Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.693
Filtrar
1.
Beijing Da Xue Xue Bao Yi Xue Ban ; 53(2): 240-245, 2021 Mar 11.
Artículo en Chino | MEDLINE | ID: mdl-33879892

RESUMEN

OBJECTIVE: To evaluate whether ultrafine particulates (UFPs) have direct deleterious effects on cardiac function through activating MAPK signaling. METHODS: Langendorff-perfused Sprague-Dawley rat hearts were randomly divided into 2 groups (n=10/each group). In control group, the rat hearts were perfused with Tyrode's buffer for 40 min; in UFPs-treated group, the hearts were perfused with UFPs at a concentration of 12.5 mg/L. Cardiac function was determined by measuring left ventricular developed pressure (LVDP), left ventricular peak rate of contraction and relaxation (±dp/dtmax) and coronary flow (CF). The levels of malondialdehyde (MDA), superoxide dismutase (SOD), total anti-oxidant capacity (TAOC) were detected in order to evaluate cardiac oxidative stress via the thiobarbituric acid assay, water soluble tetrazolium salt assay and colorimetry, respectively. The expressions of p-p38 MAPK, p-ERKs and p-JNKs in the myocardium were observed using immunohistochemical staining and Western blots. RESULTS: No significant changes in cardiac function were detected before and after the perfusion in control group while UFPs perfused hearts showed a decline in cardiac function in a time-dependent manner (all P < 0.05). In UFPs-treated group, LVDP, +dp/dtmax, -dp/dtmax and CF were statistically reduced from (82.6±2.1) mmHg, (1 624±113) mmHg/s, (1 565±116) mmHg/s, (12.0±0.2) mL/min to (56.8±4.4) mmHg, (1 066±177) mmHg/s, (1 082±134) mmHg/s, (8.7±0.3) mL/min (all P < 0.05), respectively. Furthermore, The comparison between the two groups observed that UFPs perfusion caused a significant decrease in cardiac function at 30 and 40 min compared with the control group (all P < 0.05). At the end of the perfusion, the level of MDA was increased from (0.98±0.14) nmol/L to (1.95±0.18) nmol/L, while SOD and TAOC were reduced from (12.50±1.87) U/mL and (6.83±1.16) U/mL to (6.50 ±1.04) U/mL and (3.67±0.82) U/mL (all P < 0.001) in UFPs group, respectively. In coincidence with these changes, immunohistochemistry and Western blots results showed that the levels of p-p38 MAPK, p-ERKs and p-JNKs in the myocardium significantly increased in UFPs group as compared with control group (all P < 0.05). CONCLUSION: The results of this study demonstrated that the short-term exposure of UFPs to the isolated rat hearts has direct and acute toxic effects on cardiac function, probably related to attenuation of anti-oxidative capacity and activation of MAPK signaling pathways.


Asunto(s)
Corazón , Miocardio , Animales , Malondialdehído/metabolismo , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley
2.
Ecotoxicol Environ Saf ; 214: 112049, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33647852

RESUMEN

The disposal of untreated sanitary sewage in the soil has several consequences for human health and leads to environmental risks; thus, it is necessary investigating, monitoring and remediating the affected sites. The aims of the current study are to evaluate ecotoxicological effects on Eisenia andrei earthworms exposed to soil subjected to sources of sanitary sewage discharge and to investigate whether prevention values established by the Brazilian legislation for soil quality, associated with the incidence of chemical substances in it, are satisfactory enough to assure the necessary quality for different organisms. Earthworms' behavior, reproduction, acetylcholinesterase activity, catalase, superoxide dismutase and malondialdehyde levels were evaluated. The reproduction and behavior of earthworms exposed to sanitary sewage were adversely affected. Increased superoxide dismutase and catalase activity acted as antioxidant defense mechanism. Significantly increased lipid peroxidation levels and acetylcholinesterase activity inhibition have indicated lipid peroxidation in cell membrane and neurotransmission changes, respectively. Results have confirmed that sanitary sewage induced oxidative stress in earthworms. In addition, based on biochemical data analysis, the integrated biomarker response (IBR) has evidenced different toxicity levels in earthworms between the investigated points. Finally, results have indicated that effluents released into the soil, without proper treatment, lead to contaminant accumulation due to soil saturation and it can hinder different processes and biological development taking place in the soil. In addition, the current study has shown that physical-chemical analyses alone are not enough to assess soil quality, since it is also requires adopting an ecotoxicological approach. Brazilian legislation focused on soil quality must be revised and new guiding values must be proposed.


Asunto(s)
Oligoquetos/fisiología , Contaminantes del Suelo/análisis , Animales , Antioxidantes/metabolismo , Brasil , Catalasa/metabolismo , Ecotoxicología , Contaminación Ambiental/análisis , Humanos , Malondialdehído/metabolismo , Oligoquetos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Aguas del Alcantarillado , Suelo/química , Superóxido Dismutasa/metabolismo
3.
Aquat Toxicol ; 233: 105783, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33662881

RESUMEN

Pesticides occur in the environment as mixtures, yet the joint toxicity of pesticide mixtures remains largely under-explored and is usually overlooked in ecological risk assessment. In the current study, joint toxicity of a neonicotinoid insecticide (imidacloprid, IMI) and a strobilurin fungicide (azoxystrobin, AZO) was investigated with Chironomus dilutus over a wide range of concentrations and at different effect levels (organism, cell, and gene levels). The two pesticides, both individually and in combination, were found to induce oxidative stress and cause lethality in C. dilutus. Median lethal concentrations for IMI and AZO were 3.98 ± 1.17 and 52.9 ± 1.1 µg/L, respectively. Mixtures of the two pesticides presented synergetic effects at environmentally relevant concentrations whilst antagonistic effects at high concentrations, showing concentration-dependent joint toxicity. Investigation on the expressions of 12 genes (cyt b, coi, cox1, cyp4, cyp12m1, cyp9au1, cyp6fv1, cyp315, gst, Zn/Cu-sod, Mn-sod, and cat) revealed that the two pesticides impaired mitochondrial respiration, detoxification, and antioxidant system of C. dilutus, and the joint effects of the two pesticides were likely due to an interplay between their respective influences on these physiological processes. Collectively, the synergistic effects of the two pesticides at environmentally relevant concentrations highlight the importance to incorporate combined toxicity studies into ecological risk assessment of pesticides.


Asunto(s)
Chironomidae/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Plaguicidas/toxicidad , Pirimidinas/toxicidad , Estrobilurinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Chironomidae/citología , Chironomidae/genética , Sinergismo Farmacológico , Peróxido de Hidrógeno/metabolismo , Dosificación Letal Mediana , Malondialdehído/metabolismo , Modelos Teóricos
4.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670592

RESUMEN

In this study, we investigated the effects of blue light exposure on nucleotide-binding oligomerization domain 2 (NOD2) expression on the mouse ocular surface and evaluated the role of NOD2 activation in light-induced cell death. Mice were divided into wild-type (WT), NOD2-knock out (KO), WT + blue light (WT + BL), and NOD2-KO + blue light (NOD2-KO + BL) groups, and the mice in the WT+BL and NOD2-KO + BL groups were exposed to blue light for 10 days. After 10 days of blue light exposure, increased reactive oxygen species and malondialdehyde were observed in the WT + BL and NOD2-KO + BL groups, and the WT + BL group showed a higher expression of NOD2 and autophagy related 16 like 1. Although both WT+BL and NOD2-KO + BL groups showed an increase in the expression of light chain 3-II, NOD2-KO + BL mice had a significantly lower p62 expression than WT + BL mice. In addition, NOD2-KO+BL mice had significantly lower corneal epithelial damage and apoptosis than WT + BL mice. In conclusion, blue light exposure can induce impaired autophagy by activation of NOD2 on the ocular surface. In addition, the reactive oxygen species (ROS)-NOD2-autophagy related 16 like 1 (ATG16L) signaling pathway may be involved in the blue-light-induced autophagy responses, resulting in corneal epithelial apoptosis.


Asunto(s)
Autofagia/efectos de la radiación , Epitelio Anterior/efectos de la radiación , Luz , Proteína Adaptadora de Señalización NOD2/metabolismo , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Western Blotting , Conjuntiva/metabolismo , Conjuntiva/efectos de la radiación , Epitelio Anterior/metabolismo , Femenino , Malondialdehído/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Adaptadora de Señalización NOD2/genética , Especies Reactivas de Oxígeno/metabolismo
5.
Molecules ; 26(4)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672029

RESUMEN

Exposure to reactive oxygen species can easily result in serious diseases, such as hyperproliferative skin disorders or skin cancer. Herbal extracts are widely used as antioxidant sources in different compositions. The importance of antioxidant therapy in inflammatory conditions has increased. Innovative formulations can be used to improve the effects of these phytopharmacons. The bioactive compounds of Plantago lanceolata (PL) possess different effects, such as anti-inflammatory, antioxidant, and bactericidal pharmacological effects. The objective of this study was to formulate novel liquid crystal (LC) compositions to protect Plantago lanceolata extract from hydrolysis and to improve its effect. Since safety is an important aspect of pharmaceutical formulations, the biological properties of applied excipients and blends were evaluated using assorted in vitro methods on HaCaT cells. According to the antecedent toxicity screening evaluation, three surfactants were selected (Gelucire 44/14, Labrasol, and Lauroglycol 90) for the formulation. The dissolution rate of PL from the PL-LC systems was evaluated using a Franz diffusion chamber apparatus. The antioxidant properties of the PL-LC systems were evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and malondialdehyde (MDA) assessments. Our results suggest that these compositions use a nontraditional, rapid-permeation pathway for the delivery of drugs, as the applied penetration enhancers reversibly alter the barrier properties of the outer stratum corneum. These excipients can be safe and highly tolerable thus, they could improve the patient's experience and promote adherence.


Asunto(s)
Composición de Medicamentos , Cristales Líquidos/química , Extractos Vegetales/farmacología , Plantago/química , Piel/efectos de los fármacos , Compuestos de Bifenilo/química , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Impedancia Eléctrica , Depuradores de Radicales Libres/farmacología , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Malondialdehído/metabolismo , Permeabilidad , Picratos/química , Piel/efectos de la radiación , Rayos Ultravioleta
6.
Food Chem ; 352: 129322, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690073

RESUMEN

This study explored the effects of brassinolide (BR) soaking, preharvest ultraviolet-B (UV-B) radiation, and their combined treatments on physiological characteristics, chlorophyll fluorescence, and quality of small black bean sprouts during storage. Results indicated that the combined treatments significantly enhanced contents of flavone, free amino acid, and photosynthetic pigment, and activities of phenylalanine ammonia lyase (PAL) and 2-diphenyl-1-picrylhydrazyl(DPPH) radical scavenging in sprouts stored for 5 days compared with BR treatment alone. The combined treatments significantly increased total phenols content and PAL activity, and reduced malonaldehyde content in sprouts compared with UV-B radiation alone. The inhibitory effect of BR or UV-B on fluorescence of photosystem II was weakened by their combined treatments. Comprehensive analysis indicated that the combined treatments could be used to maintain postharvest small black bean sprouts with high levels of nutritional ingredients by probably keeping high photosynthetic capacity, PAL activity, and DPPH radical scavenging rate in sprouts.


Asunto(s)
Brasinoesteroides/farmacología , Almacenamiento de Alimentos , Esteroides Heterocíclicos/farmacología , Rayos Ultravioleta , Vigna/efectos de los fármacos , Vigna/efectos de la radiación , Flavonas/metabolismo , Malondialdehído/metabolismo , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Vigna/metabolismo
7.
Ecotoxicol Environ Saf ; 214: 112119, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33714137

RESUMEN

Rice cultivation under cadmium (Cd) contaminated soil often results in reduced growth with excess grain Cd concentrations. A pot experiment was conducted to assess the potential of ultrasonic seed treatment to alleviate Cd stress in rice. Seeds of two aromatic rice cultivars i.e., Xiangyaxiangzhan and Meixiangzhan 2 and two non-aromatic rice cultivars i.e., Huahang 31 and Guangyan 1 were exposed to ultrasonic waves for 1.5 min in 20-40 KHz mixing frequency. The experimental treatments were comprised of untreated seeds (U0) and ultrasonic treated seeds (U1) transplanted in un-contaminated soil (H0) and Cd-contaminated soil (H1). Results revealed that Cd contents and Cd accumulation in grain in U1 were 33.33-42.31% and 12.86-57.58% lower than U0 for fragrant rice cultivars under H1. Meanwhile, biomass production was higher in U1 than U0 under H0 and better yield was assessed in U1 for all cultivars under H1. The activity of peroxidase (POD) in flag leaves was increased by 8.28-115.65% for all cultivars while malondialdehyde (MDA) contents were significantly decreased in U1 compared with U0 under H0. Conclusively, ultrasonic treatment modulated Cd distribution and accumulation in different parts while improved physiological performance as well as yield and grain quality of rice under Cd contaminated conditions.


Asunto(s)
Cadmio/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Ondas Ultrasónicas , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Malondialdehído/metabolismo , Peroxidasas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Semillas/crecimiento & desarrollo
8.
Ecotoxicol Environ Saf ; 214: 112067, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33640724

RESUMEN

Deltamethrin (DM) is a synthetic pyrethroid used for agricultural purposes to control insects. However, its extensive use contaminates the aquatic environment and results in serious health problems in aquatic organisms. Knowledge about the toxic effect of DM in freshwater prawns is limited; therefore, this study aims to assess the toxicity of DM in Macrobrachium rosenbergii based on multiple biomarkers. Four-day acute toxicity tests showed that DM was highly toxic to M. rosenbergii with the 24 h, 48 h, 72 h and 96 h LC50 values to be 1.919, 0.603, 0.539, and 0.449 µg/L, respectively. According to 96 h LC50, prawns were exposed to DM at three concentrations (0.02, 0.08, and 0.32 µg/L) for 4 days, and then moved into fresh water for decontamination to investigate the toxic effect of DM in M. rosenbergii. At low concentration (0.02 µg/L and 0.08 µg/L), DM did not cause obvious histopathological damage to hepatopancreas and gill tissue, while at high concentration (0.32 µg/L), the histopathological harm was serious and the damage did not recover to the initial level after 7-day decontamination. 0.02 µg/L DM exposure did not induce significant changes in most of the biomarkers except the increased lactate dehydrogenase (LDH) activity, lactic acid (LD) level, and the first increased then decreased mRNA expression of immune-related genes, indicating the stimulation of DM on energy production and immunity. 0.08 µg/L and 0.32 µg/L DM exposure resulted in varying degrees of damage on prawns, but overall, their toxic effects showed similar trends based on the biomarkers. Increase in malonaldehyde (MDA) and hydrogen peroxide (H2O2) content and decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity after DM exposure demonstrated the oxidative stress caused by DM. The significantly increased acid phosphatase (ACP), alkaline phosphatase (AKP), LDH activity and LD level indicated hepatopancreatic dysfunction and respiration disruption. The first increased and then decreased expression pattern of immune-related genes indicated the immunosuppression caused by DM. After 7-day decontamination in freshwater, the activity/level of the biomarkers partly recovered. This study revealed the severe toxic effect of DM on Macrobrachium rosenbergii based on multiple biomarkers, providing fundamental knowledge for the establishment of DM toxicity assessment system with proper parameters in freshwater crustaceans.


Asunto(s)
Nitrilos/toxicidad , Palaemonidae/fisiología , Piretrinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/metabolismo , Biomarcadores/metabolismo , Agua Dulce , Branquias/metabolismo , Hepatopáncreas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Palaemonidae/efectos de los fármacos , Piretrinas/farmacología , Superóxido Dismutasa/metabolismo
9.
Chem Biol Interact ; 338: 109402, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33587916

RESUMEN

Cisplatin is an important antineoplastic drug used in multiple chemotherapeutic regimens but unfortunately causes serious toxic effects as ovarian and uterine toxicity. This study aimed to investigate the potential protective effect of resveratrol (RSV) against cisplatin-induced ovarian and uterine toxicity in female rats. Thirty-two female Wistar rats were divided randomly into four groups (n = 8 in each). Control group received oral normal saline for 28 days; RSV group received RSV (10 mg/kg; daily) via oral gavage; CIS group received a single dose of CIS (7 mg/kg; i.p.) on the 21st day; (CIS + RSV) group received both RSV and CIS by the same schedules and doses of RSV and CIS groups, respectively. Results demonstrated a significant decrease in MDA level and a significant increase in both glutathione content and activity of the antioxidant enzymes GPx, SOD, and CAT in the tissues of the ovary and uterus of CIS + RSV group in comparison to that of CIS group (P<0.05), also there are significantly decreased tissue levels of the proinflammatory cytokines and enzymes (NF-κB, IL-1ß, IL-6, TNF-α, COX-2, and iNOS), increased estradiol, progesterone, prolactin and decreased FSH serum levels in CIS + RSV group compared to CIS group (P < 0.05). Moreover, there is downregulation of tissues Cleaved Caspase-3, NF-κB and Cox-2 proteins as shown in Western blot analysis, also apoptosis was significantly inhibited, evidenced by downregulation of Bax and upregulation of Bcl-2 proteins, and the ovarian and uterine histological architecture and integrity were maintained in CIS + RSV group compared to CIS group. In conclusion, these findings indicate that RSV has beneficial effects in ameliorating cisplatin-induced oxidative stress, inflammation, and apoptosis in the ovarian and uterine tissues of female rats.


Asunto(s)
Apoptosis/efectos de los fármacos , Cisplatino/efectos adversos , Inflamación/patología , Ovario/patología , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Resveratrol/farmacología , Útero/patología , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalasa/metabolismo , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Estradiol/sangre , Femenino , Hormona Folículo Estimulante/sangre , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Malondialdehído/metabolismo , Modelos Biológicos , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ovario/efectos de los fármacos , Progesterona/sangre , Prolactina/sangre , Carbonilación Proteica/efectos de los fármacos , Ratas Wistar , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
10.
Ecotoxicol Environ Saf ; 213: 111987, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33582408

RESUMEN

Protective effects of estrogen (E2) on traumatic brain injury (TBI) have been determined. In this study, the hepatoprotective effects of E2 after TBI through its receptors and oxidative stress regulation have been evaluated. Diffuse TBI induced by the Marmarou method in male rats. G15, PHTPP, MPP, and ICI182-780 as selective antagonists of E2 were injected before TBI. The results indicated that TBI induces a significant increase in liver enzymes [Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Glutamyl transferase (GGT)], and oxidants levels [Malondialdehyde (MDA), Nitric oxide (NO)] and decreases in antioxidant biomarkers [Glutathione peroxidase (GPx) and Superoxide dismutase (SOD)] in the brain and liver, and plasma. We also found that E2 significantly preserved levels of these biomarkers and enzymatic activity. All antagonists inhibited the effects of E2 on increasing SOD and GPx. Also, the effects of E2 on brain MDA levels were inhibited by all antagonists, but in the liver, only ICI + G15 + E2 + TBI group was affected. The impacts of E2 on brain and liver and plasma NO levels were inhibited by all antagonists. The current findings demonstrated that E2 probably improved liver injury after TBI by modulating oxidative stress. Also, both classic (ERß, ERα) and non-classic [G protein-coupled estrogen receptor (GPER)] receptors are affected in the protective effects of E2.


Asunto(s)
Estradiol/farmacología , Sustancias Protectoras/farmacología , Alanina Transaminasa/metabolismo , Animales , Antioxidantes/metabolismo , Aspartato Aminotransferasas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Estrógenos/metabolismo , Glutatión Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Receptores Estrogénicos/metabolismo , Superóxido Dismutasa/metabolismo
11.
Ecotoxicol Environ Saf ; 213: 112036, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588187

RESUMEN

A hydroponic method was performed to explore the effects of sulfate supply on the growth, manganese (Mn) accumulation efficiency and Mn stress alleviation mechanisms of Polygonum lapathifolium Linn. Three Mn concentrations (1, 8 and 16 mmol L-1, representing low (Mn1), medium (Mn8) and high (Mn16) concentrations, respectively) were used. Three sulfate (S) levels (0, 200, and 400 µmol L-1, abbreviated as S0, S200 and S400, respectively) were applied for each Mn concentration. (1) The average biomass (g plant-1) of P. lapathifolium was ordered as Mn8 (6.36) > Mn1 (5.25) > Mn16 (4.16). Under Mn16 treatment, S addition increased (P < 0.05) biomass by 29.96% (S200) and 53.07% (S400) compared to that S0. The changes in the net photosynthetic rate and mean daily increase in biomass were generally consistent with the changes in biomass. (2) Mn accumulation efficiency (g plant-1) was ordered as Mn8 (99.66) > Mn16 (58.33) > Mn1 (27.38); and S addition increased (p < 0.05) plant Mn accumulation and Mn transport, especially under Mn16 treatment. (3) In general, antioxidant enzyme activities (AEAs) and malondialdehyde (MDA) in plant leaves were ordered in Mn16 > Mn8 > Mn1. Sulfate addition decreased (P < 0.05) AEAs and MDA under Mn16 treatment, while the changes were minor under Mn1 and Mn8 treatments. (4) Amino acid concentrations generally increased with increasing Mn concentration and S level. In summary, the medium Mn treatment promoted plant growth and Mn bioaccumulation; sulfate, especially at 400 µmol L-1 S, can effectively promote plant growth and Mn accumulation efficiency. The most suitable bioremediation strategy was Mn16 with 400 µmol L-1 S.


Asunto(s)
Biodegradación Ambiental , Manganeso/toxicidad , Polygonum/fisiología , Sulfatos/metabolismo , Antioxidantes/metabolismo , Biomasa , Hidroponia , Malondialdehído/metabolismo , Manganeso/metabolismo , Desarrollo de la Planta , Hojas de la Planta/metabolismo , Plantas/metabolismo , Polygonum/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Sulfatos/análisis
12.
Food Chem ; 348: 129132, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33524691

RESUMEN

Enzymatic browning is considered a critical factor that adversely decreases the quality of fresh-cut products. Although many individual physical or chemical methods have been explored to control browning, there are few approaches combining these technologies. In the present study, Sonchus oleraceus L. extract (SOLE) and ultrasound treatment efficiently controlled the activities of polyphenol oxidase, peroxidase, phenylalanine ammonia-lyase, lipoxygenase, soluble quinones, and intermediate and advanced products, and a lower malondialdehyde content and higher antioxidant capacity were observed in fresh-cut potato slices. More than 50 phenolics and flavonoids were identified in SOLE by liquid chromatography-tandem mass spectrometry. In conclusion, the combined SOLE and ultrasound treatment could serve as a promising method for attenuating enzymatic browning.


Asunto(s)
Extractos Vegetales/química , Solanum tuberosum/química , Sonchus/química , Sonicación , Antioxidantes/química , Catecol Oxidasa/metabolismo , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Reacción de Maillard , Malondialdehído/metabolismo , Fenoles/análisis , Fenilanina Amoníaco-Liasa/metabolismo , Solanum tuberosum/metabolismo , Sonchus/metabolismo , Espectrometría de Masas en Tándem
13.
Med Sci Monit ; 27: e926492, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33563887

RESUMEN

BACKGROUND The aim of this study was to evaluate the potential role of dual oxidase 1 (DUOX1) in wound healing. MATERIAL AND METHODS Primary fibroblasts were isolated from wound granulation tissue. Fibroblasts cell lines were established using DUOX1 overexpression and interference. Cell proliferation and reactive oxygen species (ROS) production were measured and compared among the groups. RESULTS DUOX1 expression was highest in the slow-healing tissues (P<0.05). Knockdown of DUOX1 significantly increased cell proliferation and inhibited ROS production and cell apoptosis (P<0.01). Moreover, expression of malondialdehyde (MDA) was significantly reduced, while expression of superoxide dismutase (SOD) expression was significantly increased (P<0.01). In addition, DUOX1 silencing significantly upregulated collagen I, collagen III, and NF-kappaB protein levels in the cytoplasm, and inhibited the protein levels of P21, P16, and NF-kappaB in the nucleus (P<0.01). Overexpression of DUOX1 caused a reverse reaction mediated by knockdown of DUOX1. When DUOX1-overexpressing cells were treated with the ROS inhibitor N-acetyl-L-cysteine (NAC), the protein levels that were increased by DUOX1 overexpression were reversed. CONCLUSIONS These results suggest that knockdown of DUOX1 significantly benefits wound healing, likely by the regulation of oxidative stress via NF-kappaB pathway activation.


Asunto(s)
Oxidasas Duales/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas/fisiología , Acetilcisteína/farmacología , Adulto , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Oxidasas Duales/genética , Femenino , Fibroblastos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Superóxido Dismutasa/metabolismo , Cicatrización de Heridas/efectos de los fármacos
14.
Ecotoxicol Environ Saf ; 212: 111998, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33540339

RESUMEN

Metabolomics is an implement for testing the toxicity of antibiotics, and provides a comprehensive view of the overall response to stress; however, the connections between metabolites and biologic endpoints keep unclear in response to antibiotics. In this study, wheat seeds were exposed to tetracycline for 5 days. The results proved that tetracycline restrained growth, reduced chlorophyl and carotinoid contents and cell permeability, and increased reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. Orthogonal partial least squares (OPLS) was used to analyze the connections between metabolites and biologic endpoints, which discovered that 11 metabolic pathways were significantly affected by tetracycline, and amino acid metabolism could largely apply to root growth and ROS accumulation, while carbohydrate metabolism could have a ruling effect on tetracycline-induced cell permeability. 13 metabolites all played active roles in mediating tetracycline's effects on root length, root fresh weight and cell permeability but had no significant effects on ROS levels. The majority of metabolites with passive effects on root length, root fresh weight and cell permeability had active effects on ROS levels. These results offer a view about stress reaction of wheat to tetracycline.


Asunto(s)
Antibacterianos/toxicidad , Redes y Vías Metabólicas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Tetraciclina/toxicidad , Triticum/efectos de los fármacos , Análisis de los Mínimos Cuadrados , Malondialdehído/metabolismo , Metabolómica/métodos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo
15.
Ecotoxicol Environ Saf ; 212: 112012, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33550074

RESUMEN

Microplastics (MPs) considered as a new persistent environmental pollutant could enter into the circulatory system and result in decrease of sperm quantity and quality in mice. However, the effects of Polystyrene MPs (PS MPs) on the ovary and its mechanism in rats remained unclear. In this present study, thirty-two healthy female Wistar rats were exposed to different concentrations of 0.5 µm PS MPs dispersed in deionized water for 90 days. Using hematoxylin-eosin (HE) staining, the number of growing follicles was decreased compared to the control group. In addition, the activity of glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) were decreased while the expression level of malondialdehyde (MDA) was increased in ovary tissue. Confirmed by immunohistochemistry, the integrated optical density of NLRP3 and Cleaved-Caspase-1 had been elevated by 13.9 and 14 in granulosa cells in the 1.5 mg/kg/d group. Furthermore, compared to the control group, the level of AMH had been decreased by 23.3 pg/ml while IL-1ß and IL-18 had been increased by 32 and 18.5 pg/ml in the 1.5 mg/kg/d group using the enzyme-linked immune sorbent assay (ELISA). Besides, the apoptosis of granulosa cells was elevated measured by terminal deoxyribonucleotide transferase-mediated nick end labeling (TUNEL) staining and flow cytometry. Moreover, western blot assays showed that the expressions of NLRP3/Caspase-1 signaling pathway related factors and Cleaved-Caspase-3 were increased. These results demonstrated that PS MPs could induce pyroptosis and apoptosis of ovarian granulosa cells via the NLRP3/Caspase-1 signaling pathway maybe triggered by oxidative stress. The present study suggested that exposure to microplastics had adverse effects on ovary and could be a potential risk factor for female infertility, which provided new insights into the toxicity of MPs on female reproduction.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 1/metabolismo , Microplásticos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ovario/efectos de los fármacos , Poliestirenos/toxicidad , Piroptosis/efectos de los fármacos , Animales , Femenino , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Malondialdehído/metabolismo , Ovario/metabolismo , Ovario/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal
16.
Int J Nanomedicine ; 16: 775-788, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33574665

RESUMEN

Background: Intracerebral hemorrhage (ICH) is a common neurological crisis leading to high mortality and morbidity. Oxidative stress-induced secondary injury plays a critical role in neurological deterioration. Previously, we synthesized a porous Se@SiO2 nanocomposite and identified their therapeutic role in osteonecrosis of the femoral head. Whether this nanocomposite is neuroprotective remains to be elucidated. Methods: A porous Se@SiO2 nanocomposite was synthesized, and its biosafety was determined using a CCK-8 assay. The neuroprotective effect was evaluated by TUNEL staining, and intracellular ROS were detected with a DCFH-DA probe in SH-SY5Y cells exposed to hemin. Furthermore, the effect of the nanocomposite on cell apoptosis, brain edema and blood-brain barrier permeability were evaluated in a collagenase-induced ICH mouse model. The potential mechanism was also explored. Results: The results demonstrated that Se@SiO2 treatment significantly improved neurological function, increased glutathione peroxidase activity and downregulated malonaldehyde levels. The proportion of apoptotic cells, brain edema and blood-brain barrier permeability were reduced significantly in ICH mice treated with Se@SiO2 compared to vehicle-treated mice. In vitro, Se@SiO2 protected SH-SY5Y cells from hemin-induced apoptosis by preventing intracellular reactive oxygen species accumulation. Conclusion: These results suggested that the porous Se@SiO2 nanocomposite exerted neuroprotection by suppressing oxidative stress. Se@SiO2 may be a potential candidate for the clinical treatment of ICH and oxidative stress-related brain injuries.


Asunto(s)
Encéfalo/patología , Hemorragia Cerebral/patología , Nanocompuestos/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Encéfalo/efectos de los fármacos , Edema Encefálico/complicaciones , Edema Encefálico/tratamiento farmacológico , Línea Celular Tumoral , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/tratamiento farmacológico , Citoprotección/efectos de los fármacos , Modelos Animales de Enfermedad , Hemina/toxicidad , Humanos , Masculino , Malondialdehído/metabolismo , Ratones Endogámicos C57BL , Nanocompuestos/toxicidad , Nanocompuestos/ultraestructura , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Selenio/uso terapéutico , Dióxido de Silicio/farmacología , Pruebas de Toxicidad
17.
Life Sci ; 272: 119194, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33609541

RESUMEN

AIM: The aim of the present study was to investigate the anti-inflammatory response mediated of the M1 muscarinic acetylcholine receptor (mAChR) during experimental colitis. MATERIAL AND METHODS: After the induction of 6% acetic acid colitis, mice were treated with McN-A-343 0.5, 1.0, and 1.5 mg/kg or dexamethasone (DEXA, 2.0 mg/kg) or pirenzepine (PIR, 10 mg/kg; M1 mAChR antagonist). Colonic inflammation was assessed by macroscopic and microscopic lesion scores, colonic wet weight, myeloperoxidase (MPO) activity, interleukin-1 beta (IL1-ß) levels and tumor necrosis factor alpha (TNF-α), glutathione (GSH), malondialdehyde (MDA) and nitrate and nitrite (NO3/NO2), mRNA expression of IKKα, nuclear factor kappa beta (NF-kB) and cyclooxygenase-2 (COX-2), as well protein expression of NF-kB and COX-2. RESULTS: Treatment with McN-A-343 at a concentration of 1.5 mg/kg showed a significant reduction in intestinal damage as well as a decrease in wet weight, MPO activity, pro-inflammatory cytokine concentration, markers of oxidative stress and expression of inflammatory mediators. The action of the M1 agonist by the administration of pirenzepine, which promoted the blocking of the mAChR M1-mediated anti-inflammatory response, has also been proven. CONCLUSION: The results suggest that peripheral colonic M1 mAChR is involved in reversing the pro-inflammatory effect of experimentally induced colitis, which may represent a promising therapeutic alternative for patients with ulcerative colitis.


Asunto(s)
Cloruro de (4-(m-Clorofenilcarbamoiloxi)-2-butinil)trimetilamonio/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Cloruro de (4-(m-Clorofenilcarbamoiloxi)-2-butinil)trimetilamonio/metabolismo , Animales , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Dexametasona/farmacología , Modelos Animales de Enfermedad , Glutatión/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Agonistas Muscarínicos/farmacología , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptor Muscarínico M1 , Factor de Necrosis Tumoral alfa/metabolismo
18.
Plant Mol Biol ; 106(1-2): 33-48, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33594577

RESUMEN

KEY MESSAGE: H2O2 priming reprograms essential proteins' expression to help plants survive, promoting responsive and unresponsive proteins adjustment to salt stress. ABSTACRT: Priming is a powerful strategy to enhance abiotic stress tolerance in plants. Despite this, there is scarce information about the mechanisms induced by H2O2 priming for salt stress tolerance, particularly on proteome modulation. Improving maize cultivation in areas subjected to salinity is imperative for the local economy and food security. Thereby, this study aimed to investigate physiological changes linked with post-translational protein events induced by foliar H2O2 priming of Zea mays plants under salt stress. As expected, salt treatment promoted a considerable accumulation of Na+ ions, a 12-fold increase. It drastically affected growth parameters and relative water content, as well as promoted adverse alteration in the proteome profile, when compared to the absence of salt conditions. Conversely, H2O2 priming was beneficial via specific proteome reprogramming, which promoted better response to salinity by 16% reduction in Na+ content and shoots growth improvement, increasing 61% in dry mass. The identified proteins were associated with photosynthesis and redox homeostasis, critical metabolic pathways for helping plants survive in saline stress by the protection of chloroplasts organization and carbon fixation, as well as state redox. This research provides new proteomic data to improve understanding and forward identifying biotechnological strategies to promote salt stress tolerance.


Asunto(s)
Peróxido de Hidrógeno/toxicidad , Proteómica , Estrés Salino/efectos de los fármacos , Zea mays/fisiología , Malondialdehído/metabolismo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Potasio/metabolismo , Proteoma/metabolismo , Sodio/metabolismo , Agua , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
19.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467410

RESUMEN

Ethanol abuse is a common issue in individuals with sedentary lifestyles, unbalanced diets, and metabolic syndrome. Both ethanol abuse and metabolic syndrome have negative impacts on the central nervous system, with effects including cognitive impairment and brain oxidative status deterioration. The combined effects of ethanol abuse and metabolic syndrome at a central level have not yet been elucidated in detail. Thus, this work aims to determine the effects of ethanol intake on a mouse model of metabolic syndrome at the behavioral and biochemical levels. Seven-week-old male control (B6.V-Lep ob/+JRj) and leptin-deficient (metabolic syndrome) (B6.V-Lep ob/obJRj) mice were used in the study. Animals were divided into four groups: control, ethanol, obese, and obese-ethanol. Ethanol consumption was monitored for 6 weeks. Basal glycemia, insulin, and glucose overload tests were performed. To assess short- and long-term memory, an object recognition test was used. In order to assess oxidative status in mouse brain samples, antioxidant enzyme activity was analyzed with regard to glutathione peroxidase, glutathione reductase, glutathione, glutathione disulfide, lipid peroxidation products, and malondialdehyde. Ethanol intake modulated the insulin response and impaired the oxidative status in the ob mouse brain.


Asunto(s)
Modelos Animales de Enfermedad , Etanol/farmacología , Síndrome Metabólico/metabolismo , Receptores de Leptina/deficiencia , Animales , Antioxidantes/metabolismo , Glucemia/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Depresores del Sistema Nervioso Central/farmacología , Etanol/administración & dosificación , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Insulina/sangre , Insulina/metabolismo , Masculino , Malondialdehído/metabolismo , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/sangre , Obesidad/genética , Obesidad/metabolismo , Receptores de Leptina/genética
20.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467472

RESUMEN

Melatonin priming is an effective strategy to improve the germination of aged oat (Avena sativa L.) seeds, but the mechanism involved in its time-course responses has remained largely unknown. In the present study, the phenotypic differences, ultrastructural changes, physiological characteristics, and proteomic profiles were examined in aged and melatonin-primed seed (with 10 µM melatonin treatment for 12, 24, and 36 h). Thus, 36 h priming (T36) had a better remediation effect on aged seeds, reflecting in the improved germinability and seedlings, relatively intact cell ultrastructures, and enhanced antioxidant capacity. Proteomic analysis revealed 201 differentially abundant proteins between aged and T36 seeds, of which 96 were up-accumulated. In melatonin-primed seeds, the restoration of membrane integrity by improved antioxidant capacity, which was affected by the stimulation of jasmonic acid synthesis via up-accumulation of 12-oxo-phytodienoic acid reductase, might be a candidate mechanism. Moreover, the relatively intact ultrastructures enabled amino acid metabolism and phenylpropanoid biosynthesis, which were closely associated with energy generation through intermediates of pyruvate, phosphoenolpyruvate, fumarate, and α-ketoglutarate, thus providing energy, active amino acids, and secondary metabolites necessary for germination improvement of aged seeds. These findings clarify the time-course related pathways associated with melatonin priming on promoting the germination of aged oat seeds.


Asunto(s)
Avena/metabolismo , Germinación/efectos de los fármacos , Melatonina/farmacología , Proteómica/métodos , Semillas/metabolismo , Antioxidantes/metabolismo , Avena/genética , Avena/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Germinación/genética , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Melatonina/metabolismo , Microscopía Electrónica de Transmisión , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...