Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.975
Filtrar
1.
Int J Nanomedicine ; 16: 1757-1773, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33688190

RESUMEN

Background: NiO nanoparticles have attracted much attention due to their unique properties. They have been synthesized using chemical and physical techniques that often need toxic chemicals. These toxic chemicals cannot easily be removed from the nanoparticle's surface, make them less biocompatible, and limit their biological applications. Instead, plants based green synthesis of nanoparticles uses phytomolecules as reducing and capping agents. These phytomolecules are biologically active with no or less toxic effects. Materials and Methods: Phytomolecules-coated NiO nanoparticles were synthesized employing a green route using Abutilon indicum leaf extract. For comparative study, we also have synthesized NiO nanoparticles using the co-precipitation method. Synthesized nanoparticles were successfully characterized using different spectroscopic techniques. The synthesized nanoparticles were evaluated for antibacterial activity with agar well diffusion assay against different bacteria compared to standard drug and plant extract. They are also examined for anticancer potential using MTT assay against HeLa cancer cells, and further, their antioxidant potential was determined using DPPH assay. Biocompatibility of the synthesized nanoparticles was assessed against fibroblast cells. Results: Phytomolecules-coated NiO nanoparticles were demonstrated superior antibacterial and anticancer performance against bacteria (E. coli, B. bronchiseptica, B. subtilis, and S. aureus) by presenting highest zone of inhibitions (18 ± 0.58 mm, 21 ± 0.45 mm, 22 ± 0.32 mm, and 23 ± 0.77 mm) and HeLa cancer cells by exhibiting the least cell viability percentage (51.74 ± 0.35%) compared to plant extract and chemically synthesized NiO nanoparticles but were comparable to standard antibiotic and anticancer drugs, respectively. Phytomolecules-coated NiO nanoparticles were also demonstrated excellent antioxidant activity (79.87 ± 0.43% DPPH inhibition) and biocompatibility (> 90% cell viability) with fibroblast cells. Conclusion: Nanoparticle synthesis using the Abutilon indicum leaf extract is an efficient and economical method, produces biocompatible and more biologically active nanoparticles, which can be an excellent candidate for therapeutic applications.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Malvaceae/química , Nanopartículas del Metal/química , Fitoquímicos/química , Extractos Vegetales/química , Hojas de la Planta/química , Bacterias/efectos de los fármacos , Compuestos de Bifenilo/química , Fibroblastos/efectos de los fármacos , Tecnología Química Verde , Células HeLa , Humanos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Picratos/química , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Difracción de Rayos X
2.
Int J Mol Sci ; 22(4)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33670070

RESUMEN

The present study aimed to investigate the enzymatic potential of Silybum marianum leaves to bioconvert phenolic acids produced in S. marianum callus into silymarin derivatives as chemopreventive agent. Here we demonstrate that despite the fact that leaves of S. marianum did not accumulate silymarin themselves, expanding leaves had the full capacity to convert di-caffeoylquinic acid to silymarin complex. This was proven by HPLC separations coupled with electrospray ionization mass spectrometry (ESI-MS) analysis. Soaking the leaf discs with S. marianum callus extract for different times revealed that silymarin derivatives had been formed at high yield after 16 h. Bioconverted products displayed the same retention time and the same mass spectra (MS or MS/MS) as standard silymarin. Bioconversion was achieved only when using leaves of a specific age, as both very young and old leaves failed to produce silymarin from callus extract. Only medium leaves had the metabolic capacity to convert callus components into silymarin. The results revealed higher activities of enzymes of the phenylpropanoid pathway in medium leaves than in young and old leaves. It is concluded that cotyledon-derived callus efficiently produces compounds that can be bio-converted to flavonolignans in leaves tissue of S. marianum.


Asunto(s)
Cardo Lechoso/química , Fitoquímicos/farmacología , Hojas de la Planta/química , Silimarina/farmacología , Extractos Vegetales/química , Hojas de la Planta/enzimología , Espectrometría de Masa por Ionización de Electrospray , Temperatura
3.
Methods Mol Biol ; 2259: 49-57, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33687708

RESUMEN

Proteomics is one of the key approaches to understand plant cell physiology involving the regulation of expression of many genes and metabolite production. Technical advances allowed a deeper characterization of plant proteomes, highlighting the need to study cellular compartments. The apoplast is the cellular compartment external to the plasma membrane including the cell wall, where a broad range of processes take place including intercellular signaling, metabolite transport, and plant-microbe interactions. Due to the fragile nature of leaf tissues, it is a challenge to obtain apoplastic fluids from leaves while maintaining cell integrity, which is particularly true for woody plants. Here, we describe the vacuum infiltration-centrifugation (VIC) method for the extraction of the apoplastic fluid compatible with high-throughput proteomic approaches and biochemical analysis from different woody plants.


Asunto(s)
Coffea/química , Hojas de la Planta/química , Proteínas de Plantas/aislamiento & purificación , Vitis/química , Pared Celular/química , Centrifugación/métodos , Proteínas de Plantas/análisis , Proteómica/métodos , Vacio
4.
Sci Total Environ ; 771: 144812, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33736168

RESUMEN

Atmospheric particulate matter (PM) is one of the main environmental air pollutants, but it can be retained and adsorbed by plants. To systematically and comprehensively conduct qualitative and quantitative research on the relationship between the leaf PM retention ability and the microstructure of leaf surfaces, this study evaluated the PM retention abilities of ten common tree species (1860 leaf pieces in total) in the greenbelts around the Lin'an toll station of the Hang-Rui Expressway in Hangzhou, China, in October 2019. The leaf surface roughness and contact angle were measured with confocal laser scanning microscopy and a contact angle measuring instrument. Scanning electron microscopy was applied to collect data on the stomata and groove morphology. The PM retention ability of the leaves was assessed by quantifying the PM mass and number density on the leaves. The results revealed that Platanus acerifolia and Sapindus mukorossi had a strong ability to retain particulates of different sizes. The mass of the retained PM2.5 on their leaves accounted for the lowest proportion (mean: 8.12%) among the total retained particulate mass, but the number density of the retained PM2.5 accounted for the highest proportion (mean: 97.49%) among the total number density. A significant negative correlation between the PM2.5 mass and the groove width on the adaxial surface (R2 = 0.746, P < 0.05) and a significant positive correlation between the roughness and the PM number density on the adaxial surface (R2 = 0.702, P < 0.01) were observed. No obvious correlations were found among the groove width, roughness and number density of the retained PM on the abaxial surface. Leaf surfaces with dense and narrow grooves, strip-like projections, high roughness and high wettability had strong retention abilities. This study can provide a theoretical reference for selecting plants with strong PM retention ability for green urban garden design.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Material Particulado/análisis , Hojas de la Planta/química , Árboles
5.
Sci Total Environ ; 769: 145080, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33736256

RESUMEN

Eugenia uniflora L. is an important fruit tree native to tropical South America that adapts to different habitats, thanks to its metabolic diversity and ability to adjust the leaf antioxidant metabolism. We hypothesized that this metabolic diversity would also enable E. uniflora to avoid oxidative damage and tolerate the enhanced ozone (O3) concentrations that have been registered in the (sub)tropics. We investigated whether carbohydrates, polyphenols and antioxidants are altered and markers of oxidative damage (ROS accumulation, alterations in leaf gas exchange, growth and biomass production) are detected in plants exposed to two levels of O3 (ambient air and twice elevated ozone level in a O3-FACE system for 75 days). Phytotoxic O3 dose above a threshold of 0 nmol m-2 s-1 (POD0) and accumulated exposure above 40 ppb (AOT40) were 3.6 mmol m-2 and 14.898 ppb h at ambient, and 4.7 mmol m-2 and 43.881 ppb h at elevated O3. Twenty-seven primary metabolites and 16 phenolic compounds were detected in the leaves. Contrary to the proposed hypothesis that tropical broadleaf trees are relatively O3 tolerant, we concluded that E. uniflora plants are sensitive to elevated O3 concentrations. Experimental POD0 values were lower than the critical levels for visible foliar O3, because of low stomatal conductance. In spite of this low stomatal O3 uptake, we found classic O3 injury, e.g. reduction in carbohydrates and fatty acids concentrations; non-significant changes in the polyphenol profile; inefficient antioxidant responses; increased contents of ROS and indicators of lipid peroxidation; reductions in stomatal conductance, net photosynthesis, root/shoot ratio and height growth. However, we also found some compensation mechanisms, e.g. increased leaf concentration of polyols for protecting the membranes, and increased leaf number for compensating the decline of photosynthetic rate. These results help filling the knowledge gap about tropical tree responses to O3.


Asunto(s)
Contaminantes Atmosféricos , Eugenia , Ozono , Contaminantes Atmosféricos/análisis , Ozono/análisis , Fotosíntesis , Hojas de la Planta/química , América del Sur , Árboles
6.
Molecules ; 26(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671830

RESUMEN

The QuEChERS method was applied to the determination of pesticide residues in vine (Vitis vinifera) leaves by LC-MSMS. The method was validated in-house for 33 pesticides representing 17 different chemical groups, that are most commonly used in grape production. Recoveries for the pesticides tested ranged from 75 to 104%, and repeatability and reproducibility relative standard deviations (RSDr% and RSDRw%) were less than 20%. The method was applied to the analysis of pesticide residues in 17 market brands of vine leaves processed according to three different preservation methods and sampled from the Lebanese market. Dried vine leaves were more contaminated with pesticide residues than those preserved in brine or stuffed vine leaves. The systemic fungicides were the most frequently detected among all the phytosanitary compounds usually applied to grape production. Brine-preserved and stuffed vine leaves contained lower concentrations of the residues but still contained a cocktail of different pesticides.


Asunto(s)
Residuos de Plaguicidas/análisis , Hojas de la Planta/química , Vitis/química , Cromatografía Liquida , Espectrometría de Masas en Tándem
7.
Molecules ; 26(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672673

RESUMEN

In this study, the changes in free amino acids of soybean leaves after ethylene application were characterized based on quantitative and metabolomic analyses. All essential and nonessential amino acids in soybean leaves were enhanced by fivefold (250 to 1284 mg/100 g) and sixfold (544 to 3478 mg/100 g), respectively, via ethylene application. In particular, it was found that asparagine is the main component, comprising approximately 41% of the total amino acids with a twenty-five fold increase (78 to 1971 mg/100 g). Moreover, arginine and branched chain amino acids (Val, Leu, and Ile) increased by about 14 and 2-5 times, respectively. The increase in free amino acid in stem was also similar to the leaves. The metabolites in treated and untreated soybean leaves were systematically identified by gas chromatography-mass spectrometry (GC-MS), and partial variance discriminant analysis (PLS-DA) scores and heat map analysis were given to understand the changes of each metabolite. The application of ethylene may provide good nutrient potential for soybean leaves.


Asunto(s)
Aminoácidos/metabolismo , Etilenos/metabolismo , Soja/química , Aminoácidos/química , Análisis Discriminante , Etilenos/química , Cromatografía de Gases y Espectrometría de Masas , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Soja/metabolismo
8.
Molecules ; 26(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669133

RESUMEN

This study investigated the effects of Tiliacora triandra (Colebr.) Diels aqueous extract (TTE) on hepatic glucose production in hepatocellular carcinoma (HepG2) cells and type 2 diabetic (T2DM) conditions. HepG2 cells were pretreated with TTE and its major constituents found in TTE, epicatechin (EC) and quercetin (QC). The hepatic glucose production was determined. The in vitro data were confirmed in T2DM rats, which were supplemented daily with 1000 mg/kg body weight (BW) TTE, 30 mg/kg BW metformin or TTE combined with metformin for 12 weeks. Results demonstrate that TTE induced copper-zinc superoxide dismutase, glutathione peroxidase and catalase genes, similarly to EC and QC. TTE decreased hepatic glucose production by downregulating phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and increasing protein kinase B and AMP-activated protein kinase phosphorylation in HepG2 cells. These results correlated with the antihyperglycemic, antitriglyceridemic, anti-insulin resistance, and antioxidant activities of TTE in T2DM rats, similar to the metformin and combination treatments. Consistently, impairment of hepatic gluconeogenesis in T2DM rats was restored after single and combined treatments by reducing PEPCK and G6Pase genes. Collectively, TTE could potentially be developed as a nutraceutical product to prevent glucose overproduction in patients with obesity, insulin resistance, and diabetes who are being treated with antidiabetic drugs.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa/antagonistas & inhibidores , Hipoglucemiantes/farmacología , Menispermaceae/química , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Glucosa/biosíntesis , Células Hep G2 , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Inyecciones Intraperitoneales , Masculino , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Estreptozocina/administración & dosificación , Células Tumorales Cultivadas , Agua/química
9.
Molecules ; 26(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670315

RESUMEN

Arabian flora is a rich source of bioactive compounds. In this study, we investigated three aromatic plant species with the aim of finding valuable sources of antimicrobial agents against common pathogenic microorganisms. We focused especially on microorganisms, which cause outbreaks of infectious disease during mass gatherings and pilgrimages season in Saudi Arabia. The essential oils of three aromatic plant species were hydrodistilled from flowering aerial parts of Lavandula pubescens Decne. and Pulicaria incisa subsp. candolleana E.Gamal-Eldin, and from leaves, stems, ripe and unripe fruits of Juniperus procera Hochst. Ex Endl. They were subsequently analyzed by gas chromatography-mass spectrometry (GC-MS). The main constituents of L. pubescens were found to be carvacrol (55.7%), methyl carvacrol (13.4%), and ß-bisabolene (9.1%). P. incisa subsp. Candolleana essential oil was rich in linalool (33.0%), chrysanthenone (10.3%), eugenol (8.9%), and cis-chrysanthenol (8.0%); the major components of J. procera essential oil were α-pinene (31.3-62.5%) and δ-3-carene (7.3-30.3%). These essential oils were tested against thirteen American Type Culture Collection (ATCC) strains of Gram-positive and Gram-negative bacteria using the agar diffusion assay. The only effective essential oil was that of L. pubescens and the most sensitive strains were Acinetobacter baumannii, Salmonella typhimurium, Shigella sonnei, Enterococcus faecalis and Staphylococcus epidermidis. Carvacrol, the major constituent of L. pubescens, was tested on these strains and was compared with vancomycin, amikacin, and ciprofloxacin. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays of L. pubescens essential oil and carvacrol revealed that Gram-negative strains were more susceptible than the Gram-positive ones.


Asunto(s)
Juniperus/química , Lavandula/química , Aceites Volátiles/química , Aceites Vegetales/química , Pulicaria/química , Antibacterianos/química , Antibacterianos/farmacología , Cimenos/química , Cimenos/farmacología , Enterococcus faecalis/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Componentes Aéreos de las Plantas/química , Hojas de la Planta/química , Aceites Vegetales/farmacología , Arabia Saudita , Staphylococcus aureus/efectos de los fármacos
10.
Molecules ; 26(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670350

RESUMEN

The roots of Fissistigma oldhamii (FO) are widely used as medicine with the effect of dispelling wind and dampness, promoting blood circulation and relieving pains, and its fruits are considered delicious. However, Hakka people always utilize its above-ground parts as a famous folk medicine, Xiangteng, with significant differences from literatures. Studies of chemical composition showed there were multiple aristolactams that possessed high nephrotoxicity, pending evaluation research about their distribution in FO. In this study, a sensitive, selective, rapid and reliable method was established to comparatively perform qualitative and semi-quantitative analysis of the constituents in roots, stems, leaves, fruits and insect galls, using an Ultra-High-Performance Liquid Chromatography coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry (UPLC-Q-Exactive Orbitrap MS, or Q-Exactive for short). To make more accurate identification and comparison of FO chemicals, all MS data were aligned and screened by XCMS, then their structures were elucidated according to MSn ion fragments between the detected and standards, published ones or these generated by MS fragmenter. A total of 79 compounds were identified, including 33 alkaloids, 29 flavonoids, 11 phenylpropanoids, etc. There were 54 common components in all five parts, while another 25 components were just detected in some parts. Six toxic aristolactams were detected in this experiment, including aristolactam AII, AIIIa, BII, BIII, FI and FII, of which the relative contents in above-ground stems were much higher than roots. Meanwhile, multivariate statistical analysis was performed and showed significant differences both in type and content of the ingredients within all FO parts. The results implied that above-ground FO parts should be carefully valued for oral administration and eating fruits. This study demonstrated that the high-resolution mass spectrometry coupled with multivariate statistical methods was a powerful tool in compound analysis of complicated herbal extracts, and the results provide the basis for its further application, scientific development of quality standard and utilization.


Asunto(s)
Annonaceae/química , Medicamentos Herbarios Chinos/química , Hojas de la Planta/química , Raíces de Plantas/química , Alcaloides/química , Alcaloides/uso terapéutico , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Espectrometría de Masas en Tándem
11.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670565

RESUMEN

Optimization of the extraction conditions of polyphenolic compounds for different parts of the Damas species, Conocarpus lancifolius and Conocarpus erectus, grown under UAE conditions was studied. The combination of ethanol concentration (50, 75, and 100%), temperature (45, 55, and 65 °C) and time (1, 2, and 3 h) was used by applying the Response Surface Methodology. The data showed that the extracts (n = 90) contained phenolic compounds, flavonoids, and tannins, and were free of alkaloids. Changing the extraction conditions had a significant effect on the detection of phytosterols, saponins, and glycosides and on the solubility of vanillic acid, p-coumaric acid, sinapic acid, t-ferulic acid, rutin hydrate, protocatechuic acid, quercetin, and flavone. The data reveal that the roots and leaves of C. erectus and the leaves and fruits of C.lancifolius are the most important plant parts from which to extract these compounds. This study draws attention to the unordinary use of Conocarpus spp. as a source of natural food additive.


Asunto(s)
Antioxidantes/análisis , Combretaceae/química , Fenoles/análisis , Fitoquímicos/análisis , Frutas/química , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Polifenoles/aislamiento & purificación
12.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670795

RESUMEN

Adenia viridiflora Craib. is an indigenous edible plant that became an endangered species due to limited consumption of the local population with unknown reproduction and growth conditions. The plant is used as a traditional herb; however, its health applications lack scientific-based evidence. A. viridiflora Craib. plant parts (old leaves and young shoots) from four areas as Kamphaeng Phet (KP), Muang Nakhon Ratchasima (MN), Pakchong Nakhon Ratchasima (PN), and Uthai Thani (UT) origins were investigated for phenolic compositions and in vitro health properties through the inhibition of key enzymes relevant to obesity (lipase), diabetes (α-glucosidase and dipeptidyl peptidase-IV), Alzheimer's disease (cholinesterases and ß-secretase), and hypertension (angiotensin-converting enzyme). Phenolics including p-coumaric acid, sinapic acid, naringenin, and apigenin were detected in old leaves and young shoots in all plant origins. Old leaves exhibited higher total phenolic contents (TPCs) and total flavonoid contents (TFCs), leading to higher enzyme inhibitory activities than young shoots. Besides, PN and MN with higher TPCs and TFCs tended to exhibit greater enzyme inhibitory activities than others. These results will be useful to promote this plant as a healthy food with valuable medicinal capacities to support its consumption and agricultural stimulation, leading to sustainable conservation of this endangered species.


Asunto(s)
Enfermedad , Passifloraceae/química , Fitoterapia , Extractos Vegetales/química , Agua/química , Animales , Antioxidantes/análisis , Candida/enzimología , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Flavonoides/análisis , Caballos , Humanos , Hipertensión/tratamiento farmacológico , Fenoles/análisis , Hojas de la Planta/química , Brotes de la Planta/química , Conejos , Saccharomyces cerevisiae/enzimología , Solventes
13.
Molecules ; 26(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673167

RESUMEN

The leaves of Homalomena aromatica are traditionally used in Bangladesh for the treatment of different chronic ailments. The purpose of this study was to explore in vitro antioxidant, thrombolytic activities, and in vivo neuropharmacological effects of methanolic extract of Homalomena aromatica (MEHA) leaves. Antioxidant activity of MEHA was assessed by a DPPH free radical scavenging assay and total phenolics content, total flavonoids content were also measured. The thrombolytic activity was determined by percentage of clot lysis and neuropharmacological activities by hole board, tail suspension, forced swimming and elevated plus maze tests. The results showed that the IC50 value of the extract against DPPH was 199.51 µg/mL. Quantitative analysis displayed higher contents of phenolics and flavonoids (147.71 mg gallic acid equivalent/g & 66.65 mg quercetin equivalent/g dried extract, respectively). The extract also showed a significant clot lysis (33.31%) activity. In case of anxiolytic activity, the elevate plus maze (EPM) test demonstrated an increase in time spent in open arms, and in case of hole board test, the number of head dipping was also significantly increased (p < 0.05). All the test compared with control (1% Tween in water) and standard (diazepam 1 mg/kg), significant dose (200 & 400 mg/kg) dependent anxiolytic activity was found. In antidepressant activity, there was a significant decrease in period of immobility in both test models (tail suspension and forced swimming) (p < 0.05). Moreover, 13 compounds were identified as bioactive, showed good binding affinities to xanthine oxidoreductase, tissue plasminogen activator receptor, potassium channel receptor, human serotonin receptor targets in molecular docking experiments. Furthermore, ADME/T analysis revealed their drug-likeness, likely pharmacological actions and non-toxic upon consumption. Taken together, our finding support the traditional medicinal use of this plant, which may provide a potential source for future drug discovery.


Asunto(s)
Antioxidantes/química , Araceae/química , Fibrinolíticos/química , Extractos Vegetales/química , Animales , Antidepresivos/química , Antidepresivos/farmacología , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Simulación por Computador , Tiempo de Lisis del Coágulo de Fibrina , Fibrinolíticos/farmacología , Flavonoides/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Humanos , Ratones , Simulación del Acoplamiento Molecular , Neurofarmacología , Fenoles/química , Picratos/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Receptores de Serotonina/química , Antagonistas de la Serotonina/química , Antagonistas de la Serotonina/farmacología , Natación
14.
Food Chem ; 352: 129346, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711729

RESUMEN

This study evaluates the use of deep eutectic solvents (DES) prepared with choline chloride ([Ch]Cl) and carboxylic acids for phenolic compound extraction from olive leaves. These extracts were then compared to those obtained using ethanol. The effects of temperature and water addition during DES- and ethanol-based extractions were analyzed using response surface methodology. Due to the lack of solid-liquid equilibrium (SLE) data for [Ch]Cl + acetic acid, SLE, and DES density and viscosity with and without water addition were measured and analyzed. [Ch]Cl:acetic acid (54.1 °C, 50.0% water addition) extracted 15% more phenolic compounds than ethanol (54.1 °C, 0.5% water addition), according to UHPLC-MS based analyses. SLE analyses showed that [Ch]Cl + acetic acid presented a eutectic region at close to a 1:2 molar ratio. DES precursors and water addition influenced solvent physical properties and phenolic compound yield. DES was confirmed to be an innovative, strong solvent for phenolic compound extraction from olive leaves.


Asunto(s)
Fraccionamiento Químico/métodos , Colina/química , Olea/química , Fenoles/aislamiento & purificación , Hojas de la Planta/química , Solventes/química , Fenoles/análisis , Agua/química
15.
Molecules ; 26(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652855

RESUMEN

Head group-acylated chloroplast lipids were discovered in the 1960s, but interest was renewed about 15 years ago with the discovery of Arabidopsides E and G, acylated monogalactosyldiacylglycerols with oxidized fatty acyl chains originally identified in Arabidopsis thaliana. Since then, plant biologists have applied the power of mass spectrometry to identify additional oxidized and non-oxidized chloroplast lipids and quantify their levels in response to biotic and abiotic stresses. The enzyme responsible for the head-group acylation of chloroplast lipids was identified as a cytosolic protein closely associated with the chloroplast outer membrane and christened acylated galactolipid-associated phospholipase 1 (AGAP1). Despite many advances, critical questions remain about the biological functions of AGAP1 and its head group-acylated products.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/química , Galactolípidos/química , Lípidos de la Membrana/química , Acilación , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/sangre , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Galactolípidos/genética , Galactolípidos/metabolismo , Lípidos de la Membrana/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Estrés Fisiológico/genética
16.
Molecules ; 26(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652887

RESUMEN

Although several natural plants and mixtures have been known and used over the centuries for their antibacterial activity, few have been thoroughly explored in the field of dentistry. Thus, the aim of this study was to enhance the antimicrobial activity of a conventional glass ionomer cement (GIC) with natural plant extracts. The effect of this alteration on the bond strength and film thickness of glass ionomer cement was evaluated and related to an 0.5% chlorohexidine modified GIC. Olive leaves (Olea europaea), Fig tree (Ficus carica), and the leaves and roots of Miswak (Salvadora persica) were used to prepare an alcoholic extract mixture. The prepared extract mixture after the evaporation of the solvent was used to modify a freeze-dried glass ionomer cement at three different extracts: water mass ratios 1:2, 1:1, and 2:1. An 0.5% chlorhexidine diacetate powder was added to a conventional GIC for the preparation of a positive control group (CHX-GIC) for comparison. The bond strength to dentine was assessed using a material-testing machine at a cross head speed of 0.5 mm/min. Failure mode was analyzed using a stereomicroscope at 12× magnification. The cement film thickness was evaluated in accordance with ISO standard 9917-1. The minimum number of samples in each group was n = 10. Statistical analysis was performed using a Kruskal-Wallis test followed by Dunn's post hoc test for pairwise comparison. There was a statistically insignificant difference between the median shear bond strength (p = 0.046) of the control group (M = 3.4 MPa), and each of the CHX-GIC (M = 1.7 MPa), and the three plant modified groups of 1:2, 1:1, 2:1 (M = 5.1, 3.2, and 4.3 MPa, respectively). The CHX-GIC group showed statistically significant lower median values compared to the three plant-modified groups. Mixed and cohesive failure modes were predominant among all the tested groups. All the tested groups (p < 0.001) met the ISO standard of having less than 25 µm film thickness, with the 2:1 group (M = 24 µm) being statistically the highest among all the other groups. The plant extracts did not alter either the shear bond strength or the film thickness of the GIC and thus might represent a promising additive to GICs.


Asunto(s)
Antiinfecciosos/química , Cementos Dentales/química , Cementos de Ionómero Vitreo/química , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Clorhexidina/química , Clorhexidina/farmacología , Cementos Dentales/farmacología , Dentina/química , Dentina/microbiología , Ficus/química , Cementos de Ionómero Vitreo/farmacología , Humanos , Ensayo de Materiales , Olea/química , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Salvadoraceae/química , Resistencia al Corte , Propiedades de Superficie
17.
Molecules ; 26(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652969

RESUMEN

Cytotoxic flavonoids of Murraya tetramera were investigated in this study. A novel flavonoid and twelve known flavonoids, including seven flavones (1-7), three flavanones (8-10), and three chalcones (11-13) were isolated from the leaves and twigs of Murraya tetramera. Chemical structures were elucidated by NMR combined with MS spectral analysis, and the new compound (6) was confirmed as 3',5'-dihydroxy-5,6,7,4'-tetramethoxyflavone. Furthermore, all the isolated flavonoids were evaluated for their cytotoxicities against murine melanoma cells (B16), and human breast cancer cells (MDA-MB-231) by CCK-8 assay. Among them, compounds 7, 13, and 5 exhibited potent cytotoxic activities against B16 cell lines (IC50 = 3.87, 7.00 and 8.66 µg/mL, respectively). Compounds 5, 13, and 12 displayed potent cytotoxicities against MDA-MB-231 cell lines (IC50 = 3.80, 5.95 and 7.89 µg/mL, respectively). According to the correlation of the structure and activity analysis, 5-hydroxyl and 8-methoxyl substituents of the flavone, 8-methoxyl substituent of the flavanone, and 3',5'-methoxyl substituents of the chalcone could be critical factors of the high cytotoxicity. The results indicated that the active flavonoids have potential to be developed as leading compounds for treating cancers.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Flavonoides/farmacología , Murraya/química , Animales , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chalconas/química , Chalconas/farmacología , Femenino , Flavonoides/química , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Ratones , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química
18.
Int J Nanomedicine ; 16: 2045-2058, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33731993

RESUMEN

Background: Carbon dots (CDs) emitting near-infrared fluorescence were recently synthesized from green leaves. However, the Hg2+ detection of CDs was limited because of the insufficient water solubility, low fluorescence and poor stability. Methods: Dual fluorescence emission water-soluble CD (Dual-CD) was prepared through a solvothermal method from holly leaves and low toxic PEI1.8k. PEG was further grafted onto the surface to improve the water solubility and stability. Results: The Dual-CD solution can emit 487 nm and 676 nm fluorescence under single excitation and exhibit high quantum yield of 16.8%. The fluorescence at 678 nm decreased remarkably while the emission at 470 nm was slightly affected by the addition of Hg2+. The ratiometric Hg2+ detection had a wide linear range of 0-100 µM and low detection limit of 14.0 nM. In A549 cells, there was a good linear relation between F487/F676 and the concentration of Hg2+ in the range of 0-60 µM; the detection limit was 477 nM. Furthermore, Dual-CD showed visual fluorescence change under Hg2+. Conclusion: Dual-CD has ratiometric responsiveness to Hg2+ and can be applied for quantitative Hg2+ detection in living cells.


Asunto(s)
Carbono/química , Ilex/química , Mercurio/análisis , Hojas de la Planta/química , Puntos Cuánticos/química , Agua/química , Células A549 , Supervivencia Celular , Humanos , Iones , Fenómenos Ópticos , Espectroscopía de Fotoelectrones , Puntos Cuánticos/ultraestructura , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
19.
Carbohydr Polym ; 259: 117762, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674015

RESUMEN

Biopolymer-based nanomaterials have been developed as antimicrobial and anticancer agents due to their advanced physical, chemical and biomedical characteristics. Herein, chitosan-copper oxide nanomaterial was, successfully synthesized by a green method. In this process, copper salt was nucleated with Psidium guajava leaves extract in order to form the nanomaterial in the chitosan network. Attenuated total reflection-fourier transform, infrared spectroscopy, X-ray diffraction, Dynamic light scattering, Transmission electron microscope, Field emission scanning electron microscopy/Energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques were, employed to characterize the synthesized nanomaterial. The average size of the nanomaterial was identified to be ∼52.49 nm with XRD. The antibacterial study of CCuO NM showed higher activity than the commercial amoxicillin against gram-positive (G + ve) (Staphylococcus aureus, Bacillus subtilis) and gram-negative (G-ve) bacteria (Klebsiella pneumonia, Escherichia coli). CCuO NM showed in-vitro anticancer potential against human cervical cancer cells (Hela) with an IC50 concentration of 34.69 µg/mL. Photoluminescence spectrum of CCuO NM showed a green emission (oxygen vacancies) observed at ∼516 nm, which is attributed to the generation of reactive oxygen species (ROS) by the nanomaterial, which is believed, to be responsible for the biocidal (cell death) effects. These results suggested that CCuO is a promising nanomaterial that could be suitable for advanced applications in the healthcare industries.


Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Quitosano/química , Cobre/química , Nanoestructuras/química , Animales , Antibacterianos/farmacología , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Tecnología Química Verde , Células HeLa , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Nanoestructuras/toxicidad , Tamaño de la Partícula , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Psidium/química , Psidium/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Huan Jing Ke Xue ; 42(2): 952-959, 2021 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-33742891

RESUMEN

Peppers are a high Cd-enriched vegetable. On the basis of a preliminary screening experiment of 91 pepper varieties and soil culture experiments during the entire growth period of 26 varieties, a high Cd variety (X15), medium Cd variety (X39), and two low varieties (X45 and X55) were selected to study the effect of different cadmium levels (0, 5, and 10 mg·kg-1 Cd) on enrichment, transport, and accumulation as well as its subcellular distribution and chemical form. Based on the results, 5 mg·kg-1 and 10 mg·kg-1 of Cd inhibited shoot dry weights of four pepper varieties but increased the root dry weights of X15, X45, and X55 varieties. Sodium chloride-bound cadmium and acetate-bound cadmium are the main forms of cadmium in the pepper fruits. Subcellular cadmium concentrations in the roots, leaves, and fruits of pepper plants were ranked in order cytoplasm > cell wall > organelle, and in the stems the order was cell wall > cytoplasm > organelle. Cd compartmentalization plays an important role in pepper resistance to cadmium stress. Under dosages of 5 mg·kg-1 Cd and 10 mg·kg-1 Cd, Cd concentrations in stems and leaves were ranked in order X39 > X15 > X55 > X45, with fruit Cd concentrations ranked in order X15 > X39 > X55 > X45. The Cd concentration was lowest in the roots of X15 whereas this variety has the highest concentrations in its fruit. The Cd concentrations in the roots, stems, and leaves of X39 were the highest among the four varieties whereas the concentration in the fruit was lower than in the X15 variety. The concentration of Cd in pepper fruits depends on the Cd transport capacity redistribution ability to the shoots.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Cadmio/toxicidad , Frutas/química , Hojas de la Planta/química , Raíces de Plantas/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...