Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.625
Filtrar
1.
Chemosphere ; 288(Pt 1): 132499, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34626649

RESUMEN

Lignin is a natural O-containing aromatic amorphous polymers from the residues of biorefinery and industrial papermaking, it can derive lots of aromatic phenol chemicals used as industrial raw materials by an efficient depolymerization, and then produce synthetic polymers. Here, we selected six aromatic units from the liquid products of lignin depolymerization, and tried to prepare diversified O-rich hyper-cross-linked polymers (HCPs) by one-pot Friedel-Crafts alkylation reaction for CO2 and iodine vapor capture. HCP1, HCP2, and HCP3 microspheres possessed similar porous structure with Brunauer-Emmett-Teller (BET) surface areas (SBET) of 14.1-20.6 m2/g and high O content (26.34-30.68 wt%), while HCP4, HCP5, and HCP6 were composed of many bulks with 3D networks structure, and showed larger SBET of 15.4-246.9 m2/g and relatively low O content (18.48-26.38 wt%). The results indicated that the chemical position and quantities of substituent groups (methoxy and alkyl) into lignin-derived units had evident impact on their morphology and textural parameters. These HCPs exhibited considerable CO2 uptake (64.1 mg/g) and selectivity (35.2) at 273 K, and high iodine vapor uptake (192.3 wt%). Moreover, the performance analysis implied that the SBET and pore volume of these HCPs had not played the dominated roles in the CO2 and I2 adsorption, while their pore size distribution, O-functional groups, and electron density will be more important for the capture of the both. This study will offer a facile synthesis of O-rich polymer microsphere adsorbents based on the green and sustainable lignin.


Asunto(s)
Yodo , Lignina , Adsorción , Dióxido de Carbono , Microesferas , Oxígeno , Fenoles , Polímeros , Porosidad
2.
Gene ; 809: 146017, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34655725

RESUMEN

Flavonoids and lignin consist of a large number of secondarymetabolites which are derived from the phenylpropanoid pathway, and they act as a significant role in plant growth, development, and stress response. However, few reports have documented that how different subbranches of phenylpropanoid metablolic pathway mutually interact. In Arabidopsis, AtCPC (AtCAPRICE) is known to play a negative role in anthocyanin accumulation. Nonetheless, whether AtCPC could control the biosynthesis of lignin is largely unknown. Additionally, whether the RrFLS and RrANR, flavonol synthase and anthocyanidin reductase, from Rosa rugosa regulate different branches of phenylpropanoid pathway is unclear. Here, we performed a series of transgenic experiments with short life cycle tobacco and RNA-Seq analysis. Finally, a series of assays related to biological, physiological, and phenotypic characteristics were undertaken. Our results indicated that ectopic expression of AtCPC in tobacco not only decreased the flavonoid compound accumulation, but also up-regulated several lignin biosynthetic genes, and significantly increased the accumulation of lignin. Our results also revealed that although they respectively improved the flavonol and proanthocyanidin contents, the overexpression of RrFLS and RrANR plays positive roles in lignin biosynthesis in transgenic tobacco plants. Our findings provide a novel insight into the mechanism underlying homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of plants.


Asunto(s)
Flavonoides/biosíntesis , Lignina/biosíntesis , Tabaco/genética , Tabaco/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavonoides/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , Lignina/genética , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Rosa/genética , Factores de Transcripción/genética
3.
Bioresour Technol ; 344(Pt A): 126162, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34678451

RESUMEN

Bamboo biomass was widely considered as a promising substitute for lignocellulose to produce fermentable sugars and biofuels in the south of China. When P. amarus were treated using hydrogen peroxide and acetic Acid pretreatment in the presence of sulphuric acid at 60 ℃ for 2 h, 82.63% lignin was removed from the bamboo residue, and enzymatic saccharification yield of 79.3% and ethanol content of 13.31 g/L were obtained. Analysis indicated that HPAC pretreatment increased the hydrophilic and porous nature of substrate, which can improve the enzyme accessibility to cellulose. When HPAC-pretreated D. sinicus, B. lapidea, N. affinis, andD. giganteus were used as the substrates of enzymatic saccharification, glucose yields of 71-84% at 72 h were achieved. HPAC pretreatment was a highly efficient and environmentally friendly method for bamboo biorefinery in the south of China.


Asunto(s)
Ácido Acético , Peróxido de Hidrógeno , Biocombustibles , Biomasa , Celulosa , Hidrólisis , Lignina
4.
Bioresour Technol ; 344(Pt A): 126171, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34695586

RESUMEN

The need to develop sustainable alternatives for pretreatment and hydrolysis of lignocellulosic biomass (LCB) is a massive concern in the industrial sector today. Breaking down of LCB yields sugars and fuel in the bulk scale. If explored under nanotechnology, LCB can be refined to yield high-performance fuel sources. The toxicity and cost of conventional methods can be reduced by applying nanoparticles (NPs) in refining LCB. Immobilization of enzymes onto NPs or used in conjugation with nanomaterials would instill specific and eco-friendly options for hydrolyzing LCB. Nanomaterials increase the proficiency, reusability, and stability of enzymes. Notably, magnetic NPs have bagged their place in the downstream processing of LCB effluents due to their efficient separation and cost-effectiveness. The current review highlights the role of nanotechnology and its particles in refining LCB into various commercial precursors and value-added products. The relationship between nanotechnology and LCB refinery is portrayed effectively in the present study.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Hidrólisis , Nanotecnología
5.
Bioresour Technol ; 344(Pt A): 126200, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34710591

RESUMEN

Biomass represents an abundant and inexpensive source of sugars and aromatic compounds that can be used as raw materials for conversion into value-added bioproducts. Filamentous fungi are sources of plant cell wall degrading enzymes in nature. Understanding the interactions between enzymes is crucial for optimizing biomass degradation processes. Herein, the concept of the interactome is presented as a holistic approach that depicts the interactions among enzymes, substrates, metabolites, and inhibitors. The interactome encompasses several stages of biomass degradation, starting with the sensing of the substrate and the subsequent synthesis of hydrolytic and oxidative enzymes (fungus-substrate interaction). Enzyme-enzyme interactions are exemplified in the complex processes of lignocellulosic biomass degradation. The enzyme-substrate-metabolite-inhibitor interaction also provides a better understanding of biomass conversion, allowing bioproduct production from recalcitrant agro-industrial residues, thus bringing greater value to residual biomass. Finally, technological applications are presented for optimizing the interactome at various levels.


Asunto(s)
Hongos , Lignina , Biomasa , Pared Celular , Hidrólisis
6.
Bioresour Technol ; 344(Pt A): 126186, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34710602

RESUMEN

A novel Fe-modified lignin-based biochar (Fe-LB) was fabricated via a facile one-step carbonization method for methylene blue (MB) removal from wastewater. Fe-LB exhibited a high specific surface area (885.97 m2/g) and micropore volume (0.3203 m3/g), and demonstrated high affinity for MB with the maximum adsorption capacity of 2.7-fold by Fe-LB than LB. It was found that quick adsorption could be achieved in 15 min with the MB removal efficiency of 100% and adsorption capacity reached 200 mg/g. Selective adsorption studies indicated that Fe-LB preferentially adsorbed MB in high salt and multiple dye systems (binary, ternary, and quaternary) over a wide pH range from 2 to 12. The removal efficiency of CR was greatly improved due to the synergistic effect between MB and CR in the binary system. This work demonstrated that Fe-LB can effectively remove dye contaminants and possessed great potential in the treatment of MB polluted dye wastewater.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Lignina , Contaminantes Químicos del Agua/análisis
7.
Bioresour Technol ; 344(Pt A): 126209, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34715339

RESUMEN

Filamentous fungi possess versatile capabilities for synthesizing a variety of valuable bio compounds, including enzymes, organic acids and small molecule secondary metabolites. The advancements of genetic and metabolic engineering techniques and the availability of sequenced genomes discovered their potential as expression hosts for recombinant protein production. Remarkably, plant-biomass degrading filamentous fungi show the unique capability to decompose lignocellulose, an extremely recalcitrant biopolymer. The basic biochemical approaches have motivated several industrial processes for lignocellulose biomass valorisation into fermentable sugars and other biochemical for biofuels, biomolecules, and biomaterials. The review gives insight into current trends in engineering filamentous fungi for enzymes, fuels, and chemicals from lignocellulose biomass. This review describes the variety of enzymes and compounds that filamentous fungi produce, engineering of filamentous fungi for biomass valorisation with a special focus on lignocellulolytic enzymes and other bulk chemicals.


Asunto(s)
Hongos , Lignina , Biocombustibles , Biomasa , Hongos/genética , Ingeniería Metabólica , Plantas
8.
Bioresour Technol ; 344(Pt A): 126212, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34715341

RESUMEN

Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.


Asunto(s)
Bacterias , Lignina , Bacterias/genética , Bacterias/metabolismo , Biomasa , Fermentación , Lignina/metabolismo
9.
Bioresour Technol ; 344(Pt A): 126240, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34737164

RESUMEN

Lignin is the world's second most prevalent biomaterial, but its effective value-added product valorization methods are still being developed. The most common preparation processes for converting lignin to platform chemicals and biofuels are fragmentation and depolymerization. Due to its structural diversity, fragmentation generally produces a variety of products, necessitating tedious separation and purifying methods to isolate the desired products. Bacterial-based techniques are commonly utilized for lignin fragmentation due to their high metabolitic activity. Recent advancements in lignin valorization utilizing bacteria, such as lignin decomposing microbes and major pathways involved that can breakdown lignin into various valuable products namely lipids, furfural, vanillin, polyhydroxybutyrate, poly lactic acid blends were discussed in this review. This review also covers the genetic and fermentation methodologies to enhance lignin decomposition, challenges and future trends of microbe based lignin valorization.


Asunto(s)
Biocombustibles , Lignina , Bacterias/metabolismo , Fermentación , Lignina/metabolismo , Lípidos
10.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112166, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34739877

RESUMEN

To reduce the negative impact of nanopesticide carriers of on the environment, a greener nanodelivery system is necessary. Nanogels are nontoxic and degradable carriers, however, the potential of nanogels for delivering pesticides has not been proven. In this study, poly(vinyl alcohol)-valine, an ecofriendly polymer, was synthesized and used to fabricate emamectin benzoate nanogel suspension (EB NS). The nanoformulation showed favorable stability at low temperature, high temperature or one year storage, and in water with different hardnesses. The retention of the EB NS solution on leaves was higher than that of an EB emulsifiable concentrate (EC) by approximately 9% at a concentration of 10 mg L-1. The half-life of EB nanogels under Ultra Violet irradiation was prolonged by 3.3-fold. Moreover, the bioactivity of the EB NS against Plutella xylostella was higher than that of the EB EC. These advantages resulted in a relatively long duration of pest control. The response of nanogels to laccase, a digestive enzyme in the digestive tract of lepidopteran pests, enables pesticide release on demand. Nanogels have the advantages of being ecofriendly carriers, exhibiting higher utilization, and prolonged pest control periods, and they have a brilliant future in pesticide delivery.


Asunto(s)
Insecticidas , Alcohol Polivinílico , Ivermectina/análogos & derivados , Lignina/análogos & derivados , Nanogeles , Polietilenglicoles , Polietileneimina , Valina
11.
J Environ Manage ; 302(Pt B): 114088, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798585

RESUMEN

The rapidly developing agro-industry generates huge amounts of lignocellulosic crop residues and animal manure worldwide. Although co-composting represents a promising and cost-effective method to treat various agricultural wastes simultaneously, poor composting efficiency prolongs total completion time and deteriorates the quality of the final product. However, supplementation of the feedstock with beneficial microorganisms can mitigate these negative effects by facilitating the decomposition of recalcitrant materials, enhancing microbial enzyme activity, and promoting maturation and humus formation during the composting process. Nevertheless, the influence of microbial inoculation may vary greatly depending on certain factors, such as start-up parameters, structure of the feedstock, time of inoculation, and composition of the microbial cultures used. The purpose of this contribution is to review recent developments in co-composting procedures involving different lignocellulosic crop residues and farm animal manure combined with microbial inoculation strategies. To evaluate the effectiveness of microbial additives, the results reported in a large number of peer-reviewed articles were compared in terms of composting process parameters (i.e., temperature, microbial activity, total organic carbon and nitrogen contents, decomposition rate of lignocellulose fractions, etc.) and compost characteristics (humification, C/N ratio, macronutrient content, and germination index). Most studies confirmed that the use of microbial amendments in the co-composting process is an efficient way to facilitate biodegradation and improve the sustainable management of agricultural wastes. Overall, this review paper provides insights into various inoculation techniques, identifies the limitations and current challenges of co-composting, especially with microbial inoculation, and recommends areas for further research in this field.


Asunto(s)
Inoculantes Agrícolas , Compostaje , Animales , Animales Domésticos , Lignina , Estiércol , Nitrógeno/análisis , Suelo
12.
J Environ Manage ; 302(Pt A): 114042, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34872180

RESUMEN

Lignocellulose degraded maize straw (LMS) was prepared with the interaction of soil-indigenous microorganisms and further deployed to attenuate the Cd contamination in polluted soil. The Lignocellulose degrading ratio was determined and results revealed the significant degradation of cellulose, hemicellulose and lignin by 33.03, 26.7 and 15.97% respectively as compared to pristine maize straw (PS). Moreover, LMS was also categorized through FE-SEM, FTIR, BET analysis, elemental analysis and XPS technique and the analytical results indicated that lignocellulose structure in maize straw was successfully degraded and was involved in metal-ion complexation. Batch sorption trials revealed that Cd2+ sorption onto LMS was explained well by Langmuir isotherm and pseudo-second-order kinetic model. The LMS showed maximum adsorption capacities (9.84 mg g-1) for Cd2+ as compared to PS (3.30 mg g-1). Moreover, the soil incubation trials (60 days) depicted the availability of Cd decreased by 11.03 and 34.7% with PS and LMS application respectively. The addition of LMS significantly decreased the exchangeable fractions of Cd and ensued an increase in organic matter and Fe-Mn oxides bound fractions. This work clarified the LMS as a promising amendment for effective remediation of Cd-contaminated matrices.


Asunto(s)
Contaminantes del Suelo , Zea mays , Adsorción , Disponibilidad Biológica , Cadmio/análisis , Lignina , Contaminantes del Suelo/análisis
13.
Bioresour Technol ; 343: 126114, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34648963

RESUMEN

The success of establishing bioeconomies replacing current economies based on fossil resources largely depends on our ability to degrade recalcitrant lignocellulosic biomass. This study explores the potential of employing various enzymes acting synergistically on previously pretreated agricultural side streams (corn bran, oat hull, soluble and insoluble oat bran). Degrees of synergy (oligosaccharide yield obtained with the enzyme combination divided by the sum of yields obtained with individual enzymes) of up to 88 were obtained. Combinations of a ferulic acid esterase and xylanases resulted in synergy on all substrates, while a laccase and xylanases only acted synergistically on the more recalcitrant substrates. Synergy between different xylanases (glycoside hydrolase (GH) families 5 and 11) was observed particularly on oat hulls, producing a yield of 57%. The synergistic ability of the enzymes was found to be partly due to the increased enzyme stability when in combination with the substrates.


Asunto(s)
Lacasa , Lignina , Hidrolasas de Éster Carboxílico , Economía , Endo-1,4-beta Xilanasas , Oligosacáridos
14.
Bioresour Technol ; 343: 126138, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34678456

RESUMEN

Herein, it was unearthed that manganese peroxidase (MnP) from Phanerochaete chrysosporium, a lignin-degrading enzyme, is capable of not only directly decomposing cellulosic components but also boosting cellulase activity. MnP decomposes various cellulosic substrates (carboxymethyl cellulose, cellobiose [CMC], and Avicel®) and produces reducing sugars rather than oxidized sugars such as lactone and ketoaldolase. MnP with MnII in acetate buffer evolves the MnIII-acetate complex functioning as a strong oxidant, and the non-specificity of MnIII-acetate enables cellulose-decomposition. The catalytic mechanism was proposed by analyzing catalytic products derived from MnP-treated cellopentaose. Notably, MnP also boosts cellulase activity on CMC and Avicel®, even considering the cellulolytic activity of MnP itself. To the best of the authors' knowledge, this is the first report demonstrating a previously unknown fungal MnP activity in cellulose-decomposition in addition to a known delignification activity. Consequently, the results provide a promising insight for further investigation of the versatility of lignin-degrading biocatalysts.


Asunto(s)
Celulasa , Phanerochaete , Celulosa , Lignina , Peroxidasas
15.
Bioresour Technol ; 344(Pt B): 126165, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34695585

RESUMEN

Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass.


Asunto(s)
Lignina , Polihidroxialcanoatos , Biomasa , Biotecnología , Almidón
16.
Bioresour Technol ; 344(Pt B): 126177, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34699963

RESUMEN

The development of biogas projects feed by lignocellulosic biomass has been constrained by the high cost of pre- and post-treatment. In this study, a novel strategy for pretreatment by using two by-products, i.e., CO2 and liquid digestate (LD), generated from anaerobic digestion (AD) was developed to overcome these shortcomings. Results showed that corn straw pretreated in LD pressurized under 1 Mpa CO2 at 55 â„ƒ resulted in increased glucose and xylose contents and a 9.80% decrease in cellulose crystallinity. After 45 days of AD conversion, the methane yield increased by 50.97% compared with untreated straw. However, pretreatment in LD pressurized under 1 Mpa CO2 at 170 â„ƒ produced 5-hydroxymethylfurfural and furfural, which led to a decrease in methane production from the straw in the subsequent AD conversion. The alteration of the microbial community in the pretreated slurry at 55 °C was another potential contributor to the enhanced performance of AD.


Asunto(s)
Biocombustibles , Zea mays , Anaerobiosis , Biomasa , Lignina/metabolismo , Metano , Zea mays/metabolismo
17.
Bioresour Technol ; 344(Pt B): 126204, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34710595

RESUMEN

The conversion of biomass-derived lignin to valuable monomeric phenols at high selectivity is of paramount importance for sustainable biorefineries. In this study, a novel Pd-Al2O3 supported on activated biochar catalyst is developed for lignin hydrogenolysis. The catalyst characterization revealed that the (111) planes of both of Pd0 and Al2O3 were exposed to the surface. The maximum lignin conversion of 70.4% along with high liquid yield (∼57 wt%) was obtained at 240 °C, 3 h and 3 MPa H2 pressure. The total monomeric phenols yield in the liquid was 51.6 wt%, out of which C9 monomeric guaiacols constituted âˆ¼ 30.0 wt% with 38.0% selectivity to 4-propyl guaiacol. Using the reaction intermediate, coniferyl alcohol, chemoselective hydrogenation of Cα=Cß is proved to occur over the Pd site, while dehydroxylation of Cγ-OH is shown to occur over the alumina site. An impressive carbon atom economy of 60% was achieved for the production of monomeric phenols.


Asunto(s)
Carbón Orgánico , Lignina , Catálisis , Fenoles
18.
Bioresour Technol ; 344(Pt B): 126195, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34710596

RESUMEN

Lignocellulosic biomass is a highly renewable, economical, and carbon-neutral feedstock containing sugar-rich moieties that can be processed to produce second-generation biofuels and bio-sourced compounds. However, due to their heterogeneous multi-scale structure, the lignocellulosic materials have major limitations to valorization and exhibit recalcitrance to saccharification or hydrolysis by enzymes. In this context, this review focuses on the latest methods available and state-of-the-art technologies in the pretreatment of lignocellulosic biomass, which aids the disintegration of the complex materials into monomeric units. In addition, this review deals with the genetic engineering techniques to develop advanced strategies for fermentation processes or microbial cell factories to generate desired products in native or modified hosts. Further, it also intends to bridge the gap in developing various economically feasible lignocellulosic products and chemicals using biorefining technologies.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Fermentación , Lignina/metabolismo
19.
Bioresour Technol ; 344(Pt B): 126203, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34710606

RESUMEN

Many countries in the world are facing the demand for non-renewable fossil fuels because of overpopulation and economic boom. To reduce environmental pollution and zero carbon emission, the conversion of biomass into biofuels has paid better attention and is considered to be an innovative approach. A diverse raw material has been utilized as feedstock for the production of biofuel, depending on the availability of biomass, cost-effectiveness, and their geographic location. Among the different raw materials, lignocellulosic biomass has fascinated many researchers around the world. The current review discovers the potential application of lignocellulosic biomass for the production of biofuels. Various pretreatment methods have been widely used to increase the hydrolysis rate and accessibility of biomass. This review highlights recent advances in pretreatment methodologies for the enhanced production of biofuels. Detailed descriptions of the mechanism of biomass processing pathway, optimization, and modeling study have been discussed.


Asunto(s)
Biocombustibles , Desarrollo Sostenible , Biomasa , Lignina
20.
Bioresour Technol ; 344(Pt B): 126261, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34728353

RESUMEN

Lignocellulose has been considered a potential feedstock for biohydrogen production. Recently, a novel closed-loop concept of biochar approach was developed for enhanced lignocellulosic biohydrogen production. This study therefore targets to analyze the environmental impacts of the three existing lignocellulosic biohydrogen production processes, and evaluate the environmental performance of applying biochar in each process at this early stage of technological development. The results suggest that biochar dosing shows better environmental performance for all impact categories, especially in the consolidate bioprocessing case. Electricity consumption was found to be the dominant cause of environmental impact over the life cycle, while by-products generation was also found to have an effect on the life-cycle impacts. Future research focuses on the biohydrogen production scale, the electricity generation scheme transition towards renewable and cleaner energetic systems, and recovery the by-products to the maximum extent, that will make lignocellulosic biohydrogen production more environmentally sustainable.


Asunto(s)
Hidrógeno , Estadios del Ciclo de Vida , Animales , Carbón Orgánico , Fermentación , Lignina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...