Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.167
Filtrar
1.
Int. microbiol ; 27(2): 377-391, Abr. 2024. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-ADZ-151

RESUMEN

The influence of elevation on natural terrestrial ecosystems determines the arrangements of microbial communities in soils to be associated with biotic and abiotic factors. To evaluate changes of fungi and bacteria at the community level along an elevational gradient (between 1000 and 3800 m.a.s.l.), physicochemical measurements of soils, taxonomic identifications of plants, and metabarcoding sequences of the 16S rRNA gene for bacteria and the ITS1 region for fungi were obtained. The bacterial taxonomic composition showed that Acidobacteriota increased in abundance with elevation, while Actinobacteriota and Verrucomicrobiota decreased. Furthermore, Firmicutes and Proteobacteria maintained maximum levels of abundance at intermediate elevations (1200 and 2400 m.a.s.l.). In fungi, Ascomycota was more abundant at higher elevations, Basidiomycota tended to dominate at lower elevations, and Mortierellomycota had a greater presence at intermediate sites. These results correlated with the edaphic parameters of decreasing pH and increasing organic carbon and available nitrogen with elevation. In addition, the Shannon index found a greater diversity in bacteria than fungi, but both showed a unimodal pattern with maximum values in the Andean Forest at 2400 m.a.s.l. Through the microbial characterization of the ecosystems, the elevational gradient, soil properties, and vegetation were found to exert significant effects on microbial communities and alpha diversity indices. We conclude that the most abundant soil microorganisms at the sampling points differed in abundance and diversity according to the variations in factors influencing ecological communities. (AU)


Asunto(s)
Microbiota , Factores Bióticos , Factores Abióticos , Hongos , Bacterias
2.
Nefrología (Madrid) ; 44(2): 194-203, Mar-Abr. 2024. tab, graf
Artículo en Inglés | IBECS | ID: ibc-231569

RESUMEN

Introduction and objectives: Diabetes, dyslipidemia, older age, gender, urinary tract infections, and recent antibiotic intake have been associated with a decrease in the urobiome richness and other fluctuations in this microbiome. Gut and blood microbiome have been reported to be altered in patients with chronic kidney disease (CKD), and specifically in peritoneal dialysis (PD) patients. Still, there are currently no studies describing the urogenital microbiome in CKD-PD patients. In this study we characterized the urobiome profile in 46 PD patients and analyzed its clinical and inflammatory parameters. Materials and methods: Mid-stream urine, fecal and blood samples were collected from 46 patients undergoing PD at Centro Hospitalar Universitário de São João (CHUSJ) in Porto, Portugal. Exclusion criteria were age under 18 years old, inability to give informed consent, history of infection in the last three months, and antibiotic intake in the last three months. The microbiome communities were analyzed by amplification and sequencing of the V3–V4 region of the bacterial 16S rRNA gene. Correlations with the patients’ clinical data and inflammatory profile were performed. Results: CKD-PD patients presented a unique urobiome profile dominated by Bacillota, Actinomycetota and Pseudomonadota and characterized by a lower Shannon diversity than fecal and blood microbiome. The taxonomic profiles of urogenital samples were organized in multiple subtypes dominated by populations of Lactobacillus, Staphylococcus, Streptococcus, Gardnerella, Prevotella, Escherichia-Shigella, being similar to other non-PD-CKD patients. Gender, sCD14, residual diuresis and history of peritonitis were significantly associated to variations in the urobiome. Although not reaching statistical significance, diabetes and the time on PD also showed association with particular taxonomic groups... (AU)


Introducción y objetivos: Diabetes, dislipemia, edad avanzada, género, infecciones del tracto urinario y toma reciente de antibióticos, entre otras, se han asociado a una disminución en la riqueza del urobioma y a otras fluctuaciones de dicho microbioma.Recientemente, se han descrito alteraciones en losmicrobiomas intestinal y en sangreen pacientes con enfermedad renal crónica (ERC) y, específicamente, en pacientes en diálisis peritoneal (DP).A pesar de ello, aún no existen estudios que describan el microbioma urogenital en pacientes en DP. En el presente trabajo, caracterizamos el urobioma en 46 pacientes en DP. Pacientes y métodos: Se recogieron muestras de orina (micción espontánea), heces y sangre de 46 pacientes en DP del Centro HospitalarUniversitário de São João en Oporto, Portugal. Los criterios de exclusión fueron edad menor a 18 años, incapacidad para entenderel consentimiento informado, e historia de infección y toma de antibióticos en los últimos 3 meses. Las comunidades microbiológicas fueron analizadas por amplificación y secuenciación de las regiones V3-V4 del 16S rRNA bacteriano. Se realizaron correlaciones con los datos clínicos y el perfil inflamatorio de los pacientes. Resultados: Los pacientes en DP presentaron un urobioma único dominado por Bacillota, Actinomycetota yPseudomonadota, y caracterizado por una menor diversidad de Shannon que los microbiomas en sangre e intestinal. Los perfiles taxonómicos de las muestras urogenitales se organizaron en múltiples subtipos dominados por poblaciones de Lactobacillus, Staphylococcus, Streptococcus, Gardnerella, Prevotella, Escherichia-Shigella, siendo similar al descrito para otros pacientes con ERC no en DP.Género, factor sCD14, diuresis residual yantecedentes de peritonitis se asociaron de forma significativa a cambios en el urobioma... (AU)


Asunto(s)
Humanos , Niño , Adolescente , Microbiota , Microbioma Gastrointestinal , Diálisis Peritoneal , Insuficiencia Renal Crónica , /orina , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/orina , Portugal
3.
Arch. bronconeumol. (Ed. impr.) ; 60(4): 215-225, abr.2024. tab, graf
Artículo en Inglés | IBECS | ID: ibc-232043

RESUMEN

Severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is a heterogeneous condition associated with a high risk of developing childhood asthma. Yet, the exact mechanisms underlying the bronchiolitis-asthma link remain uncertain. Birth cohort studies have reported this association at the population level, including only small groups of patients with a history of bronchiolitis, and have attempted to identify the underlying biological mechanisms. Although this evidence has provided valuable insights, there are still unanswered questions regarding severe bronchiolitis-asthma pathogenesis. Recently, a few bronchiolitis cohort studies have attempted to answer these questions by applying unbiased analytical approaches to biological data. These cohort studies have identified novel bronchiolitis subtypes (i.e., endotypes) at high risk for asthma development, representing essential and enlightening evidence. For example, one distinct severe respiratory syncytial virus (RSV) bronchiolitis endotype is characterized by the presence of Moraxella catarrhalis and Streptococcus pneumoniae, higher levels of type I/II IFN expression, and changes in carbohydrate metabolism in nasal airway samples, and is associated with a high risk for childhood asthma development. Although these findings hold significance for the design of future studies that focus on childhood asthma prevention, they require validation. However, this scoping review puts the above findings into clinical context and emphasizes the significance of future research in this area aiming to offer new bronchiolitis treatments and contribute to asthma prevention. (AU)


Asunto(s)
Humanos , Asma , Bronquiolitis , Epigenómica , Genómica , Metabolómica , Microbiota , Perfilación de la Expresión Génica , Proteómica
4.
Artículo en Inglés | MEDLINE | ID: mdl-38596203

RESUMEN

Introduction: Chronic obstructive pulmonary disease (COPD), an incurable chronic respiratory disease, has become a major public health problem. The relationship between the composition of intestinal microbiota and the important clinical factors affecting COPD remains unclear. This study aimed to identify specific intestinal microbiota with high clinical diagnostic value for COPD. Methods: The fecal microbiota of patients with COPD and healthy individuals were analyzed by 16S rDNA sequencing. Random forest classification was performed to analyze the different intestinal microbiota. Spearman correlation was conducted to analyze the correlation between different intestinal microbiota and clinical characteristics. A microbiota-disease network diagram was constructed using the gut MDisorder database to identify the possible pathogenesis of intestinal microorganisms affecting COPD, screen for potential treatment, and guide future research. Results: No significant difference in biodiversity was shown between the two groups but significant differences in microbial community structure. Fifteen genera of bacteria with large abundance differences were identified, including Bacteroides, Prevotella, Lachnospira, and Parabacteroides. Among them, the relative abundance of Lachnospira and Coprococcus was negatively related to the smoking index and positively related to lung function results. By contrast, the relative abundance of Parabacteroides was positively correlated with the smoking index and negatively correlated with lung function findings. Random forest classification showed that Lachnospira was the genus most capable of distinguishing between patients with COPD and healthy individuals suggesting it may be a potential biomarker of COPD. A Lachnospira disease network diagram suggested that Lachnospira decreased in some diseases, such as asthma, diabetes mellitus, and coronavirus disease 2019 (COVID-19), and increased in other diseases, such as irritable bowel syndrome, hypertension, and bovine lichen. Conclusion: The dominant intestinal microbiota with significant differences is related to the clinical characteristics of COPD, and the Lachnospira has the potential value to identify COPD.


Asunto(s)
Asma , Microbioma Gastrointestinal , Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Bovinos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Heces/microbiología
5.
World J Gastroenterol ; 30(10): 1287-1290, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38596491

RESUMEN

In this editorial, we comment on the article by Marano et al recently published in the World Journal of Gastroenterology 2023; 29 (45): 5945-5952. We focus on the role of gut microbiota (GM) in women's health, highlighting the need to thoroughly comprehend the sex differences in microbiota. Together, the host and GM support the host's health. The microbiota components consist of viruses, bacteria, fungi, and archaea. This complex is an essential part of the host and is involved in neurological development, metabolic control, immune system dynamics, and host dynamic homeostasis. It has been shown that differences in the GM of males and females can contribute to chronic diseases, such as gastrointestinal, metabolic, neurological, cardiovascular, and respiratory illnesses. These differences can also result in some sex-specific changes in immunity. Every day, research on GM reveals new and more expansive frontiers, offering a wealth of innovative opportunities for preventive and precision medicine.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Femenino , Humanos , Masculino , Sistema Inmunológico , Tracto Gastrointestinal , Bacterias
6.
Front Cell Infect Microbiol ; 14: 1327032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596649

RESUMEN

Aim: Mendelian randomization (MR) analysis has been used in the exploration of the role of gut microbiota (GM) in type 2 diabetes mellitus (T2DM); however, it was limited to the genus level. This study herein aims to investigate the relationship of GM, especially at the species level, with T2DM in order to provide some evidence for further exploration of more specific GM taxa and pathway abundance in T2DM. Methods: This two-sample MR study was based on the summary statistics of GM from the available genome-wide association study (GWAS) meta-analysis conducted by the MiBioGen consortium as well as the Dutch Microbiome Project (DMP), whereas the summary statistics of T2DM were obtained from the FinnGen consortium released data. Inverse variance weighted (IVW), MR-Egger, strength test (F), and weighted median methods were used to examine the causal association between GM and the onset of T2DM. Cochran's Q statistics was employed to quantify the heterogeneity of instrumental variables. Bonferroni's correction was conducted to correct the bias of multiple testing. We also performed reverse causality analysis. Results: The corrected IVW estimates suggested the increased relative abundance of family Oxalobacteraceae (OR = 1.0704) and genus Oxalobacter (OR = 1.0874), respectively, were associated with higher odds of T2DM, while that of species faecis (OR = 0.9460) had a negative relationship with T2DM. The relationships of class Betaproteobacteria, family Lactobacillaceae, species finegoldii, and species longum with T2DM were also significant according to the IVW results (all P < 0.05). Conclusions: GM had a potential causal association with T2DM, especially species faecis, finegoldii, and longum. Further studies are still needed to clarify certain results that are contradictory with previous findings.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Sulfaleno , Humanos , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana
7.
J Agric Food Chem ; 72(14): 7596-7606, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557058

RESUMEN

The gut microbiota are known to play an important role in host health and disease. Alterations in the gut microbiota composition can disrupt the stability of the gut ecosystem, which may result in noncommunicable chronic diseases (NCCDs). Remodeling the gut microbiota through personalized nutrition is a novel therapeutic avenue for both disease control and prevention. However, whether there are commonly used gut microbiota-targeted diets and how gut microbiota-diet interactions combat NCCDs and improve health remain questions to be addressed. Lactoferrin (LF), which is broadly used in dietary supplements, acts not only as an antimicrobial in the defense against enteropathogenic bacteria but also as a prebiotic to propagate certain probiotics. Thus, LF-induced gut microbiota alterations can be harnessed to induce changes in host physiology, and the underpinnings of their relationships and mechanisms are beginning to unravel in studies involving humans and animal models.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Lactoferrina , Dieta , Prebióticos
8.
J Agric Food Chem ; 72(14): 7794-7806, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38561246

RESUMEN

To investigate the effects of fertilization methods and types on wheat rhizosphere microorganisms, macroelement (N, K) and microelement (Zn) fertilizers were applied on wheat by foliar spraying (FS) and root irrigation (RI) methods in a field experiment. The results indicated that fertilization methods and types can have significant impacts on the diversity and structure of rhizospheric microorganisms in wheat. The application method produced more significant effects than the fertilizer type. RI-N played a more important role in improving the wheat yield and quality and affected the changes in some nitrogen-fixing bacterial communities. Finally, eight strains of bacteria belonging to Pseudomonas azotoformans and P. cedrina showed positive effects on the growth of wheat seedlings. Overall, our study provides a better understanding of the dynamics of wheat rhizosphere microbial communities and their relation to fertilization, yield, and quality, showing that plant growth-promoting rhizobacteria with nitrogen fixing may be a potential approach for more sustainable agriculture production.


Asunto(s)
Microbiota , Triticum , Rizosfera , Nitrógeno/análisis , Fertilizantes/análisis , Fertilización , Suelo/química , Microbiología del Suelo
9.
Microbiome ; 12(1): 67, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561814

RESUMEN

Understanding the characteristics and structure of populations is fundamental to comprehending ecosystem processes and evolutionary adaptations. While the study of animal and plant populations has spanned a few centuries, microbial populations have been under scientific scrutiny for a considerably shorter period. In the ocean, analyzing the genetic composition of microbial populations and their adaptations to multiple niches can yield important insights into ecosystem function and the microbiome's response to global change. However, microbial populations have remained elusive to the scientific community due to the challenges associated with isolating microorganisms in the laboratory. Today, advancements in large-scale metagenomics and metatranscriptomics facilitate the investigation of populations from many uncultured microbial species directly from their habitats. The knowledge acquired thus far reveals substantial genetic diversity among various microbial species, showcasing distinct patterns of population differentiation and adaptations, and highlighting the significant role of selection in structuring populations. In the coming years, population genomics is expected to significantly increase our understanding of the architecture and functioning of the ocean microbiome, providing insights into its vulnerability or resilience in the face of ongoing global change. Video Abstract.


Asunto(s)
Ecosistema , Microbiota , Animales , Microbiota/genética , Océanos y Mares , Metagenómica
10.
Sci Rep ; 14(1): 7786, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565581

RESUMEN

In multiple sclerosis (MS), alterations of the gut microbiota lead to inflammation. However, the role of other microbiomes in the body in MS has not been fully elucidated. In a pilot case-controlled study, we carried out simultaneous characterization of faecal and oral microbiota and conducted an in-depth analysis of bacterial alterations associated with MS. Using 16S rRNA sequencing and metabolic inference tools, we compared the oral/faecal microbiota and bacterial metabolism pathways in French MS patients (n = 14) and healthy volunteers (HV, n = 21). A classification model based on metabolite flux balance was established and validated in an independent German cohort (MS n = 12, HV n = 38). Our analysis revealed decreases in diversity indices and oral/faecal compartmentalization, the depletion of commensal bacteria (Aggregatibacter and Streptococcus in saliva and Coprobacter and Roseburia in faeces) and enrichment of inflammation-associated bacteria in MS patients (Leptotrichia and Fusobacterium in saliva and Enterobacteriaceae and Actinomyces in faeces). Several microbial pathways were also altered (the polyamine pathway and remodelling of bacterial surface antigens and energetic metabolism) while flux balance analysis revealed associated alterations in metabolite production in MS (nitrogen and nucleoside). Based on this analysis, we identified a specific oral metabolite signature in MS patients, that could discriminate MS patients from HV and rheumatoid arthritis patients. This signature allowed us to create and validate a discrimination model on an independent cohort, which reached a specificity of 92%. Overall, the oral and faecal microbiomes were altered in MS patients. This pilot study highlights the need to study the oral microbiota and oral health implications in patients with autoimmune diseases on a larger scale and suggests that knowledge of the salivary microbiome could help guide the identification of new pathogenic mechanisms associated with the microbiota in MS patients.


Asunto(s)
Microbiota , Esclerosis Múltiple , Humanos , Proyectos Piloto , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Microbiota/genética , Bacterias/genética , Inflamación
11.
Sci Rep ; 14(1): 7799, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565609

RESUMEN

It is becoming increasingly evident that the myriad of microbes in the gut, within cells and attached to body parts (or roots of plants), play crucial roles for the host. Although this has been known for decades, recent developments in molecular biology allow for expanded insight into the abundance and function of these microbes. Here we used the vinegar fly, Drosophila melanogaster, to investigate fitness measures across the lifetime of flies fed a suspension of gut microbes harvested from young or old flies, respectively. Our hypothesis was that flies constitutively enriched with a 'Young microbiome' would live longer and be more agile at old age (i.e. have increased healthspan) compared to flies enriched with an 'Old microbiome'. Three major take home messages came out of our study: (1) the gut microbiomes of young and old flies differ markedly; (2) feeding flies with Young and Old microbiomes altered the microbiome of recipient flies and (3) the two different microbial diets did not have any effect on locomotor activity nor lifespan of the recipient flies, contradicting our working hypothesis. Combined, these results provide novel insight into the interplay between hosts and their microbiomes and clearly highlight that the phenotypic effects of gut transplants and probiotics can be complex and unpredictable.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Drosophila , Drosophila melanogaster , Longevidad
12.
Hist Philos Life Sci ; 46(2): 17, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565750

RESUMEN

This article reformulates Stephan Helmreich´s the ¨microbiomisation of race¨ as the historiality of otherness in the foundations of human microbiome science. Through the lens of my ethnographic fieldwork of a transnational community of microbiome scientists that conducted a landmark human microbiome research on indigenous microbes and its affiliated and first personalised microbiome initiative, the American Gut Project, I follow and trace the key actors, experimental systems and onto-epistemic claims in the emergence of human microbiome science a decade ago. In doing so, I show the links between the reinscription of race, comparative research on the microbial genetic variation of human populations and the remining of bioprospected data for personalised medicine. In these unpredictable research movements, the microbiome of non-Western peoples and territories is much more than a side project or a specific approach within the field: it constitutes the nucleus of its experimental system, opening towards subsequent and cumulative research processes and knowledge production in human microbiome science. The article demonstrates that while human microbiome science is articulated upon the microbial 'makeup' of non-wester(nised) communities, societies, and locales, its results and therapeutics are only applicable to medical conditions affecting rich nations (i.e., inflammatory, autoimmune, and metabolic diseases). My reformulation of ¨microbiomisation of race¨ as the condition of possibility of human microbiome science reveals that its individual dimension is sustained by microbial DNA data from human populations through bioprospecting practices and gains meaning through personalised medicine initiatives, informal online networks of pseudoscientific and commodified microbial-related evidence.


Asunto(s)
Microbiota , Humanos , Estados Unidos
13.
Sci Rep ; 14(1): 7774, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565877

RESUMEN

Human microbiota mainly resides on the skin and in the gut. Human gut microbiota can produce a variety of short chain fatty acids (SCFAs) that affect many physiological functions and most importantly modulate brain functions through the bidirectional gut-brain axis. Similarly, skin microorganisms also have identical metabolites of SCFAs reported to be involved in maintaining skin homeostasis. However, it remains unclear whether these SCFAs produced by skin bacteria can affect brain cognitive functions. In this study, we hypothesize that the brain's functional activities are associated with the skin bacterial population and examine the influence of local skin-bacterial growth on event-related potentials (ERPs) during an oddball task using EEG. Additionally, five machine learning (ML) methods were employed to discern the relationship between skin microbiota and cognitive functions. Twenty healthy subjects underwent three rounds of tests under different conditions-alcohol, glycerol, and water. Statistical tests confirmed a significant increase in bacterial population under water and glycerol conditions when compared to the alcohol condition. The metabolites of bacteria can turn phenol red from red-orange to yellow, confirming an increase in acidity. P3 amplitudes were significantly enhanced in response to only oddball stimulus at four channels (Fz, FCz, and Cz) and were observed after the removal of bacteria when compared with that under the water and glycerol manipulations. By using machine learning methods, we demonstrated that EEG features could be separated with a good accuracy (> 88%) after experimental manipulations. Our results suggest a relationship between skin microbiota and brain functions. We hope our findings motivate further study into the underlying mechanism. Ultimately, an understanding of the relationship between skin microbiota and brain functions can contribute to the treatment and intervention of diseases that link with this pathway.


Asunto(s)
Glicerol , Microbiota , Humanos , Encéfalo/metabolismo , Ácidos Grasos Volátiles/metabolismo , Cognición , Electroencefalografía , Agua
14.
Cell Metab ; 36(4): 684-701, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569469

RESUMEN

One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.


Asunto(s)
Alimentos Fermentados , Microbioma Gastrointestinal , Microbiota , Humanos , Biología
15.
Environ Microbiol ; 26(4): e16617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558266

RESUMEN

Sunlight penetrates the ice surfaces of glaciers and ice sheets, forming a water-bearing porous ice matrix known as the weathering crust. This crust is home to a significant microbial community. Despite the potential implications of microbial processes in the weathering crust for glacial melting, biogeochemical cycles, and downstream ecosystems, there have been few explorations of its microbial communities. In our study, we used 16S rRNA gene sequencing and shotgun metagenomics of a Svalbard glacier surface catchment to characterise the microbial communities within the weathering crust, their origins and destinies, and the functional potential of the weathering crust metagenome. Our findings reveal that the bacterial community in the weathering crust is distinct from those in upstream and downstream habitats. However, it comprises two separate micro-habitats, each with different taxa and functional categories. The interstitial porewater is dominated by Polaromonas, influenced by the transfer of snowmelt, and exported via meltwater channels. In contrast, the ice matrix is dominated by Hymenobacter, and its metagenome exhibits a diverse range of functional adaptations. Given that the global weathering crust area and the subsequent release of microbes from it are strongly responsive to climate projections for the rest of the century, our results underscore the pressing need to integrate the microbiome of the weathering crust with other communities and processes in glacial ecosystems.


Asunto(s)
Cubierta de Hielo , Microbiota , Cubierta de Hielo/microbiología , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética , Regiones Árticas
16.
Front Immunol ; 15: 1368599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558802

RESUMEN

Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.


Asunto(s)
Virus del Dengue , Dengue , Microbiota , Animales , Humanos , Anticuerpos Neutralizantes , Mosquitos Vectores
17.
PeerJ ; 12: e17157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560453

RESUMEN

Background: Honey is a nutritious food made by bees from nectar and sweet deposits of flowering plants and has been used for centuries as a natural remedy for wound healing and other bacterial infections due to its antibacterial properties. Honey contains a diverse community of bacteria, especially probiotic bacteria, that greatly affect the health of bees and their consumers. Therefore, understanding the microorganisms in honey can help to ensure the quality of honey and lead to the identification of potential probiotic bacteria. Methods: Herein, the bacteria community in honey produced by Apis cerana was investigated by applying the next-generation sequencing (NGS) method for the V3-V4 hypervariable regions of the bacterial 16S rRNA gene. In addition, lactic acid bacteria (LAB) in the honey sample were also isolated and screened for in vitro antimicrobial activity. Results: The results showed that the microbiota of A. cerana honey consisted of two major bacterial phyla, Firmicutes (50%; Clostridia, 48.2%) and Proteobacteria (49%; Gammaproteobacteria, 47.7%). Among the 67 identified bacterial genera, the three most predominant genera were beneficial obligate anaerobic bacteria, Lachnospiraceae (48.14%), followed by Gilliamella (26.80%), and Enterobacter (10.16%). Remarkably, among the identified LAB, Lactobacillus kunkeei was found to be the most abundant species. Interestingly, the isolated L. kunkeei strains exhibited antimicrobial activity against some pathogenic bacteria in honeybees, including Klebsiella spp., Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus. This underscores the potential candidacy of L. kunkeei for developing probiotics for medical use. Taken together, our results provided new insights into the microbiota community in the A. cerana honey in Hanoi, Vietnam, highlighting evidence that honey can be an unexplored source for isolating bacterial strains with potential probiotic applications in honeybees and humans.


Asunto(s)
Antiinfecciosos , Miel , Microbiota , Humanos , Abejas/genética , Animales , ARN Ribosómico 16S/genética , Bacterias/genética , Microbiota/genética
18.
PeerJ ; 12: e17051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560465

RESUMEN

Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.


Asunto(s)
Microbiota , Pez Cebra , Animales , Bacterias , Inflamación , Antibacterianos
19.
J Immunol ; 212(8): 1269-1275, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560811

RESUMEN

Although the lungs were once considered a sterile environment, advances in sequencing technology have revealed dynamic, low-biomass communities in the respiratory tract, even in health. Key features of these communities-composition, diversity, and burden-are consistently altered in lung disease, associate with host physiology and immunity, and can predict clinical outcomes. Although initial studies of the lung microbiome were descriptive, recent studies have leveraged advances in technology to identify metabolically active microbes and potential associations with their immunomodulatory by-products and lung disease. In this brief review, we discuss novel insights in airway disease and parenchymal lung disease, exploring host-microbiome interactions in disease pathogenesis. We also discuss complex interactions between gut and oropharyngeal microbiota and lung immunobiology. Our advancing knowledge of the lung microbiome will provide disease targets in acute and chronic lung disease and may facilitate the development of new therapeutic strategies.


Asunto(s)
Enfermedades Pulmonares , Microbiota , Humanos , Pulmón
20.
Front Cell Infect Microbiol ; 14: 1351540, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562966

RESUMEN

Relevant studies increasingly indicate that female reproductive health is confronted with substantial challenges. Emerging research has revealed that the microbiome interacts with the anatomy, histology, and immunity of the female reproductive tract, which are the cornerstone of maintaining female reproductive health and preventing adverse pregnancy outcomes. Currently, the precise mechanisms underlying their interaction and impact on physiological functions of the reproductive tract remain elusive, constituting a prominent area of investigation within the field of female reproductive tract microecology. From this new perspective, we explore the mechanisms of interactions between the microbiome and the anatomy, histology, and immunity of the female reproductive tract, factors that affect the composition of the microbiome in the female reproductive tract, as well as personalized medicine approaches in managing female reproductive tract health based on the microbiome. This study highlights the pivotal role of the female reproductive tract microbiome in maintaining reproductive health and influencing the occurrence of reproductive tract diseases. These findings support the exploration of innovative approaches for the prevention, monitoring and treatment of female reproductive tract diseases based on the microbiome.


Asunto(s)
Microbiota , Salud Reproductiva , Embarazo , Femenino , Humanos , Genitales Femeninos , Microbiota/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...