Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.137
Filtrar
1.
Gut Microbes ; 16(1): 2334970, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563680

RESUMEN

Gastrointestinal (GI) infection is evidenced with involvement in COVID-19 pathogenesis caused by SARS-CoV-2. However, the correlation between GI microbiota and the distinct pathogenicity of SARS-CoV-2 Proto and its emerging variants remains unclear. In this study, we aimed to determine if GI microbiota impacted COVID-19 pathogenesis and if the effect varied between SARS-CoV-2 Proto and its variants. We performed an integrative analysis of histopathology, microbiomics, and transcriptomics on the GI tract fragments from rhesus monkeys infected with SARS-CoV-2 proto or its variants. Based on the degree of pathological damage and microbiota profile in the GI tract, five of SARS-CoV-2 strains were classified into two distinct clusters, namely, the clusters of Alpha, Beta and Delta (ABD), and Proto and Omicron (PO). Notably, the abundance of potentially pathogenic microorganisms increased in ABD but not in the PO-infected rhesus monkeys. Specifically, the high abundance of UCG-002, UCG-005, and Treponema in ABD virus-infected animals positively correlated with interleukin, integrins, and antiviral genes. Overall, this study revealed that infection-induced alteration of GI microbiota and metabolites could increase the systemic burdens of inflammation or pathological injury in infected animals, especially in those infected with ABD viruses. Distinct GI microbiota and metabolite profiles may be responsible for the differential pathological phenotypes of PO and ABD virus-infected animals. These findings improve our understanding the roles of the GI microbiota in SARS-CoV-2 infection and provide important information for the precise prevention, control, and treatment of COVID-19.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , SARS-CoV-2 , Virulencia , Macaca mulatta
2.
Gut Microbes ; 16(1): 2336877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563656

RESUMEN

Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and ß-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of Parabacteroides merdae ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Humanos , Aprendizaje Automático
3.
Sci Rep ; 14(1): 7799, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565609

RESUMEN

It is becoming increasingly evident that the myriad of microbes in the gut, within cells and attached to body parts (or roots of plants), play crucial roles for the host. Although this has been known for decades, recent developments in molecular biology allow for expanded insight into the abundance and function of these microbes. Here we used the vinegar fly, Drosophila melanogaster, to investigate fitness measures across the lifetime of flies fed a suspension of gut microbes harvested from young or old flies, respectively. Our hypothesis was that flies constitutively enriched with a 'Young microbiome' would live longer and be more agile at old age (i.e. have increased healthspan) compared to flies enriched with an 'Old microbiome'. Three major take home messages came out of our study: (1) the gut microbiomes of young and old flies differ markedly; (2) feeding flies with Young and Old microbiomes altered the microbiome of recipient flies and (3) the two different microbial diets did not have any effect on locomotor activity nor lifespan of the recipient flies, contradicting our working hypothesis. Combined, these results provide novel insight into the interplay between hosts and their microbiomes and clearly highlight that the phenotypic effects of gut transplants and probiotics can be complex and unpredictable.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Drosophila , Drosophila melanogaster , Longevidad
4.
Cell Commun Signal ; 22(1): 209, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566180

RESUMEN

Inflammasomes are complex platforms for the cleavage and release of inactivated IL-1ß and IL-18 cytokines that trigger inflammatory responses against damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). Gut microbiota plays a pivotal role in maintaining gut homeostasis. Inflammasome activation needs to be tightly regulated to limit aberrant activation and bystander damage to the host cells. Several types of inflammasomes, including Node-like receptor protein family (e.g., NLRP1, NLRP3, NLRP6, NLRP12, NLRC4), PYHIN family, and pyrin inflammasomes, interact with gut microbiota to maintain gut homeostasis. This review discusses the current understanding of how inflammasomes and microbiota interact, and how this interaction impacts human health. Additionally, we introduce novel biologics and antagonists, such as inhibitors of IL-1ß and inflammasomes, as therapeutic strategies for treating gastrointestinal disorders when inflammasomes are dysregulated or the composition of gut microbiota changes.


Asunto(s)
Microbioma Gastrointestinal , Inflamasomas , Humanos , Inflamasomas/metabolismo , Citocinas/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38568776

RESUMEN

Dietary habits have been proven to have an impact on the microbial composition and health of the human gut. Over the past decade, researchers have discovered that gut microbiota can use nutrients to produce metabolites that have major implications for human physiology. However, there is no comprehensive system that specifically focuses on identifying nutrient deficiencies based on gut microbiota, making it difficult to interpret and compare gut microbiome data in the literature. This study proposes an analytical platform, NURECON, that can predict nutrient deficiency information in individuals by comparing their metagenomic information to a reference baseline. NURECON integrates a next-generation bacterial 16S rRNA analytical pipeline (QIIME2), metabolic pathway prediction tools (PICRUSt2 and KEGG), and a food compound database (FooDB) to enable the identification of missing nutrients and provide personalized dietary suggestions. Metagenomic information from total number of 287 healthy subjects was used to establish baseline microbial composition and metabolic profiles. The uploaded data is analyzed and compared to the baseline for nutrient deficiency assessment. Visualization results include gut microbial composition, related enzymes, pathways, and nutrient abundance. NURECON is a user-friendly online platform that provides nutritional advice to support dietitians' research or menu design.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Humanos , ARN Ribosómico 16S/genética , Microbioma Gastrointestinal/genética , Metagenoma , Necesidades Nutricionales
6.
Cell Metab ; 36(4): 684-701, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569469

RESUMEN

One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.


Asunto(s)
Alimentos Fermentados , Microbioma Gastrointestinal , Microbiota , Humanos , Biología
7.
Cell Metab ; 36(4): 725-744, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569470

RESUMEN

Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Humanos , Promoción de la Salud , Estado Nutricional , Antibacterianos , Probióticos/farmacología , Probióticos/uso terapéutico
9.
Cancer Discov ; 14(4): 658-662, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571436

RESUMEN

SUMMARY: Pathogenic shifts in the gut microbiota are part of the "ecological" alterations that accompany tumor progression and compromise immunosurveillance. The future management of health and disease including cancer will rely on the diagnosis of such shifts and their therapeutic correction by general or personalized strategies, hence restoring metaorganismal homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Homeostasis
10.
BMC Microbiol ; 24(1): 119, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580930

RESUMEN

Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.


Asunto(s)
Clostridiales , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Obesidad/microbiología , Bacterias/genética , Heces/microbiología , Akkermansia
11.
Microbiome ; 12(1): 70, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581016

RESUMEN

BACKGROUND: Gut microbiota is significantly influenced by altitude. However, the dynamics of gut microbiota in relation to altitude remains undisclosed. METHODS: In this study, we investigated the microbiome profile of 610 healthy young men from three different places in China, grouped by altitude, duration of residence, and ethnicity. We conducted widely targeted metabolomic profiling and clinical testing to explore metabolic characteristics. RESULTS: Our findings revealed that as the Han individuals migrated from low altitude to high latitude, the gut microbiota gradually converged towards that of the Tibetan populations but reversed upon returning to lower altitude. Across different cohorts, we identified 51 species specifically enriched during acclimatization and 57 species enriched during deacclimatization to high altitude. Notably, Prevotella copri was found to be the most enriched taxon in both Tibetan and Han populations after ascending to high altitude. Furthermore, significant variations in host plasma metabolome and clinical indices at high altitude could be largely explained by changes in gut microbiota composition. Similar to Tibetans, 41 plasma metabolites, such as lactic acid, sphingosine-1-phosphate, taurine, and inositol, were significantly elevated in Han populations after ascending to high altitude. Germ-free animal experiments demonstrated that certain species, such as Escherichia coli and Klebsiella pneumoniae, which exhibited altitude-dependent variations in human populations, might play crucial roles in host purine metabolism. CONCLUSIONS: This study provides insights into the dynamics of gut microbiota and host plasma metabolome with respect to altitude changes, indicating that their dynamics may have implications for host health at high altitude and contribute to host adaptation. Video Abstract.


Asunto(s)
Pueblos del Este de Asia , Microbioma Gastrointestinal , Animales , Masculino , Humanos , Microbioma Gastrointestinal/genética , Altitud , Multiómica , Metaboloma
12.
BMC Biol ; 22(1): 76, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581018

RESUMEN

BACKGROUND: The gut microbiota, vital for host health, influences metabolism, immune function, and development. Understanding the dynamic processes of bacterial accumulation within the gut is crucial, as it is closely related to immune responses, antibiotic resistance, and colorectal cancer. We investigated Escherichia coli behavior and distribution in zebrafish larval intestines, focusing on the gut microenvironment. RESULTS: We discovered that E. coli spread was considerably suppressed within the intestinal folds, leading to a strong physical accumulation in the folds. Moreover, a higher concentration of E. coli on the dorsal side than on the ventral side was observed. Our in vitro microfluidic experiments and theoretical analysis revealed that the overall distribution of E. coli in the intestines was established by a combination of physical factor and bacterial taxis. CONCLUSIONS: Our findings provide valuable insight into how the intestinal microenvironment affects bacterial motility and accumulation, enhancing our understanding of the behavioral and ecological dynamics of the intestinal microbiota.


Asunto(s)
Microbioma Gastrointestinal , Intestinos , Animales , Intestinos/microbiología , Escherichia coli/fisiología , Factores Biológicos , Pez Cebra/fisiología , Microbioma Gastrointestinal/fisiología , Bacterias
13.
Cardiovasc Diabetol ; 23(1): 123, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581039

RESUMEN

BACKGROUND: Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS: We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS: Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION: Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Fusobacterium nucleatum/fisiología , Enfermedad de la Arteria Coronaria/etiología
14.
Pestic Biochem Physiol ; 200: 105808, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582580

RESUMEN

Growing evidences have shown that the decline in honey bee populations is mainly caused by the combination of multiple stressors. However, the impacts of parasitic Nosema ceranae to host fitness during long-term pesticide exposure-induced stress is largely unknown. In this study, the effects of chronic exposure to a sublethal dose of dinotefuran, in the presence or absence of N. ceranae, was examined in terms of survival, food consumption, detoxification enzyme activities and gut microbial community. The interaction between dinotefuran and Nosema ceranae on the survival of honey bee was synergistic. Co-exposure to dinotefuran and N. ceranae led to less food consumption and greater changes of enzyme activities involved in defenses against oxidative stress. Particularly, N. ceranae and dinotefuran-N. ceranae co-exposure significantly impacted the gut microbiota structure and richness in adult honey bees, while dinotefuran alone did not show significant alternation of core gut microbiota compared to the control group. We herein demonstrated that chronical exposure to dinotefuran decreases honey bee's survival but is not steadily associated with the gut microbiota dysbiosis; by contrast, N. ceranae parasitism plays a dominant role in the combination in influencing the gut microbial community of the host honey bee. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.


Asunto(s)
Microbioma Gastrointestinal , Guanidinas , Nitrocompuestos , Nosema , Abejas , Animales , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad
15.
J Zhejiang Univ Sci B ; 25(4): 271-279, 2024 Apr 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38584090

RESUMEN

Pancreatic exocrine insufficiency (PEI) can be induced by various kinds of diseases, including chronic pancreatitis, acute pancreatitis, and post-pancreatectomy. The main pathogenetic mechanism of PEI involves the decline of trypsin synthesis, disorder of pancreatic fluid flow, and imbalance of secretion feedback. Animal studies have shown that PEI could induce gut bacterial overgrowth and dysbiosis, with the abundance of Lactobacillus and Bifidobacterium increasing the most, which could be partially reversed by pancreatic enzyme replacement therapy. Clinical studies have also confirmed the association between PEI and the dysbiosis of gut microbiota. Pancreatic exocrine secretions and changes in duodenal pH as well as bile salt malabsorption brought about by PEI may affect and shape the abundance and composition of gut microbiota. In turn, the gut microbiota may impact the pancreatic exocrine acinus through potential bidirectional crosstalk. Going forward, more and higher-quality studies are needed that focus on the mechanism underlying the impact of PEI on the gut microbiota.


Asunto(s)
Insuficiencia Pancreática Exocrina , Microbioma Gastrointestinal , Pancreatitis , Humanos , Enfermedad Aguda , Disbiosis , Insuficiencia Pancreática Exocrina/tratamiento farmacológico
16.
PeerJ ; 12: e17185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584937

RESUMEN

Background: Cardiovascular diseases are the leading cause of death worldwide, significantly impacting public health. Atherosclerotic cardiovascular diseases account for the majority of these deaths, with atherosclerosis marking the initial and most critical phase of their pathophysiological progression. There is a complex relationship between atherosclerosis, the gut microbiome's composition and function, and the potential mediating role of exercise. The adaptability of the gut microbiome and the feasibility of exercise interventions present novel opportunities for therapeutic and preventative approaches. Methodology: We conducted a comprehensive literature review using professional databases such as PubMed and Web of Science. This review focuses on the application of meta-omics techniques, particularly metagenomics and metabolomics, in studying the effects of exercise interventions on the gut microbiome and atherosclerosis. Results: Meta-omics technologies offer unparalleled capabilities to explore the intricate connections between exercise, the microbiome, the metabolome, and cardiometabolic health. This review highlights the advancements in metagenomics and metabolomics, their applications in research, and examines how exercise influences the gut microbiome. We delve into the mechanisms connecting these elements from a metabolic perspective. Metagenomics provides insight into changes in microbial strains post-exercise, while metabolomics sheds light on the shifts in metabolites. Together, these approaches offer a comprehensive understanding of how exercise impacts atherosclerosis through specific mechanisms. Conclusions: Exercise significantly influences atherosclerosis, with the gut microbiome serving as a critical intermediary. Meta-omics technology holds substantial promise for investigating the gut microbiome; however, its methodologies require further refinement. Additionally, there is a pressing need for more extensive cohort studies to enhance our comprehension of the connection among these element.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Enfermedades Cardiovasculares/metabolismo , Metabolómica/métodos , Metaboloma
17.
Front Cell Infect Microbiol ; 14: 1371727, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585653

RESUMEN

Background: Gut microbiota studies in the field of endocrinology metabolism have attracted increasing attention in recent years. To comprehensively assess the evolving landscape of this research field, we conducted a thorough bibliometric analysis of gut microbiota studies in endocrinology metabolism indexed in the Web of Science database. Methods: We collected and analyzed 3,339 original research articles and reviews published from 1972 to 2023. Using various bibliometric indicators, we investigated publication trends, country contributions, international collaborations, prolific authors, top journals, and influential articles. Results: Our analysis revealed a significant upsurge in publications after 2010, indicating a growing scientific interest in microbiota and endocrinology metabolism. Keyword and thematic analyses have identified gut microbiota, obesity, diabetes, and inflammation as core research themes. Additionally, the roles of probiotics and prebiotics are increasingly researched for their therapeutic effects in shaping the microbiota. Conclusion: This study reveals that research in endocrinology metabolism is increasingly decoding the connection between gut microbiota and diseases. There's also a growing focus on microbiota manipulation, which points to a shift towards personalized medicine. Future research should focus on integrating these findings into clinical practice, moving from lab-based studies to real-world patient care.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Bibliometría , Bases de Datos Factuales , Inflamación
18.
Front Cell Infect Microbiol ; 14: 1374544, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585649

RESUMEN

Introduction: Children have regional dynamics in the gut microbiota development trajectory. Hitherto, the features and influencing factors of the gut microbiota and fecal and plasma metabolites in children from Northwest China remain unclear. Methods: Shotgun metagenomic sequencing and untargeted metabolomics were performed on 100 healthy volunteers aged 2-12 years. Results: Age, body mass index (BMI), regular physical exercise (RPE), and delivery mode (DM) significantly affect gut microbiota and metabolites. Lactobacillus, Butyricimonas, Prevotella, Alistipes, and predicted pathway propanoate production were significantly increased with age while Bifidobacterium breve, B. animalis, B. pseudocatenulatum, Streptococcus infantis, and carbohydrate degradation were decreased. Fecal metabolome revealed that the metabolism of caffeine, amino acids, and lipid significantly increased with age while galactose metabolism decreased. Noticeably, BMI was positively associated with pathogens including Erysipelatoclostridium ramosum, Parabacteroides distasonis, Ruminococcus gnavus, and amino acid metabolism but negatively associated with beneficial Akkermansia muciniphila, Alistipes finegoldii, Eubacterium ramulus, and caffeine metabolism. RPE has increased probiotic Faecalibacterium prausnitzii and Anaerostipes hadrus, acetate and lactate production, and major nutrient metabolism in gut and plasma, but decreased pathobiont Bilophila wadsworthia, taurine degradation, and pentose phosphate pathway. Interestingly, DM affects the gut microbiota and metabolites throughout the whole childhood. Bifidobacterium animalis, Lactobacillus mucosae, L. ruminis, primary bile acid, and neomycin biosynthesis were enriched in eutocia, while anti-inflammatory Anaerofustis stercorihominis, Agathobaculum butyriciproducens, Collinsella intestinalis, and pathogenic Streptococcus salivarius, Catabacter hongkongensis, and amino acid metabolism were enriched in Cesarean section children. Discussion: Our results provided theoretical and data foundation for the gut microbiota and metabolites in preadolescent children's growth and development in Northwest China.


Asunto(s)
Microbioma Gastrointestinal , Embarazo , Niño , Humanos , Femenino , Cafeína , Cesárea , Población Urbana , Metaboloma , Aminoácidos
19.
Genet Sel Evol ; 56(1): 25, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565991

RESUMEN

BACKGROUND: Longevity and resilience are two fundamental traits for more sustainable livestock production. These traits are closely related, as resilient animals tend to have longer lifespans. An interesting criterion for increasing longevity in rabbit could be based on the information provided by its gut microbiome. The gut microbiome is essential for regulating health and plays crucial roles in the development of the immune system. The aim of this research was to investigate if animals with different longevities have different microbial profiles. We sequenced the 16S rRNA gene from soft faeces from 95 does. First, we compared two maternal rabbit lines with different longevities; a standard longevity maternal line (A) and a maternal line (LP) that was founded based on longevity criteria: females with a minimum of 25 parities with an average prolificacy per parity of 9 or more. Second, we compared the gut microbiota of two groups of animals from line LP with different longevities: females that died/were culled with two parities or less (LLP) and females with more than 15 parities (HLP). RESULTS: Differences in alpha and beta diversity were observed between lines A and LP, and a partial least square discriminant analysis (PLS-DA) showed a high prediction accuracy (> 91%) of classification of animals to line A versus LP (146 amplicon sequence variants (ASV)). The PLS-DA also showed a high prediction accuracy (> 94%) to classify animals to the LLP and HLP groups (53 ASV). Interestingly, some of the most important taxa identified in the PLS-DA were common to both comparisons (Akkermansia, Christensenellaceae R-7, Uncultured Eubacteriaceae, among others) and have been reported to be related to resilience and longevity. CONCLUSIONS: Our results indicate that the first parity gut microbiome profile differs between the two rabbit maternal lines (A and LP) and, to a lesser extent, between animals of line LP with different longevities (LLP and HLP). Several genera were able to discriminate animals from the two lines and animals with different longevities, which shows that the gut microbiome could be used as a predictive factor for longevity, or as a selection criterion for these traits.


Asunto(s)
Microbioma Gastrointestinal , Longevidad , Embarazo , Femenino , Animales , Conejos , Longevidad/genética , Tamaño de la Camada/genética , ARN Ribosómico 16S/genética , Fenotipo
20.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566102

RESUMEN

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Receptores ErbB/genética , Antibacterianos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...