Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363.154
Filtrar
1.
J Headache Pain ; 22(1): 62, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193048

RESUMEN

BACKGROUND: Circadian patterns of migraine attacks have been reported by patients but remain understudied. In animal models, circadian phases are generally not taken into consideration. In particular, rodents are nocturnal animals, yet they are most often tested during their inactive phase during the day. This study aims to test the validity of CGRP-induced behavioral changes in mice by comparing responses during the active and inactive phases. METHODS: Male and female mice of the outbred CD1 strain were administered vehicle (PBS) or CGRP (0.1 mg/kg, i.p.) to induce migraine-like symptoms. Animals were tested for activity (homecage movement and voluntary wheel running), light aversive behavior, and spontaneous pain at different times of the day and night. RESULTS: Peripheral administration of CGRP decreased the activity of mice during the first hour after administration, induced light aversive behavior, and spontaneous pain during that same period of time. Both phenotypes were observed no matter what time of the day or night they were assessed. CONCLUSIONS: A decrease in wheel activity is an additional clinically relevant phenotype observed in this model, which is reminiscent of the reduction in normal physical activity observed in migraine patients. The ability of peripheral CGRP to induce migraine-like symptoms in mice is independent of the phase of the circadian cycle. Therefore, preclinical assessment of migraine-like phenotypes can likely be done during the more convenient inactive phase of mice.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Trastornos Migrañosos/inducido químicamente , Actividad Motora
2.
Nihon Yakurigaku Zasshi ; 156(4): 235-238, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-34193703

RESUMEN

Sandhoff disease (SD) is a genetic disorder caused by a mutation in the ß-hexosaminidase B (HexB) gene in humans. This results in the massive accumulation of GM2 gangliosides in the nervous system, causing progressive neurodegeneration. The symptoms of SD include muscle weakness, seizures, and mental illness;along with loss of muscle coordination, vision, and hearing. In the most severe form, the onset begins during early infancy, and death usually occurs within 3-5 years of age. The established animal model, Hexb-deficient (Hexb-/-) mouse, shows abnormalities that resemble the severe phenotype found in human infants. We have previously reported that activated microglia causes astrogliosis in Hexb-/- mouse at the early stage of development that can be ameliorated via immunosuppression. Moreover, within the cerebral cortices of Hexb-/- mouse, reactive astrocytes were found to express adenosine A2A receptors in later inflammatory phases. Inhibiting this receptor with istradefylline decreases the number of activated microglial cells and inflammatory cytokines/chemokines. Thus, we underline the importance of the astrocytic A2A receptor as a sensor, in regulating microglial activation in the late phase of inflammation.


Asunto(s)
Enfermedad de Sandhoff , Animales , Modelos Animales de Enfermedad , Gliosis , Hexosaminidasa B , Ratones , Ratones Noqueados , Neuroglía , Enfermedad de Sandhoff/tratamiento farmacológico , Enfermedad de Sandhoff/genética
3.
Nat Commun ; 12(1): 4191, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234149

RESUMEN

The vaginal and uterine microbiota play important roles in the health of the female reproductive system. However, the interactions among the microbes in these two niches and their effects on uterine health remain unclear. Here we profile the vaginal and uterine microbial samples of 145 women, and combine with deep mining of public data and animal experiments to characterize the microbial translocation in the female reproductive tract and its role in modulating uterine health. Synchronous variation and increasing convergence of the uterine and vaginal microbiome with advancing age are shown. We also find that transplanting certain strains of vaginal bacteria into the vagina of rats induces or reduces endometritis-like symptoms, and verify the damaging or protective effects of certain vaginal bacteria on endometrium. This study clarifies the interdependent relationship of vaginal bacterial translocation with uterine microecology and endometrial health, which will undoubtedly increase our understanding of female reproductive health.


Asunto(s)
Traslocación Bacteriana , Endometritis/microbiología , Microbiota , Salud Reproductiva , Vagina/microbiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Enfermedad Crónica , Estudios de Cohortes , ADN Bacteriano/aislamiento & purificación , Modelos Animales de Enfermedad , Endometritis/epidemiología , Endometritis/patología , Endometrio/microbiología , Endometrio/patología , Femenino , Humanos , Persona de Mediana Edad , Factores Protectores , ARN Ribosómico 16S/genética , Ratas , Factores de Riesgo , Salud de la Mujer , Adulto Joven
4.
Science ; 373(6551)2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244384

RESUMEN

Children with Down syndrome have a 150-fold increased risk of developing myeloid leukemia, but the mechanism of predisposition is unclear. Because Down syndrome leukemogenesis initiates during fetal development, we characterized the cellular and developmental context of preleukemic initiation and leukemic progression using gene editing in human disomic and trisomic fetal hematopoietic cells and xenotransplantation. GATA binding protein 1 (GATA1) mutations caused transient preleukemia when introduced into trisomy 21 long-term hematopoietic stem cells, where a subset of chromosome 21 microRNAs affected predisposition to preleukemia. By contrast, progression to leukemia was independent of trisomy 21 and originated in various stem and progenitor cells through additional mutations in cohesin genes. CD117+/KIT proto-oncogene (KIT) cells mediated the propagation of preleukemia and leukemia, and KIT inhibition targeted preleukemic stem cells.


Asunto(s)
Proteínas de Ciclo Celular/genética , Síndrome de Down/genética , Factor de Transcripción GATA1/genética , Células Madre Hematopoyéticas/fisiología , Leucemia Mieloide/genética , Preleucemia/genética , Animales , Antígenos CD34/análisis , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Proliferación Celular , Transformación Celular Neoplásica , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 21/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Síndrome de Down/complicaciones , Femenino , Factor de Transcripción GATA1/metabolismo , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Xenoinjertos , Humanos , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Hígado/embriología , Masculino , Megacariocitos/fisiología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Preleucemia/metabolismo , Preleucemia/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-kit/análisis , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores
5.
PLoS Pathog ; 17(7): e1009723, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34214142

RESUMEN

SARS-CoV-2 uses the human ACE2 (hACE2) receptor for cell attachment and entry, with mouse ACE2 (mACE2) unable to support infection. Herein we describe an ACE2-lentivirus system and illustrate its utility for in vitro and in vivo SARS-CoV-2 infection models. Transduction of non-permissive cell lines with hACE2 imparted replication competence, and transduction with mACE2 containing N30D, N31K, F83Y and H353K substitutions, to match hACE2, rescued SARS-CoV-2 replication. Intrapulmonary hACE2-lentivirus transduction of C57BL/6J mice permitted significant virus replication in lung epithelium. RNA-Seq and histological analyses illustrated that this model involved an acute inflammatory disease followed by resolution and tissue repair, with a transcriptomic profile similar to that seen in COVID-19 patients. hACE2-lentivirus transduction of IFNAR-/- and IL-28RA-/- mouse lungs was used to illustrate that loss of type I or III interferon responses have no significant effect on virus replication. However, their importance in driving inflammatory responses was illustrated by RNA-Seq analyses. We also demonstrate the utility of the hACE2-lentivirus transduction system for vaccine evaluation in C57BL/6J mice. The ACE2-lentivirus system thus has broad application in SARS-CoV-2 research, providing a tool for both mutagenesis studies and mouse model development.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Perfilación de la Expresión Génica , Lentivirus , SARS-CoV-2 , Transducción Genética , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
6.
ACS Appl Mater Interfaces ; 13(27): 31355-31370, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34218662

RESUMEN

The development of cancer resistance continues to represent a bottleneck of cancer therapy. It is one of the leading factors preventing drugs to exhibit their full therapeutic potential. Consequently, it reduces the efficacy of anticancer therapy and causes the survival rate of therapy-resistant patients to be far from satisfactory. Here, an emerging strategy for overcoming drug resistance is proposed employing a novel two-dimensional (2D) nanomaterial polysiloxane (PSX). We have reported on the synthesis of PSX nanosheets (PSX NSs) and proved that they have favorable properties for biomedical applications. PSX NSs evinced unprecedented cytocompatibility up to the concentration of 300 µg/mL, while inducing very low level of red blood cell hemolysis and were found to be highly effective for anticancer drug binding. PSX NSs enhanced the efficacy of the anticancer drug doxorubicin (DOX) by around 27.8-43.4% on average and, interestingly, were found to be especially effective in the therapy of drug-resistant tumors, improving the effectiveness of up to 52%. Fluorescence microscopy revealed improved retention of DOX within the drug-resistant cells when bound on PSX NSs. DOX bound on the surface of PSX NSs, i.e., PSX@DOX, improved, in general, the DOX cytotoxicity in vitro. More importantly, PSX@DOX reduced the growth of DOX-resistant tumors in vivo with 3.5 times better average efficiency than the free drug. Altogether, this paper represents an introduction of a new 2D nanomaterial derived from silicane and pioneers its biomedical application. As advances in the field of material synthesis are rapidly progressing, novel 2D nanomaterials with improved properties are being synthesized and await thorough exploration. Our findings further provide a better understanding of the mechanisms involved in the cancer resistance and can promote the development of a precise cancer therapy.


Asunto(s)
Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Siloxanos/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Doxorrubicina/uso terapéutico , Femenino , Humanos , Ensayo de Materiales , Ratones , Nanoestructuras/química , Siloxanos/química
7.
Nat Commun ; 12(1): 4136, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230486

RESUMEN

Acute pancreatitis is a disease associated with suffering and high lethality. Although the disease mechanism is unclear, phospholipase A2 (PLA2) produced by pancreatic acinar cells is a known pathogenic trigger. Here, we show macrophage membrane-coated nanoparticles with a built-in 'lure and kill' mechanism (denoted 'MΦ-NP(L&K)') for the treatment of acute pancreatitis. MΦ-NP(L&K) are made with polymeric cores wrapped with natural macrophage membrane doped with melittin and MJ-33. The membrane incorporated melittin and MJ-33 function as a PLA2 attractant and a PLA2 inhibitor, respectively. These molecules, together with membrane lipids, work synergistically to lure and kill PLA2 enzymes. These nanoparticles can neutralize PLA2 activity in the sera of mice and human patients with acute pancreatitis in a dose-dependent manner and suppress PLA2-induced inflammatory response accordingly. In mouse models of both mild and severe acute pancreatitis, MΦ-NP(L&K) confer effective protection against disease-associated inflammation, tissue damage and lethality. Overall, this biomimetic nanotherapeutic strategy offers an anti-PLA2 treatment option that might be applicable to a wide range of PLA2-mediated inflammatory disorders.


Asunto(s)
Enfermedad Aguda/terapia , Macrófagos , Nanopartículas/uso terapéutico , Pancreatitis/terapia , Animales , Citocinas , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación , Meliteno , Ratones , Fosfolipasas A2/sangre , Células THP-1
8.
Nat Commun ; 12(1): 4161, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230488

RESUMEN

Given the pleiotropic nature of coding sequences and that many loci exhibit multiple disease associations, it is within non-coding sequence that disease-specificity likely exists. Here, we focus on joint disorders, finding among replicated loci, that GDF5 exhibits over twenty distinct associations, and we identify causal variants for two of its strongest associations, hip dysplasia and knee osteoarthritis. By mapping regulatory regions in joint chondrocytes, we pinpoint two variants (rs4911178; rs6060369), on the same risk haplotype, which reside in anatomical site-specific enhancers. We show that both variants have clinical relevance, impacting disease by altering morphology. By modeling each variant in humanized mice, we observe joint-specific response, correlating with GDF5 expression. Thus, we uncouple separate regulatory variants on a common risk haplotype that cause joint-specific disease. By broadening our perspective, we finally find that patterns of modularity at GDF5 are also found at over three-quarters of loci with multiple GWAS disease associations.


Asunto(s)
Exones , Luxación de la Cadera/genética , Luxación de la Cadera/metabolismo , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Animales , Condrocitos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Ratones , Fenotipo , Secuencias Reguladoras de Ácidos Nucleicos
9.
Nat Commun ; 12(1): 4164, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230493

RESUMEN

Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the ß-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/ß-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/ß-catenin interaction.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor 1 de Transcripción de Linfocitos T/metabolismo , Transactivadores/metabolismo , beta Catenina/metabolismo , Animales , Trasplante de Médula Ósea , Carcinogénesis/genética , Modelos Animales de Enfermedad , Femenino , GTP Fosfohidrolasas/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogénicas/genética , Factor 1 de Transcripción de Linfocitos T/genética , Linfocitos T/metabolismo , Transactivadores/genética , Transcriptoma , beta Catenina/genética
10.
Biomed Pharmacother ; 139: 111651, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34243602

RESUMEN

1,7-bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-dione (tetrahydrocurcumin, THC) is a major bioactive metabolite of curcumin, demonstrating the potential anti-inflammatory, antioxidant and neuroprotective properties, etc. In this study, it was found that Aß induced decreased cell viability, cell cycle arrest and apoptosis in BV-2 cells, which were ameliorated by THC. In vivo, THC administration rescued learning and memory, and reduced Aß burden in the hippocampus of APP/PS1 mice. By proteomic analysis of the hippocampus of mice, 157 differentially expressed proteins were identified in APP/PS1 mice treated with THC (comparing with APP/PS1 mice), which also suggested that the effects of THC on the cell cycle and apoptosis were mostly related to the "Ras signaling pathway", etc. In APP/PS1 mice, the down-regulation of Gab2 and K-Ras, and the up-regulation of caspase-3, TGF-ß1 and TNF-ɑ were observed; THC attenuated the abnormal expression of Gab2, K-Ras, caspase-3 and TNF-ɑ, and up-regulated TGF-ß1 and Bag1 expression. In BV-2 cells, Aß induced the down-regulation of Gab2, K-Ras and TGF-ß1, and the overexpression of caspase-3, PARP1, cleaved-PARP1 and TNF-ɑ, which were restored by THC. Moreover, THC up-regulated Bag1 expression in Aß-treated BV-2 cells. The decreased transcriptional expression of Ccnd2 and Cdkn1a were also observed in Aß-treated BV-2 cells, and THC alleviated the down-regulation of Ccnd2. For the first time, we identified that the action of THC in preventing AD was associated with inhibition of cell cycle arrest and apoptosis of microglia via the Ras/ERK signaling pathway, shedding new light on the role of THC in alleviating the progression of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Curcumina/análogos & derivados , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microglía/efectos de los fármacos , Proteínas ras/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Línea Celular , Curcumina/farmacología , Ciclina D2/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteómica/métodos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
Biomed Pharmacother ; 139: 111569, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34243622

RESUMEN

BACKGROUND: Alveolar hypercoagulation and fibrinolysis inhibition were associated with the refractory hypoxemia and the high mortality in patient with acute respiratory distress syndrome (ARDS), and NF-κB pathway was confirmed to contribute to the process. Triptolide (TP) significantly inhibited NF-κB pathway and thus depressed accessive inflammatory response in ARDS. We speculate that TP could improve alveolar hypercoagulation and fibrinolytic inhibition in LPS-induced ARDS via NF-κB inactivation. PURPOSE: The aim of this experiment was to explore the efficacy and potential mechanism of TP on alveolar hypercoagulation and fibrinolysis inhibition in LPS-induced ARDS in mice. METHODS: 50 µl of LPS (5 mg/ml) was inhalationally given to C57BL/6 mice to set up ARDS model. Male mice were randomly accepted with LPS, LPS + TP (1 µg/kg, 10 µg/kg, 50 µg/kg respectively), or with NEMO Binding domain peptide (NBD), an inhibitor of NF-κB. TP (1 µg/kg, 10 µg/kg, 50 µg/kg) were intraperitoneally injected or 10 µg/50 µl of NBD solution were inhaled 30 min before LPS inhalation. A same volume of normal saline (NS) substituted for TP in mice in control. The endpoint of experiment was at 8 hours after LPS stimulation. Pulmonary tissues were taken for hematoxylin-eosin (HE) staining, wet / dry ratio and for lung injury scores (LIS). Tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 in lung tissue were detected by Western-blotting and by quantitative Real-time PCR(qPCR) respectively. Concentrations of TF, PAI-1, thrombin-antithrombin complex (TAT), procollagen peptide type Ⅲ (PⅢP) and activated protein C (APC) in bronchoalveolar lavage fluid (BALF) were measured by ELISA. NF-κB activation and p65-DNA binding activity in pulmonary tissue were simultaneously determined. RESULTS: LPS stimulation resulted in pulmonary edema, neutrophils infiltration, obvious alveolar collapse, interstitial congestion, with high LIS, which were all dose-dependently ameliorated by Triptolide. LPS also dramatically promoted the expressions of TF and PAI-1 either in mRNA or in protein in lung tissue, and significantly stimulated the secretions of TF, PAI-1, TAT, PⅢP but inhibited APC production in BALF, which were all reversed by triptolide treatment in dose-dependent manner. TP dose-dependently inhibited the activation of NF-κB pathway induced by LPS, indicated by the changes of phosphorylations of p65 (p-p65), p-IKKα/ß and p-IκBα, and weakened p65-DNA binding activity. TP and NBD had same efficacies either on alveolar hypercoagulation and fibrinolysis inhibition or on NF-κB signalling pathway in ARDS mice. CONCLUSIONS: TP dose-dependently improves alveolar hypercoagulation and fibrinolysis inhibition in ARDS mice through inhibiting NF-κB signaling pathway. Our data demonstrate that TP is expected to be an effective selection in ARDS.


Asunto(s)
Diterpenos/farmacología , Fibrinólisis/efectos de los fármacos , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , FN-kappa B/metabolismo , Fenantrenos/farmacología , Trombofilia/inducido químicamente , Trombofilia/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Compuestos Epoxi/farmacología , Pulmón/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Síndrome de Dificultad Respiratoria , Transducción de Señal/efectos de los fármacos , Trombofilia/metabolismo , Tromboplastina/metabolismo
12.
PLoS Pathog ; 17(7): e1009705, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34265022

RESUMEN

COVID-19 (coronavirus disease 2019) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is a disease affecting several organ systems. A model that captures all clinical symptoms of COVID-19 as well as long-haulers disease is needed. We investigated the host responses associated with infection in several major organ systems including the respiratory tract, the heart, and the kidneys after SARS-CoV-2 infection in Syrian hamsters. We found significant increases in inflammatory cytokines (IL-6, IL-1beta, and TNF) and type II interferons whereas type I interferons were inhibited. Examination of extrapulmonary tissue indicated inflammation in the kidney, liver, and heart which also lacked type I interferon upregulation. Histologically, the heart had evidence of myocarditis and microthrombi while the kidney had tubular inflammation. These results give insight into the multiorgan disease experienced by people with COVID-19 and possibly the prolonged disease in people with post-acute sequelae of SARS-CoV-2 (PASC).


Asunto(s)
COVID-19/inmunología , Regulación hacia Abajo/inmunología , Interferón Tipo I/inmunología , Riñón/inmunología , Miocardio/inmunología , Sistema Respiratorio/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/patología , Cricetinae , Modelos Animales de Enfermedad , Humanos , Inflamación/inmunología , Inflamación/patología , Riñón/patología , Riñón/virología , Masculino , Mesocricetus , Miocardio/patología , Sistema Respiratorio/patología , Sistema Respiratorio/virología
13.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34281270

RESUMEN

Functional recovery after peripheral nerve injury (PNI) is poor, mainly due to the slow and incomplete regeneration of injured axons. Experimental therapies that increase the excitability of the injured axons have proven remarkably successful in promoting regeneration, but their clinical applicability has been limited. Bioluminescent optogenetics (BL-OG) uses luminopsins, fusion proteins of light-generating luciferase and light-sensing ion channels that could be used to increase neuronal excitability if exposed to a suitable substrate. Excitatory luminopsins were expressed in motoneurons of transgenic mice and in wildtype mice transduced with adeno-associated viral vectors. Intraperitoneal administration of coelenterazine (CTZ), a known luciferase substrate, generated intense bioluminescence in peripheral axons. This bioluminescence increased motoneuron excitability. A single administration of CTZ immediately after sciatic nerve transection and repair markedly enhanced motor axon regeneration. Compound muscle action potentials were 3-4 times larger than controls by 4 weeks after injury. The results observed with transgenic mice were comparable to those of mice in which the luminopsin was expressed using viral vectors. Significantly more motoneurons had successfully reinnervated muscle targets four weeks after nerve injury in BL-OG treated mice than in controls. Bioluminescent optogenetics is a promising therapeutic approach to enhancing axon regeneration after PNI.


Asunto(s)
Regeneración Nerviosa/fisiología , Optogenética/métodos , Traumatismos de los Nervios Periféricos/terapia , Animales , Axones/fisiología , Modelos Animales de Enfermedad , Potenciales Evocados Motores , Femenino , Humanos , Imidazoles/administración & dosificación , Sustancias Luminiscentes/administración & dosificación , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Pirazinas/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Medicina Regenerativa/métodos
14.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34281288

RESUMEN

PURPOSE: We developed and phenotyped a pigmented knockout rat model for lecithin retinol acyltransferase (LRAT) using CRISPR/Cas9. The introduced mutation (c.12delA) is based on a patient group harboring a homologous homozygous frameshift mutation in the LRAT gene (c.12delC), causing a dysfunctional visual (retinoid) cycle. METHODS: The introduced mutation was confirmed by DNA and RNA sequencing. The expression of Lrat was determined on both the RNA and protein level in wildtype and knockout animals using RT-PCR and immunohistochemistry. The retinal structure and function, as well as the visual behavior of the Lrat-/- and control rats, were characterized using scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), electroretinography (ERG) and vision-based behavioral assays. RESULTS: Wildtype animals had high Lrat mRNA expression in multiple tissues, including the eye and liver. In contrast, hardly any expression was detected in Lrat-/- animals. LRAT protein was abundantly present in wildtype animals and absent in Lrat-/- animals. Lrat-/- animals showed progressively reduced ERG potentials compared to wildtype controls from two weeks of age onwards. Vison-based behavioral assays confirmed reduced vision. Structural abnormalities, such as overall retinal thinning, were observed in Lrat-/- animals. The retinal thickness in knockout rats was decreased to roughly 80% by four months of age. No functional or structural differences were observed between wildtype and heterozygote animals. CONCLUSIONS: Our Lrat-/- rat is a new animal model for retinal dystrophy, especially for the LRAT-subtype of early-onset retinal dystrophies. This model has advantages over the existing mouse models and the RCS rat strain and can be used for translational studies of retinal dystrophies.


Asunto(s)
Aciltransferasas/deficiencia , Aciltransferasas/genética , Retinitis Pigmentosa/genética , Animales , Conducta Animal , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Oftalmoscopía , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Transgénicas , Retinitis Pigmentosa/diagnóstico por imagen , Retinitis Pigmentosa/fisiopatología , Eliminación de Secuencia , Tomografía de Coherencia Óptica , Visión Ocular
15.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199096

RESUMEN

Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2ß1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2ß1 in the context of bone metastasis. In this study, we aimed to understand the role of α2ß1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2ß1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2ß1 expression and bone-metastatic potential. Inhibiting α2ß1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Expresión Génica , Integrina alfa2beta1/genética , Animales , Neoplasias Óseas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Invasividad Neoplásica , Osteólisis/genética , Osteólisis/metabolismo , Fenotipo
16.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199098

RESUMEN

Mitochondria play an essential role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Previously, we found that succinate-activated respiration was the most affected mitochondrial parameter in mice with mild NAFLD. In this study, we focused on the role of succinate dehydrogenase (SDH) in NAFLD pathogenesis. To induce the progression of NAFLD to nonalcoholic steatohepatitis (NASH), C57BL/6J mice were fed a Western-style diet (WD) or control diet for 30 weeks. NAFLD severity was evaluated histologically and the expression of selected proteins and genes was assessed. Mitochondrial respiration was measured by high-resolution respirometry. Liver redox status was assessed using glutathione, malondialdehyde, and mitochondrial production of reactive oxygen species (ROS). Metabolomic analysis was performed by GC/MS. WD consumption for 30 weeks led to reduced succinate-activated respiration. We also observed decreased SDH activity, decreased expression of the SDH activator sirtuin 3, decreased gene expression of SDH subunits, and increased levels of hepatic succinate, an important signaling molecule. Succinate receptor 1 (SUCNR1) gene and protein expression were reduced in the livers of WD-fed mice. We did not observe signs of oxidative damage compared to the control group. The changes observed in WD-fed mice appear to be adaptive to prevent mitochondrial respiratory chain overload and massive ROS production.


Asunto(s)
Dieta Occidental , Mitocondrias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Ácido Succínico/metabolismo , Animales , Apoptosis , Biomarcadores , Respiración de la Célula , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Fibrosis , Metaboloma , Metabolómica/métodos , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Succinato Deshidrogenasa/metabolismo
17.
Molecules ; 26(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199327

RESUMEN

The application of insulin-like growth factor 1 (IGF-1) to the round window membrane (RWM) is an emerging treatment for inner ear diseases. RWM permeability is the key factor for efficient IGF-1 delivery. Ultrasound microbubbles (USMBs) can increase drug permeation through the RWM. In the present study, the enhancing effect of USMBs on the efficacy of IGF-1 application and the treatment effect of USMB-mediated IGF-1 delivery for noise-induced hearing loss (NIHL) were investigated. Forty-seven guinea pigs were assigned to three groups: the USM group, which received local application of recombinant human IGF-1 (rhIGF-1, 10 µg/µL) following application of USMBs to the RWM; the RWS group, which received IGF-1 application alone; and the saline-treated group. The perilymphatic concentration of rhIGF-1 in the USM group was 1.95- and 1.67- fold of that in the RWS group, 2 and 24 h after treatment, respectively. After 5 h of 118 dB SPL noise exposure, the USM group had the lowest threshold shift in auditory brainstem response, least loss of cochlear outer hair cells, and least reduction in the number of synaptic ribbons on postexposure day 28 among the three groups. The combination of USMB and IGF-1 led to a better therapeutic response to NIHL. Two hours after treatment, the USM group had significantly higher levels of Akt1 and Mapk3 gene expression than the other two groups. The most intense immunostaining for phosphor-AKT and phospho-ERK1/2 was detected in the cochlea in the USM group. These results suggested that USMB can be applied to enhance the efficacy of IGF-1 therapy in the treatment of inner ear diseases.


Asunto(s)
Cóclea/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Factor I del Crecimiento Similar a la Insulina/farmacología , Microburbujas/uso terapéutico , Ventana Redonda/efectos de los fármacos , Ondas Ultrasónicas , Animales , Cóclea/metabolismo , Modelos Animales de Enfermedad , Cobayas , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Ventana Redonda/metabolismo
18.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34200045

RESUMEN

Ischemic stroke is a disturbance in cerebral blood flow caused by brain tissue ischemia and hypoxia. We optimized a multifactorial in vitro model of acute ischemic stroke using rat primary neural cultures. This model was exploited to investigate the pro-viable activity of cell-penetrating peptides: arginine-rich Tat(49-57)-NH2 (R49KKRRQRRR57-amide) and its less basic analogue, PTD4 (Y47ARAAARQARA57-amide). Our model included glucose deprivation, oxidative stress, lactic acidosis, and excitotoxicity. Neurotoxicity of these peptides was excluded below a concentration of 50 µm, and PTD4-induced pro-survival was more pronounced. Circular dichroism spectroscopy and molecular dynamics (MD) calculations proved potential contribution of the peptide conformational properties to neuroprotection: in MD, Tat(49-57)-NH2 adopted a random coil and polyproline type II helical structure, whereas PTD4 adopted a helical structure. In an aqueous environment, the peptides mostly adopted a random coil conformation (PTD4) or a polyproline type II helical (Tat(49-57)-NH2) structure. In 30% TFE, PTD4 showed a tendency to adopt a helical structure. Overall, the pro-viable activity of PTD4 was not correlated with the arginine content but rather with the peptide's ability to adopt a helical structure in the membrane-mimicking environment, which enhances its cell membrane permeability. PTD4 may act as a leader sequence in novel drugs for the treatment of acute ischemic stroke.


Asunto(s)
Isquemia Encefálica/prevención & control , Péptidos de Penetración Celular/farmacología , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Permeabilidad de la Membrana Celular , Femenino , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/patología , Ratas , Ratas Wistar
19.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200161

RESUMEN

miRNA(miR)-124 is an important regulator of neurogenesis, but its upregulation in SOD1G93A motor neurons (mSOD1 MNs) was shown to associate with neurodegeneration and microglia activation. We used pre-miR-124 in wild-type (WT) MNs and anti-miR-124 in mSOD1 MNs to characterize the miR-124 pathological role. miR-124 overexpression in WT MNs produced a miRNA profile like that of mSOD1 MNs (high miR-125b; low miR-146a and miR-21), and similarly led to early apoptosis. Alterations in mSOD1 MNs were abrogated with anti-miR-124 and changes in their miRNAs mostly recapitulated by their secretome. Normalization of miR-124 levels in mSOD1 MNs prevented the dysregulation of neurite network, mitochondria dynamics, axonal transport, and synaptic signaling. Same alterations were observed in WT MNs after pre-miR-124 transfection. Secretome from mSOD1 MNs triggered spinal microglia activation, which was unno-ticed with that from anti-miR-124-modulated cells. Secretome from such modulated MNs, when added to SC organotypic cultures from mSOD1 mice in the early symptomatic stage, also coun-teracted the pathology associated to GFAP decrease, PSD-95 and CX3CL1-CX3CR1 signaling im-pairment, neuro-immune homeostatic imbalance, and enhanced miR-124 expression levels. Data suggest that miR-124 is implicated in MN degeneration and paracrine-mediated pathogenicity. We propose miR-124 as a new therapeutic target and a promising ALS biomarker in patient sub-populations.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , MicroARNs/metabolismo , Neuronas Motoras/patología , Superóxido Dismutasa-1/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Transducción de Señal
20.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200180

RESUMEN

Tauopathies are a heterogeneous class of neurodegenerative diseases characterized by intracellular inclusions of aggregated tau proteins. Tau aggregates in different tauopathies have distinct structural features and can be found in different cell types. Transgenic animal models overexpressing human tau have been used for over two decades in the research of tau pathology. However, these models poorly recapitulate the heterogeneity of tauopathies found in human brains. Recent findings demonstrate that injection of purified tau aggregates from the brains of human tauopathy patients recapitulates both the structural features and cell-type specificity of the tau pathology of the donor tauopathy. These models may therefore have unique translational value in the study of functional consequences of tau pathology, tau-based diagnostics, and tau targeting therapeutics. This review provides an update of the literature relating to seeding-based tauopathy and their potential applications.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Modelos Animales de Enfermedad , Agregado de Proteínas , Tauopatías/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Ratones , Tauopatías/metabolismo , Proteínas tau/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...