Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259.541
Filtrar
1.
J Mol Model ; 30(8): 242, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955857

RESUMEN

CONTEXT: Xylanases derived from Bacillus species hold significant importance in various large-scale production sectors, with increasing demand driven by biofuel production. However, despite their potential, the extreme environmental conditions often encountered in production settings have led to their underutilisation. To address this issue and enhance their efficacy under adverse conditions, we conducted a theoretical investigation on a group of five Bacillus species xylanases belonging to the glycoside hydrolase GH11 family. Bacillus sp. NCL 87-6-10 (sp_NCL 87-6-10) emerged as a potent candidate among the selected biocatalysts; this Bacillus strain exhibited high thermal stability and achieved a transition state with minimal energy requirements, thereby accelerating the biocatalytic reaction process. Our approach aims to provide support for experimentalists in the industrial sector, encouraging them to employ structural-based reaction modelling scrutinisation to predict the ability of targeted xylanases. METHODS: Utilising crystal structure data available in the Carbohydrate-Active enzymes database, we aimed to analyse their structural capabilities in terms of thermal-stability and activity. Our investigation into identifying the most prominent Bacillus species xylanases unfolds with the help of the semi-empirical quantum mechanics MOPAC method integrated with the DRIVER program is used in calculations of reaction pathways to understand the activation energy. Additionally, we scrutinised the selected xylanases using various analyses, including constrained network analyses, intermolecular interactions of the enzyme-substrate complex and molecular orbital assessments calculated using the AM1 method with the MO-G model (MO-G AM1) to validate their reactivity.


Asunto(s)
Bacillus , Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Bacillus/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Modelos Moleculares , Biocatálisis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Temperatura
2.
Nat Commun ; 15(1): 5503, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951531

RESUMEN

Proline is widely known as the only proteogenic amino acid with a secondary amine. In addition to its crucial role in protein structure, the secondary amino acid modulates neurotransmission and regulates the kinetics of signaling proteins. To understand the structural basis of proline import, we solved the structure of the proline transporter SIT1 in complex with the COVID-19 viral receptor ACE2 by cryo-electron microscopy. The structure of pipecolate-bound SIT1 reveals the specific sequence requirements for proline transport in the SLC6 family and how this protein excludes amino acids with extended side chains. By comparing apo and substrate-bound SIT1 states, we also identify the structural changes that link substrate release and opening of the cytoplasmic gate and provide an explanation for how a missense mutation in the transporter causes iminoglycinuria.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Microscopía por Crioelectrón , Prolina , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Prolina/metabolismo , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , COVID-19/virología , COVID-19/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/química , Modelos Moleculares
3.
Nat Commun ; 15(1): 5518, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951539

RESUMEN

Determining short-lived intermediate structures in chemical reactions is challenging. Although ultrafast spectroscopic methods can detect the formation of transient intermediates, real-space structures cannot be determined directly from such studies. Time-resolved serial femtosecond crystallography (TR-SFX) has recently proven to be a powerful method for capturing molecular changes in proteins on femtosecond timescales. However, the methodology has been mostly applied to natural proteins/enzymes and limited to reactions promoted by synthetic molecules due to structure determination challenges. This work demonstrates the applicability of TR-SFX for investigations of chemical reaction mechanisms of synthetic metal complexes. We fix a light-induced CO-releasing Mn(CO)3 reaction center in porous hen egg white lysozyme (HEWL) microcrystals. By controlling light exposure and time, we capture the real-time formation of Mn-carbonyl intermediates during the CO release reaction. The asymmetric protein environment is found to influence the order of CO release. The experimentally-observed reaction path agrees with quantum mechanical calculations. Therefore, our demonstration offers a new approach to visualize atomic-level reactions of small molecules using TR-SFX with real-space structure determination. This advance holds the potential to facilitate design of artificial metalloenzymes with precise mechanisms, empowering design, control and development of innovative reactions.


Asunto(s)
Manganeso , Muramidasa , Muramidasa/química , Manganeso/química , Cristalografía por Rayos X , Porosidad , Complejos de Coordinación/química , Modelos Moleculares , Animales , Monóxido de Carbono/química , Factores de Tiempo , Pollos
4.
J Mol Model ; 30(8): 245, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960925

RESUMEN

CONTEXT: For the first time, the use of monocyclic rings C18 and B9N9 as sensors for the sensing of carbazole-based anti-cancer drugs, such as tetrahydrocarbazole (THC), mukonal (MKN), murrayanine (MRY), and ellipticine (EPT), is described using DFT simulations and computational characterization. The geometries, electronic properties, stability studies, sensitivity, and adsorption capabilities of C18 and B9N9 counterparts towards the selected compounds confirm that the analytes interact through active cavities of the C18 and B9N9 rings of the complexes. METHODS: Based on the interaction energies, the sensitivity of surfaces towards EPT, MKN, MRY, and THC analytes is observed. The interaction energy of EPT@B9N9, MKN@B9N9, MRY@B9N9, and THC@B9N9 complexes are observed - 20.40, - 19.49, - 20.07, and - 18.27 kcal/mol respectively which is more exothermic than EPT@C18, MKN@C18, MRY@C18, and THC@C18 complexes are - 16.37, - 13.97, - 13.96, and - 11.39 kcal/mol respectively. According to findings from the quantum theory of atoms in molecules (QTAIM) and the reduced density gradient (RDG), dispersion forces play a significant role in maintaining the stability of these complexes. The electronic properties including FMOs, density of states (DOS), natural bond orbitals (NBO), charge transfer, and absorption studies are carried out. In comparison of B9N9 and C18, the analyte recovery time for C18 is much shorter (9.91 × 10-11 for THC@C18) than that for B9N9 shorter recovery time value of 3.75 × 10-9 for EPT@B9N9. These results suggest that our reported sensors B9N9 and C18 make it faster to detect adsorbed molecules at room temperature. The sensor response is more prominent in B9N9 due to its fine energy gap and high adsorption energy. Consequently, it is possible to think of these monocyclic systems as a potential material for sensor applications.


Asunto(s)
Antineoplásicos , Carbazoles , Teoría Funcional de la Densidad , Carbazoles/química , Antineoplásicos/química , Adsorción , Técnicas Electroquímicas/métodos , Modelos Moleculares , Estructura Molecular
5.
Subcell Biochem ; 104: 383-408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963493

RESUMEN

Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.


Asunto(s)
Flavinas , Transporte de Electrón , Flavinas/metabolismo , Flavinas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Conformación Proteica , Modelos Moleculares , Oxidación-Reducción
6.
Subcell Biochem ; 104: 503-530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963498

RESUMEN

Invertases, or ß-fructofuranosidases, are metabolic enzymes widely distributed among plants and microorganisms that hydrolyze sucrose and release fructose from various substrates. Invertase was one of the earliest discovered enzymes, first investigated in the mid-nineteenth century, becoming a classical model used in the primary biochemical studies on protein synthesis, activity, and the secretion of glycoproteins. However, it was not until 20 years ago that a member of this family of enzymes was structurally characterized, showing a bimodular arrangement with a ß-propeller catalytic domain, and a ß-sandwich domain with unknown function. Since then, many studies on related plant and fungal enzymes have revealed them as basically monomeric. By contrast, all yeast enzymes in this family that have been characterized so far have shown sophisticated oligomeric structures mediated by the non-catalytic domain, which is also involved in substrate binding, and how this assembly determines the particular specificity of each enzyme. In this chapter, we will review the available structures of yeast invertases to elucidate the mechanism regulating oligomer formation and compare them with other reported dimeric invertases in which the oligomeric assembly has no apparent functional implications. In addition, recent work on a new family of invertases with absolute specificity for the α-(1,2)-bond of sucrose found in cyanobacteria and plant invertases is highlighted.


Asunto(s)
beta-Fructofuranosidasa , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/metabolismo , beta-Fructofuranosidasa/genética , Especificidad por Sustrato , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Dominio Catalítico , Modelos Moleculares
7.
Nat Commun ; 15(1): 5569, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956111

RESUMEN

Vitamin C plays important roles as a cofactor in many enzymatic reactions and as an antioxidant against oxidative stress. As some mammals including humans cannot synthesize vitamin C de novo from glucose, its uptake from dietary sources is essential, and is mediated by the sodium-dependent vitamin C transporter 1 (SVCT1). Despite its physiological significance in maintaining vitamin C homeostasis, the structural basis of the substrate transport mechanism remained unclear. Here, we report the cryo-EM structures of human SVCT1 in different states at 2.5-3.5 Å resolutions. The binding manner of vitamin C together with two sodium ions reveals the counter ion-dependent substrate recognition mechanism. Furthermore, comparisons of the inward-open and occluded structures support a transport mechanism combining elevator and distinct rotational motions. Our results demonstrate the molecular mechanism of vitamin C transport with its underlying conformational cycle, potentially leading to future industrial and medical applications.


Asunto(s)
Ácido Ascórbico , Microscopía por Crioelectrón , Transportadores de Sodio Acoplados a la Vitamina C , Humanos , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo , Transportadores de Sodio Acoplados a la Vitamina C/química , Transportadores de Sodio Acoplados a la Vitamina C/genética , Ácido Ascórbico/metabolismo , Ácido Ascórbico/química , Transporte Biológico , Sodio/metabolismo , Modelos Moleculares , Multimerización de Proteína , Unión Proteica , Células HEK293 , Conformación Proteica
8.
Sci Rep ; 14(1): 15091, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956220

RESUMEN

Fibulin-2 is a multidomain, disulfide-rich, homodimeric protein which belongs to a broader extracellular matrix family. It plays an important role in the development of elastic fiber structures. Malfunction of fibulin due to mutation or poor expression can result in a variety of diseases including synpolydactyly, limb abnormalities, eye disorders leading to blindness, cardiovascular diseases and cancer. Traditionally, fibulins have either been produced in mammalian cell systems or were isolated from the extracellular matrix, a procedure that results in poor availability for structural and functional studies. Here, we produced seven fibulin-2 constructs covering 62% of the mature protein (749 out of 1195 residues) using a prokaryotic expression system. Biophysical studies confirm that the purified constructs are folded and that the presence of disulfide bonds within the constructs makes them extremely thermostable. In addition, we solved the first crystal structure for any fibulin isoform, a structure corresponding to the previously suggested three motifs related to anaphylatoxin. The structure reveals that the three anaphylatoxins moieties form a single-domain structure.


Asunto(s)
Proteínas de Unión al Calcio , Humanos , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Estabilidad Proteica , Dominios Proteicos
9.
Nat Commun ; 15(1): 5566, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956442

RESUMEN

Accurately modeling the protein fitness landscapes holds great importance for protein engineering. Pre-trained protein language models have achieved state-of-the-art performance in predicting protein fitness without wet-lab experimental data, but their accuracy and interpretability remain limited. On the other hand, traditional supervised deep learning models require abundant labeled training examples for performance improvements, posing a practical barrier. In this work, we introduce FSFP, a training strategy that can effectively optimize protein language models under extreme data scarcity for fitness prediction. By combining meta-transfer learning, learning to rank, and parameter-efficient fine-tuning, FSFP can significantly boost the performance of various protein language models using merely tens of labeled single-site mutants from the target protein. In silico benchmarks across 87 deep mutational scanning datasets demonstrate FSFP's superiority over both unsupervised and supervised baselines. Furthermore, we successfully apply FSFP to engineer the Phi29 DNA polymerase through wet-lab experiments, achieving a 25% increase in the positive rate. These results underscore the potential of our approach in aiding AI-guided protein engineering.


Asunto(s)
Ingeniería de Proteínas , Ingeniería de Proteínas/métodos , Aprendizaje Profundo , Proteínas/genética , Proteínas/metabolismo , Mutación , ADN Polimerasa Dirigida por ADN/metabolismo , Simulación por Computador , Modelos Moleculares , Algoritmos
10.
IUCrJ ; 11(Pt 4): 494-501, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958015

RESUMEN

In the folded state, biomolecules exchange between multiple conformational states crucial for their function. However, most structural models derived from experiments and computational predictions only encode a single state. To represent biomolecules accurately, we must move towards modeling and predicting structural ensembles. Information about structural ensembles exists within experimental data from X-ray crystallography and cryo-electron microscopy. Although new tools are available to detect conformational and compositional heterogeneity within these ensembles, the legacy PDB data structure does not robustly encapsulate this complexity. We propose modifications to the macromolecular crystallographic information file (mmCIF) to improve the representation and interrelation of conformational and compositional heterogeneity. These modifications will enable the capture of macromolecular ensembles in a human and machine-interpretable way, potentially catalyzing breakthroughs for ensemble-function predictions, analogous to the achievements of AlphaFold with single-structure prediction.


Asunto(s)
Microscopía por Crioelectrón , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Proteínas , Cristalografía por Rayos X , Proteínas/química , Microscopía por Crioelectrón/métodos , Humanos
11.
IUCrJ ; 11(Pt 4): 643-644, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958017

RESUMEN

The manuscript `Modeling a unit cell: crystallographic refinement procedure using the biomolecular MD simulation platform Amber' presents a novel protein structure refinement method claimed to offer improvements over traditional techniques like Refmac5 and Phenix. Our re-evaluation suggests that while the new method provides improvements, traditional methods achieve comparable results with less computational effort.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Proteínas/química , Cristalografía por Rayos X , Conformación Proteica , Sustancias Macromoleculares/química , Programas Informáticos , Modelos Moleculares
12.
Sci Adv ; 10(27): eadl1888, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959313

RESUMEN

We present structures of three immature tick-borne encephalitis virus (TBEV) isolates. Our atomic models of the major viral components, the E and prM proteins, indicate that the pr domains of prM have a critical role in holding the heterohexameric prM3E3 spikes in a metastable conformation. Destabilization of the prM furin-sensitive loop at acidic pH facilitates its processing. The prM topology and domain assignment in TBEV is similar to the mosquito-borne Binjari virus, but is in contrast to other immature flavivirus models. These results support that prM cleavage, the collapse of E protein ectodomains onto the virion surface, the large movement of the membrane domains of both E and M, and the release of the pr fragment from the particle render the virus mature and infectious. Our work favors the collapse model of flavivirus maturation warranting further studies of immature flaviviruses to determine the sequence of events and mechanistic details driving flavivirus maturation.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Proteínas del Envoltorio Viral , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Modelos Moleculares , Flavivirus/fisiología , Animales , Virión , Encefalitis Transmitida por Garrapatas/virología , Humanos
13.
Commun Biol ; 7(1): 814, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965424

RESUMEN

In human pathogenic fungi, receiver domains from hybrid histidine kinases (hHK) have to recognize one HPt. To understand the recognition mechanism, we have assessed phosphorelay from receiver domains of five hHKs of group III, IV, V, VI, and XI to HPt from Chaetomium thermophilum and obtained the structures of Ct_HPt alone and in complex with the receiver domain of hHK group VI. Our data indicate that receiver domains phosphotransfer to Ct_HPt, show a low affinity for complex formation, and prevent a Leu-Thr switch to stabilize phosphoryl groups, also derived from the structures of the receiver domains of hHK group III and Candida albicans Sln1. Moreover, we have elucidated the envelope structure of C. albicans Ypd1 using small-angle X-ray scattering which reveals an extended flexible conformation of the long loop αD-αE which is not involved in phosphotransfer. Finally, we have analyzed the role of salt bridges in the structure of Ct_HPt alone.


Asunto(s)
Chaetomium , Proteínas Fúngicas , Histidina Quinasa , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Chaetomium/metabolismo , Chaetomium/genética , Chaetomium/enzimología , Histidina Quinasa/metabolismo , Histidina Quinasa/química , Histidina Quinasa/genética , Candida albicans/metabolismo , Candida albicans/enzimología , Fosforilación , Modelos Moleculares , Dispersión del Ángulo Pequeño , Conformación Proteica
14.
Elife ; 122024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968292

RESUMEN

A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer-tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.


Asunto(s)
Adenosina Trifosfato , Unión Proteica , Ribonucleótido Reductasas , Ribonucleótido Reductasas/metabolismo , Ribonucleótido Reductasas/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Anaerobiosis , Nucleótidos de Desoxiadenina/metabolismo , Dominio Catalítico , Conformación Proteica , Especificidad por Sustrato , Multimerización de Proteína , Modelos Moleculares
15.
J Mol Model ; 30(8): 255, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970658

RESUMEN

CONTEXT: Although quantum mechanical calculations have proven effective in accurately predicting UV absorption and assessing the antioxidant potential of compounds, the utilization of computer-aided drug design (CADD) to support sustainable synthesis research of new sunscreen active ingredients remains an area with limited exploration. Furthermore, there are ongoing concerns about the safety and effectiveness of existing sunscreens. Therefore, it remains crucial to investigate photoprotection mechanisms and develop enhanced strategies for mitigating the harmful effects of UVR exposure, improving both the safety and efficacy of sunscreen products. A previous study conducted synthesis research on eight novel hybrid compounds (I-VIII) for use in sunscreen products by molecular hybridization of trans-resveratrol (RESV), avobenzone (AVO), and octinoxate (OMC). Herein, time-dependent density functional theory (TD-DFT) calculations performed in the gas phase on the isolated hybrid compounds (I-VIII) proved to reproduce the experimental UV absorption. Resveratrol-avobenzone structure-based hybrids (I-IV) present absorption maxima in the UVB range with slight differences between them, while resveratrol-OMC structure-based hybrids (V-VIII) showed main absorption in the UVA range. Among RESV-OMC hybrids, compounds V and VI exhibited higher UV absorption intensity, and compound VIII stood out for its broad-spectrum coverage in our simulations. Furthermore, both in silico and in vitro analyses revealed that compounds VII and VIII exhibited the highest antioxidant activity, with compound I emerging as the most reactive antioxidant within RESV-AVO hybrids. The study suggests a preference for the hydrogen atom transfer (HAT) mechanism over single-electron transfer followed by proton transfer (SET-PT) in the gas phase. With a strong focus on sustainability, this approach reduces costs and minimizes effluent production in synthesis research, promoting the eco-friendly development of new sunscreen active ingredients. METHODS: The SPARTAN'20 program was utilized for the geometry optimization and energy calculations of all compounds. Conformer distribution analysis was performed using the Merck molecular force field 94 (MMFF94), and geometry optimization was carried out using the parametric method 6 (PM6) followed by density functional theory (DFT/B3LYP/6-31G(d)). The antioxidant behavior of the hybrid compounds (I-VIII) was determined using the highest occupied molecular orbital (εHOMO) and the lowest unoccupied molecular orbital (εLUMO) energies, as well as the bond dissociation enthalpy (BDE), ionization potential (IP), and proton dissociation enthalpy (PDE) values, all calculated at the same level of structural optimization. TD-DFT study is carried out to calculate the excitation energy using the B3LYP functional with the 6-31G(d) basis set. The calculated transitions were convoluted with a Gaussian profile using the Gabedit program.


Asunto(s)
Antioxidantes , Diseño Asistido por Computadora , Diseño de Fármacos , Resveratrol , Protectores Solares , Rayos Ultravioleta , Protectores Solares/química , Antioxidantes/química , Antioxidantes/farmacología , Resveratrol/química , Propiofenonas/química , Teoría Funcional de la Densidad , Estilbenos/química , Estilbenos/farmacología , Modelos Moleculares , Teoría Cuántica , Estructura Molecular
16.
Phys Rev Lett ; 132(24): 248403, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949344

RESUMEN

The 3D folding of a mammalian gene can be studied by a polymer model, where the chromatin fiber is represented by a semiflexible polymer which interacts with multivalent proteins, representing complexes of DNA-binding transcription factors and RNA polymerases. This physical model leads to the natural emergence of clusters of proteins and binding sites, accompanied by the folding of chromatin into a set of topologies, each associated with a different network of loops. Here, we combine numerics and analytics to first classify these networks and then find their relative importance or statistical weight, when the properties of the underlying polymer are those relevant to chromatin. Unlike polymer networks previously studied, our chromatin networks have finite average distances between successive binding sites, and this leads to giant differences between the weights of topologies with the same number of edges and nodes but different wiring. These weights strongly favor rosettelike structures with a local cloud of loops with respect to more complicated nonlocal topologies. Our results suggest that genes should overwhelmingly fold into a small fraction of all possible 3D topologies, which can be robustly characterized by the framework we propose here.


Asunto(s)
Cromatina , Entropía , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Modelos Moleculares
17.
Sci Adv ; 10(28): eado1453, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985862

RESUMEN

The interplay between humans and their microbiome is crucial for various physiological processes, including nutrient absorption, immune defense, and maintaining homeostasis. Microbiome alterations can directly contribute to diseases or heighten their likelihood. This relationship extends beyond humans; microbiota play vital roles in other organisms, including eukaryotic pathogens causing severe diseases. Notably, Wolbachia, a bacterial microbiota, is essential for parasitic worms responsible for lymphatic filariasis and onchocerciasis, devastating human illnesses. Given the lack of rapid cures for these infections and the limitations of current treatments, new drugs are imperative. Here, we disrupt Wolbachia's symbiosis with pathogens using boron-based compounds targeting an unprecedented Wolbachia enzyme, leucyl-tRNA synthetase (LeuRS), effectively inhibiting its growth. Through a compound demonstrating anti-Wolbachia efficacy in infected cells, we use biophysical experiments and x-ray crystallography to elucidate the mechanism behind Wolbachia LeuRS inhibition. We reveal that these compounds form adenosine-based adducts inhibiting protein synthesis. Overall, our study underscores the potential of disrupting key microbiota to control infections.


Asunto(s)
Microbiota , Wolbachia , Wolbachia/efectos de los fármacos , Humanos , Animales , Leucina-ARNt Ligasa/metabolismo , Leucina-ARNt Ligasa/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Cristalografía por Rayos X , Compuestos de Boro/farmacología , Compuestos de Boro/química , Simbiosis , Modelos Moleculares
18.
Methods Mol Biol ; 2836: 219-233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995543

RESUMEN

Channels, tunnels, and pores serve as pathways for the transport of molecules and ions through protein structures, thus participating to their functions. MOLEonline ( https://mole.upol.cz ) is an interactive web-based tool with enhanced capabilities for detecting and characterizing channels, tunnels, and pores within protein structures. MOLEonline has two distinct calculation modes for analysis of channel and tunnels or transmembrane pores. This application gives researchers rich analytical insights into channel detection, structural characterization, and physicochemical properties. ChannelsDB 2.0 ( https://channelsdb2.biodata.ceitec.cz/ ) is a comprehensive database that offers information on the location, geometry, and physicochemical characteristics of tunnels and pores within macromolecular structures deposited in Protein Data Bank and AlphaFill databases. These tunnels are sourced from manual deposition from literature and automatic detection using software tools MOLE and CAVER. MOLEonline and ChannelsDB visualization is powered by the LiteMol Viewer and Mol* viewer, ensuring a user-friendly workspace. This chapter provides an overview of user applications and usage.


Asunto(s)
Bases de Datos de Proteínas , Programas Informáticos , Conformación Proteica , Interfaz Usuario-Computador , Modelos Moleculares , Canales Iónicos/metabolismo , Canales Iónicos/química , Biología Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Navegador Web
19.
Protein Sci ; 33(8): e5104, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38995055

RESUMEN

Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.


Asunto(s)
Ferritinas , Multimerización de Proteína , Humanos , Ferritinas/química , Ferritinas/metabolismo , Ferritinas/genética , Modelos Moleculares , Microscopía por Crioelectrón
20.
Methods Mol Biol ; 2780: 281-287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38987473

RESUMEN

G-protein-coupled receptors (GPCRs), the largest family of human membrane proteins, play a crucial role in cellular control and are the target of approximately one-third of all drugs on the market. Targeting these complexes with selectivity or formulating small molecules capable of modulating receptor-receptor interactions could potentially offer novel avenues for drug discovery, fostering the development of more refined and safer pharmacotherapies. Due to the lack of experimentally derived X-ray crystallography spectra of GPCR oligomers, there is growing evidence supporting the development of new in silico approaches for predicting GPCR self-assembling structures. The significance of GPCR oligomerization, the challenges in modeling these structures, and the potential of protein-protein docking algorithms to address these challenges are discussed. The study also underscores the use of various software solutions for modeling GPCR oligomeric structures and presents practical cases where these techniques have been successfully applied.


Asunto(s)
Simulación del Acoplamiento Molecular , Multimerización de Proteína , Receptores Acoplados a Proteínas G , Programas Informáticos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Simulación del Acoplamiento Molecular/métodos , Humanos , Unión Proteica , Algoritmos , Cristalografía por Rayos X/métodos , Conformación Proteica , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA