoeba coli (8%), E. histolytica/dispar (7%), and Cryptosporidium spp. (6%). This study provides essential data for health authorities to develop food safety programs. The presence of protozoan parasites in fruits and vegetables highlights the critical need for maintaining rigorous food safety measures across the entire production and distribution process, particularly in countries that are major producers and distributors of these food items.


Asunto(s)
Contaminación de Alimentos , Frutas , Verduras , Verduras/parasitología , Frutas/parasitología , Contaminación de Alimentos/análisis , Humanos , Animales , Inocuidad de los Alimentos , Parasitología de Alimentos , Cryptosporidium/aislamiento & purificación , Cryptosporidium/genética , Parásitos/aislamiento & purificación , Parásitos/clasificación , Parásitos/genética , Giardia/aislamiento & purificación , Giardia/genética , Entamoeba/aislamiento & purificación , Entamoeba/genética , Asia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA