Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.543
Filtrar
1.
Sci Total Environ ; 806(Pt 1): 150410, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571219

RESUMEN

Understanding linkages between heterogeneous soil structures and non-uniform flow is fundamental for interpreting infiltration processes and improving hydrological simulations. Here, we utilized ground-penetrating radar (GPR) as a non-invasive technique to investigate those linkages and to complement current traditional methods that are labor-intensive, invasive, and non-repeatable. We combined time-lapse GPR surveys with different types of infiltration experiments to create three-dimensional (3D) diagrams of the wetting dynamics. We carried out the GPR surveys and validated them with in situ observations, independent measurements and field excavations at two experimental sites. Those sites were selected to represent different mechanisms that generate non-uniform flow: (1) preferential water infiltration initiated by tree trunk and root systems; and (2) lateral subsurface flow due to soil layering. Results revealed links between different types of soil heterogeneity and non-uniform flow. The first experimental site provided evidence of root-induced preferential flow paths along coarse roots, emphasizing the important role of coarse roots in facilitating preferential water movement through the subsurface. The second experimental site showed that water infiltrated through the restrictive layer mainly following the plant root system. The presented approach offers a non-invasive, repeatable and accurate way to detect non-uniform flow.


Asunto(s)
Radar , Suelo , Imagen de Lapso de Tiempo , Árboles , Movimientos del Agua
2.
J Environ Manage ; 301: 113818, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597948

RESUMEN

Best management practices that reduce potential phosphorus (P) loss and provide flexibility in P fertilizer management are needed to help producers protect water quality while maintaining crop yield. This study examined the impacts of P fertilizer management (no P, fall broadcast P, and spring injected P) and cover crop use on annual concentrations and loads of sediment, total P, and dissolved reactive P (DRP) in edge-of-field runoff from a no-till corn (Zea mays)-soybean (Glycine max) rotation in the Central Great Plains, USA, from September 2015 through September 2019. The spring injected P fertilizer treatment generally had 19% less total P and 33% less DRP loss compared to the fall broadcast treatment, confirming the importance of P fertilizer management as a practice for reducing P loss. The addition of a cover crop had an inconsistent effect on total P loss, with no effect in 2016 and 2017, increasing loss in 2018 by 56%, and decreasing it in 2019 by 40%. The inconsistent impact of cover crops on total P loss was related to cover crop effects on sediment loss. Although cover crop impacts on total P losses were inconsistent, the addition of a cover crop increased DRP loss in three of four years. Cover crop use consistently reduced sediment loss, with greater sediment reduction when P fertilizer was applied. Results from this study highlight the benefit of cover crops for reducing sediment loss and the continued need for proper fertilizer management to reduce P loss from agricultural fields.


Asunto(s)
Fertilizantes , Fósforo , Agricultura , Fertilizantes/análisis , Fósforo/análisis , Soja , Movimientos del Agua , Calidad del Agua , Zea mays
3.
J Environ Manage ; 301: 113750, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597953

RESUMEN

Conventional green roofs have often been criticised for their limited water buffer capacity during extreme rainfall events and for their susceptibility to droughts when additional irrigation is unavailable. One solution to these challenges is to create an extra blue water retention layer underneath the green layer. Blue-green roofs allow more stormwater to be stored, and the reservoir can act as a water source for the green layer throughout capillary rises. An automated valve regulates the water level of the system. It can be opened to drain water when extreme precipitation is expected. Therefore, the water buffer capacity of the system during extreme rainfall events can be maximised by integrating precipitation forecasts as triggers for the operation of the valve. However, the added value of this forecast-based operation is yet unknown. Accordingly, in this study, we design and evaluate a hydrological blue-green roof model that utilises precipitation forecasts. We test its performance to capture (extreme) precipitation and to increase evapotranspiration and evaporative cooling under a variety of precipitation forecast-based decision rules. We show that blue-green roofs can capture between 70 % and 97 % of extreme precipitation (>20 mm/h) when set to anticipate ensemble precipitation forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF). This capture ratio is considerably higher than that of a conventional green roof without extra water retention (12 %) or that of a blue-green roof that does not use forecast information (i.e., valve always closed; 59 %). Moreover, blue-green roofs allow for high evapotranspiration rates relative to potential evapotranspiration on hot summer days (around 70 %), which is higher than from conventional green roofs (30 %). This serves to underscore the higher capacity of blue-green roofs to reduce heat stress. Using the city of Amsterdam as a case study, we show the high upscaling potential of the concept: on average, potentially suitable flat roofs cover 13.3 % of the total area of the catchments that are susceptible to pluvial flood risk. If the 90th percentile of the ECMWF forecast is used, an 84 % rainfall capture ratio can translate into capturing 11 % of rainfall in flood-prone urban catchments in Amsterdam.


Asunto(s)
Lluvia , Movimientos del Agua , Ciudades , Conservación de los Recursos Naturales , Hidrología
4.
Environ Pollut ; 292(Pt A): 118219, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626917

RESUMEN

Neonicotinoids pollution poses a serious threat to aquatic ecosystems. However, there is currently little knowledge about how neonicotinoids are transferred from the agricultural environment to the aquatic environment. Here, we conducted in situ high-frequency monitoring of neonicotinoids in soil-water systems along the hydrological flow path during rainfall to explore the horizontal and vertical transport mechanisms of neonicotinoids. The collected samples included 240 surface runoff, 128 subsurface runoff, 60 eroded sediment, 120 soil and 144 soil solution, which were used to analyse neonicotinoids concentrations. Surface runoff, subsurface runoff and eroded sediment were the three main paths for the horizontal migration of neonicotinoids. In the CK (citrus orchards without grass cover) and grass-covered citrus orchards, there are 15.89% and 2.29% of the applied neonicotinoids were transported with surface runoff, respectively. While in the CK and grass-covered citrus orchards, there are only 1.23% and 0.19% of the applied neonicotinoids were transported with eroded sediment and subsurface runoff. Although the amount of neonicotinoids lost along with eroded sediment was small, the concentration of neonicotinoids in eroded sediment was two orders of magnitude higher than the concentration of neonicotinoids in sediments of the surface water. Meanwhile, neonicotinoids migrated vertically in soil due to water infiltration. In the CK and grass-covered citrus orchards, there are 57.64% and 24.36% of the applied neonicotinoids were retained in soil and soil solution, respectively, and their concentration decreased as soil depth increased. Another noteworthy phenomenon is that more neonicotinoids migrated to deeper soil layers under grass cover compared with no grass cover because grass roots promoted the formation of cracks and vertical preferential flow. Our results are expected to improve the accuracy of neonicotinoids pollution prediction by considering migration paths, including surface and subsurface runoff and eroded sediment.


Asunto(s)
Suelo , Agua , Ecosistema , Monitoreo del Ambiente , Neonicotinoides , Lluvia , Movimientos del Agua
5.
Sci Total Environ ; 802: 149962, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34781586

RESUMEN

Drainage outflow from artificial subsurface drains can be a significant contributor to watershed water yield in many humid regions of the world. Although many studies have undertaken to simulate hydrologic processes in drained watersheds, there is a need for a study that first, uses physically based spatially distributed modeling for both surface and subsurface processes; and second, quantifies the effect of surface and subsurface parameters on watershed drainage outflow. This study presents a modified version of the SWAT+ watershed model to address these objectives. The SWAT+ model includes the gwflow module, a new spatially distributed groundwater routine for calculating groundwater storage, groundwater head, and groundwater fluxes throughout the watershed using a grid cell approach, modified in this study to simulate the removal of groundwater by subsurface drains. The modeling approach is applied to the South Fork Watershed (583 km2), located in Iowa, USA, where most fields are drained artificially. The model is tested against measured streamflow, groundwater head at monitoring wells, and drainage outflow from a monitored subbasin. Sensitivity analysis is then applied to determine the land surface, subsurface, and drainage parameters that control subsurface drainage. Simulated drainage flow fractions (fraction of streamflow that originates from subsurface drainage) range from 0.37 to 0.54 during 2001-2012, with lower fractions occurring during years of high rainfall due to the increased volumes of surface runoff. Subsurface drainage comprises the vast majority of baseflow. Results indicate surface runoff and soil percolation parameters have the strongest effect on watershed-wide subsurface drainage rather than aquifer and drain properties, pointing to a holistic watershed approach to manage subsurface drainage. The modeling code presented herein can be used to simulate significant hydrologic fluxes in artificially drained watersheds worldwide.


Asunto(s)
Agua Subterránea , Agua , Hidrología , Suelo , Movimientos del Agua
6.
Sci Total Environ ; 805: 150404, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818793

RESUMEN

The frequent urbanization and extreme rainfall events have posed the threat to the urban environment. The implementation of low impact development (LID) practices with great potential for control urban flood and overflow pollution is not comprehensively understood yet due to the influence of complex factors (i.e., hydrological pattern, installation location, and vertical parameter setting). In this study, the hydraulic and water quality model were used to analyze the hydrological and pollution reduction of outfall and storage under different hydrological patterns, vertical parameter setting, and green infrastructure installation locations, which can determine the best implementation of the scheme for overflow pollution control. The results showed that nine parameters of the vertical layer regarding the four parameters impacted the peak value and load of suspended solids (SS). The combination scheme of the LID practices was further proposed based on the selection and analysis of the single LID practice. Besides, considering the installation location, the downstream installed location was a better choice. The horizontal connection of overflow runoff and pollution could be reduced by up to 9.75% and 36.46%, respectively. In addition, the horizontal connection can effectively reduce the peak value of inflow and pollutants at the time of assessing storage tank impact, which reach the maximum of 14.08% and 29.25%, respectively. The pollutants distribution became uniform and showed better resilience against rainfall intensity, which is beneficial to the management of stormwater. Our findings can provide guidance for Sponge City construction and effectively alleviate the combined sewer overflow.


Asunto(s)
Lluvia , Movimientos del Agua , Ciudades , Hidrología , Urbanización
7.
J Environ Manage ; 304: 114241, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34906811

RESUMEN

Urban runoff source control facilities (URSCFs) are important parts of Sponge City (SC) by controlling urban flooding, restoring eco-balance, and enhancing city resilience. To evaluate the performance of URSCF, one needs to summarize and analyze the past SC construction and operation data. Previous studies however are predominately engineering practice studies. There lacks localized reference datasets to quantitatively evaluate the performance and guide public policy development for SC. Therefore, it is imperative to develop a database, which would summarize data obtained through the already completed pilot sponge cities, and provide a reference for future URSCFs planning and construction. This study makes a zero to one breakthrough by establishing a SC database using New Orleans method. Then statistical results of facility type, size, and costs information for 30 pilot sponge cities have been summarized and analyzed. The URSCFs type distribution statistical results show that bioretention, permeable pavement, detention cell, grassed swale and constructed wetland are the top five most constructed facilities in China. The cost statistical results display that the range of facility cost collected is usually larger than the range given by the reference value, which may attribute to the variation in material cost, labor cost and design parameters in different cities. To check the similarities and differences of URSCFs parameters between China and the US. A configuration parameters comparison of URSCFs has been conducted. Bioretention is taken as an exampl. Comparison results show that factors such as climate type, geographical environment, and socio-economic conditions will affect the configuration parameters of URSCFs. The groundwater depth and designed rainfall intensity are mainly influenced by local climate and geographical conditions. Surface area is influenced by local socio-economic conditions. The thickness of the covering layer and drainage layer are not affected by geographic location. The service area ratio, water storage depth and planting soil layer thickness are significantly different between China and the US.


Asunto(s)
Contaminación Ambiental/prevención & control , Lluvia , Movimientos del Agua , China , Ciudades , Inundaciones , Estados Unidos
8.
Sci Total Environ ; 802: 149831, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34454152

RESUMEN

Quantifying the climatic and anthropogenic effects on hydrological processes has received considerable attention. However, diverse conclusions could be drawn when different models and forcing datasets are used. This is particularly uncertain and challenging in poorly gauged arid regions. Here we aim to tackle this issue in the poorly gauged Xiangride River Basin within the Qaidam Basin, one of the three prominent inland basins in China. We applied two distinct models (Budyko Mezentsev-Choudhurdy-Yang and process-based SWAT) to a poorly-gauged inland basin in West China. The model simulations were driven by four precipitation products including Tropical Rainfall Measuring Mission (TRMM) 3B42 V7, Global Precipitation Measurement (GPM) IMERG V6, Multi-Source Weighted-Ensemble Precipitation (MSWEP) and China Meteorological Assimilation Driving Datasets (CMADS). Our results indicate that MSWEP performed best (NSE = 0.64 vs. 0.36-0.59 for other datasets) in the baseline period (2009-2012), whereas CMADS was more accurate during the impacted period (2013-2016); CMADS and GPM might underestimate the precipitation in the baseline and impacted period, respectively. Hydrological processes during the impacted period are presumed to be influenced by climate variation and/or human activities, compared to the relatively natural status in the baseline period. We conclude that runoff decline between the two periods was mainly affected by human activities (-66 to 94%), whereas the contribution of climate variation was more likely positive. A literature survey reveals that major anthropogenic effects in the study area includes reservoir, road construction and cropland expansion that could lead to runoff decrease. We recommend the use of process-based model (e.g., SWAT) in studies like this, as process-based models driven by high-quality remote-sensed or reanalysis climate datasets, better represents the spatiotemporal hydrological change under altered conditions, whereas the steady-state assumption of soil water for the Budyko model may not be fully satisfied during a short period.


Asunto(s)
Hidrología , Ríos , China , Actividades Humanas , Humanos , Movimientos del Agua
9.
Chemosphere ; 287(Pt 2): 132109, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34492414

RESUMEN

The influx of rainfall runoff intensifies phase partition of the pollutant in receiving water bodies, and the phase partition plays an important role in the speciation transformation and spatial partition of pollutants. In this study, the Meishe River on Hainan Island, China, was adopted as the research area, and palladium (Pd) was selected as the target pollutant. The purpose of this study was to explore phase partition of Pd in receiving water bodies and the underlying influential mechanism. The partition coefficients (Kds) of Pd between water and suspended particulate matter in receiving water bodies and rainfall runoff were 0.74 (0.1 × 10-2 - 8.75) and 2.74 (0.5 × 10-2 - 15.70), respectively. These results indicated that Pd dominated the dissolved phase in the receiving water bodies and that Pd dominated the particulate phase in rainfall runoff. Variations in the Kd value of Pd in the receiving water bodies were relatively smooth over time during the precipitation events in May and June. There were no significant differences in phase partition of Pd between the receiving water bodies and rainfall runoff. The Kd value for Pd in the receiving water bodies showed a fluctuating upward trend over time during the precipitation events in August, and the difference in Kd values of Pd between the receiving water bodies and the rainfall runoff were large. Variations in the Kd value of Pd among sections of the receiving water bodies could be roughly divided into two categories, namely, U and inverted-U types. After rainfall runoff converged for 20-25 min, the Pd phase transitions were more frequent within 7 m downstream of the outfall. The Kd value of Pd in the receiving water bodies was correlated with pH, Eh, and total suspended solid (TSS), and the correlation coefficients were 0.52, -0.57, and 0.84, respectively (p < 0.05). Compared with rainfall runoff, pH, Eh, TSS had less influence on phase partition of Pd in receiving water bodies. This might be attributed to the dilution effect of natural water and the unique dynamic mechanism of rivers.


Asunto(s)
Movimientos del Agua , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Paladio , Lluvia , Agua , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 806(Pt 2): 150638, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34592276

RESUMEN

Green roofs are commonly used in sponge city construction. However, the limitations of substrate thickness and strong sunlight have caused water retention to become the primary problem in the promotion of this technology. Super-absorbent polymer (SAP) is a material with excellent water absorption capacity that is expected to improve the substrate to solve the problem of the insufficient water storage capacity of green roofs. In this study, the basic performances of two types of SAPs, namely polyacrylate sylvite and acrylic acid-attapulgite hybrid (P-SAP and A-SAP, respectively), were evaluated on a bench-scale. The results showed that both SAPs had good water absorption, reusability, and fertilizer protection ability. These SAPs could maintain high water absorption within a certain range of salinity, pH, and temperature. Although water absorption of P-SAP was higher than that of A-SAP, the latter showed a significant advantage in substrate modification. After adding A-SAP (application rate: 0.6%, particle size: 12 mesh), the water storage capacity of the substrate was significantly improved, with an increase in the saturation moisture content of 23.8% and a decrease in the infiltration rate of 48.5%. A simulator of green roof was constructed with A-SAP under optimal conditions. The enhancement of the water retention capacity increased the drought resistance of the plants, which improved their growth; in particular, the fresh weight was 98% higher than that of the control group. A-SAP increased the rate of building up the lawn by 25%. The average soil moisture of the A-SAP group was 63.3%, which was 10.0% higher than that of the control group. An increase of more than 26% in the runoff control capacity was found in the green roof with A-SAP. Overall, our study indicates that A-SAP is a practical and efficient modifier for green roofs.


Asunto(s)
Conservación de los Recursos Naturales , Lluvia , Plantas , Polímeros , Movimientos del Agua
11.
Sci Total Environ ; 807(Pt 1): 150655, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34597550

RESUMEN

Pesticides reach aquatic ecosystems via surface runoff becoming one of the main contributors to their deterioration. Among the strategies to mitigate these impacts, the use of riparian strips is recommended, but the knowledge of how much each ecosystemic variable contributes to the process is still incipient. We analyzed the influence of terrain slope and vegetation in the attenuation of 2,4-Dichlorophenoxyacetic acid (2,4-D) toxicity in surface runoff using Lactuca sativa as a diagnostic organism. In addition, the differential effects of this herbicide were examined under laboratory conditions, with standardized water and ambient water as a dilution medium. The study was conducted in plots with different terrain slopes and presence/absence of vegetation. The herbicide was applied to each plot and rain was subsequently simulated. The runoff was collected at regular distances and the toxicity was measured. The runoff toxicity decreased with the distance from the application area in all plots, this reduction being greater in low-slope plots. No differences in attenuation of runoff toxicity were found between plots with and without vegetation. The data were incorporated into models to estimate the minimum widths of safety to reduce the toxicity of 2,4-D by 90% under these conditions, suggesting distances of 5 and 20 m for low-slope and high-slope zones, respectively. In laboratory experiments, lower relative toxicity of 2,4-D was detected when natural water was used as solvent. These results contribute to the design of sustainable agricultural practices.


Asunto(s)
Plaguicidas , Ácido 2,4-Diclorofenoxiacético/toxicidad , Agricultura , Ecosistema , Plantas , Lluvia , Suelo , Movimientos del Agua
12.
Sci Total Environ ; 806(Pt 3): 151296, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34736755

RESUMEN

Trees in the urban right-of-way areas have increasingly been considered part of a suite of green infrastructure practices used to manage stormwater runoff. A paired-catchment experimental design (with street tree removal as the treatment) was used to assess how street trees affect major hydrologic fluxes in a typical residential stormwater collection and conveyance network. The treatment consisted of removing 29 green ash (Fraxinus pennsylvanica) and two Norway maple (Acer platanoides) street trees from a medium-density residential area. Tree removal resulted in an estimated 198 m3 increase in surface runoff volume compared to the control catchment over the course of the study. This increase accounted for 4% of the total measured runoff after trees were removed. Despite significant changes to runoff volume (p ≤ 0.10), peak discharge was generally not affected by tree removal. On a per-tree basis, 66 L of rainfall per m2 of canopy was lost that would have otherwise been intercepted and stored. Runoff volume reduction benefit was estimated at 6376 L per tree. These values experimentally document per-capita retention services rendered by trees over a growing season with 42 storm events. These values are within the range reported by previous studies, which largely relied on simulation. This study provides catchment scale evidence that reducing stormwater runoff is one of many ecosystem services provided by street trees. This study quantifies these services, based on site conditions and a mix of deciduous species, and serves to improve our ability to account for this important yet otherwise poorly constrained hydrologic service. Engineers, city planners, urban foresters, and others involved with the management of urban stormwater can use this information to better understand tradeoffs involved in using green infrastructure to reduce urban runoff burden.


Asunto(s)
Árboles , Movimientos del Agua , Ciudades , Ecosistema , Hidrología , Lluvia
13.
J Environ Manage ; 302(Pt A): 114038, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34739904

RESUMEN

Green infrastructures (GIs) have been advocated worldwide to mitigate the negative impact of urbanization on regional hydrological cycle, their functions are closely related to their design features and the local environmental condition. This paper reports a field monitoring study that aimed to investigate how runoff partition in raingardens would affect flow and pollutant retention. A paired field experiment was conducted to compare runoff and pollutant retentions in two raingardens with and without subsurface drainage in a shallow water table area. Concentrations of ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N) and total phosphorus (TP) were measured at raingarden inflow, overflow and drainage paths. The results from 28 monitored storm events over two years showed that the raingarden without subsurface drainage achieved its retention mainly through ponding and infiltration, its pollutant retention rates (76% for TP, 81% for NO3-N, and 79% for NH3-N) were higher than its runoff retention rate (61%), indicating a first flush effect on pollutants retention in the raingarden during storm events, especially when the raingarden was empty and dry. The raingarden with subsurface drainage facilitated quick discharge of water, the observed runoff reduction through the raingarden was 36%; pollutant removal rates were quite variable: NH3-N was removed by 91% while the NO3-N and TP were increased by 3-47%. These results suggest that facilitating specific processes for targeted pollutants is necessary for achieving substantial pollutant removal in a stormwater retention device. Subsurface drainage pipes resulted in short circulating of runoff and lowered pollutant removal rates in the raingarden. Considering the water table fluctuation during the experimental period, we recommend to build infiltration-based GI devices to better capture first flush in intensively developed urban area, which caused deeper groundwater table. In conclusion, installations of different GI devices in urban landscape need to consider the local environmental conditions and facilitate the design features to meet specific storm runoff and pollutants mitigation requirement.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Lluvia , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
14.
J Environ Manage ; 304: 114272, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34915388

RESUMEN

Increased agricultural surface runoff in rural watersheds is a leading cause of nonpoint source pollution. In this study, a new biomass concentrator reactor (BCR) is conducted to degrade simulated agricultural surface runoff for both start-up process and treatment process. The results show that both in the start-up phase and in the stable phase, BCR had a good degradation effect on simulated agricultural surface runoff. Within 13 days-15 days of completed start-up of BCR, degradation of COD can be considered to the first-order kinetics: lnCt=lnC0-0.1377t (R2 = 0.78). During the stabilization phase, the average removal rate of COD, NH4+-N, NO3--N, TN and TP from the effluents through the BCR membrane was 94.58%, 85.79%, 53.58%, 37.87%, and 60.62%, respectively, which was increased by 7.4%, 2.5%, 5.1%, 0.18% and 11.4%, respectively, compared to control experiment which the effluents without membrane. The pollutants degradation by BCR in stable phase show a partly relative model of Lawrence-McCarty equation, which the nitrogen and phosphorus degradation is vN=(4.1+S)/(2.53×S) (R2 = 0.69) and vP=(8.78+S)/(3.0×S) (R2 = 0.67), respectively. In the stable phase, the operation cost of BCR is about $0.08/(L•d). Future research on improved BCR maybe focus on the membrane pollution and cleaning, optimized operation conditions, new materials of membrane.


Asunto(s)
Movimientos del Agua , Contaminantes Químicos del Agua , Biomasa , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Contaminación del Agua
15.
J Environ Manage ; 303: 114231, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906833

RESUMEN

In recent years, combined sewer overflow (CSO) has been identified as a significant contributor to the deterioration of the urban water environment. It is thought that remolding it to a separate sewer system is a thorough and effective method of controlling the CSO in the appropriate area. However, according to current research, the separate stormwater sewer systems will also have overflow pollution due to functional defects, damaged or inappropriately connected with sewage, which has serious consequences for the separate system's operational efficiencies and the urban water environment. The event mean concentration, first flush effect, source apportionment, and correlation analysis of variables in overflow pollution generated in three residential catchments in Nanning, China, were investigated in this study. The results showed that the event mean concentration values in drainage outlets inappropriately connected with sewage were 2-4 times higher than those in stormwater outlets, especially for NH3-N, TN, and TP. Meanwhile, more than 80% of overflow events at outlets inappropriately connected with sewage had a weak first flush or even a weak dilution effect, with peak pollutant concentrations occurring 40-60 min after the overflow began. Besides, the discharge pollution load was primarily derived from the inside of the sewer. When the rainfall was heavy, the contribution rate of sewer sediment erosion exceeded 60%, which was much higher than the contribution rate of rainfall runoff and sewage. The variability in event mean COD and TSS concentrations was primarily attributed to the antecedent dry period and rainfall intensity. The COD concentration increased from 140.7 to 277.1 mg/L with the increase of antecedent dry period from 3 to 10 days. This study could help guide the implementation of targeted measures to treat overflow pollution in urban residential catchments, as well as the development of strategies to mitigate the effects on receiving water bodies.


Asunto(s)
Aguas del Alcantarillado , Movimientos del Agua , Monitoreo del Ambiente , Contaminación Ambiental , Lluvia
16.
Sci Total Environ ; 806(Pt 1): 150281, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562758

RESUMEN

Revealing the transport and sources of nitrate in urban stormwater runoff can effectively manage nitrate pollution in urban areas. This study used the chemical properties of stormwater along with δ15N-NO3- and δ18O-NO3- isotopes to identify the transport and sources of nitrate within an urban catchment. The results showed that the NO3-N concentration and total dissolved nitrogen (TDN) composition differed among roof runoff, road runoff, and drainage runoff. The highest NO3-N concentration was found in roof runoff and NH3-N dominated the TDN composition. However, the erosion of pervious surfaces and litter may have led to higher DON/TDN values in road runoff. The TDN composition of drainage runoff was consistent with that of roof runoff. Furthermore, among the various rainfall characteristics, the depth and intensity of rainfall were significantly correlated with the NO3-N concentrations in roof runoff and road runoff, while antecedent dry days had little effect. According to a Bayesian mixing model, the average contributions of the nitrate load in drainage runoff were ranked as road runoff (51.6%) > rainwater (29.2%) > and roof runoff (15%), which is consistent with the results of previous studies. Rainwater nitrate may have ranked second due to the confluence time, pollution level, and other factors that made rainwater reduce the pollution characteristics of roof runoff. The dominant contribution of road runoff to the NO3-N concentration of drainage runoff could be attributed to the large runoff volume. Hence, effective measures should be taken to minimize the NO3-N concentration in roof runoff, while runoff volume reduction should be the primary concern for controlling road runoff pollution. This work is helpful for obtaining a better understanding of the transport and sources of nitrate that vary dynamically within different hydrological flow pathways, and the outcomes are expected to enhance targeted measures to mitigate nitrate pollution in urban water systems.


Asunto(s)
Nitrógeno , Contaminantes Químicos del Agua , Teorema de Bayes , China , Monitoreo del Ambiente , Nitrógeno/análisis , Lluvia , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
17.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4177-4185, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34951258

RESUMEN

Snowmelt erosion is an important way of soil loss in Chinese Mollisol region. However, little is known about the effects of seepage flow and soil thaw depth on hillslope snowmelt runoff erosion. An indoor simulated experiment was conducted to analyze the impacts of seepage flow and soil thaw depth on hillslope snowmelt erosion. There were two snowmelt flow rates (1 and 4 L·min-1), two soil thaw depths (5 and 10 cm), and two near-surface hydrological conditions (with and without seepage flow). The results showed that hillslope runoff depth and soil erosion amount in the treatment with seepage flow were 1.1 to 1.2 times and 1.3 to 1.9 times of those in the treatment without seepage flow, respectively. Under two snowmelt flow rates, when soil thaw depth increased from 5 cm to 10 cm, hillslope runoff depth and soil erosion amount increased by 10.0% to 13.5% and 15.4% to 37.1% in the treatment without seepage flow, respectively. In the treatment with seepage flow, when soil thaw depth shifted from 5 cm to 10 cm, hillslope runoff depth increased by 6.5% to 8.5%, and soil erosion amount remained stable. Moreover, hillslope rill development was comprehensively influenced by seepage flow, soil thaw depth, and snowmelt flow rate, with rill erosion amount occupying more than 72% of hillslope snowmelt erosion amount. Compared with the treatment without seepage flow, flow velocity and shear stress under the treatment with seepage flow increased by 20.3% to 23.2% and 37.0% to 51.3%, respectively; but Darcy-Weisbach friction coefficient reduced by 9.0% to 21.4%, which caused an increase of hillslope snowmelt erosion. In addition, seepage flow enhanced rill development, which caused rill erosion amount to increase by 43.6% to 69.9% compared with the treatment without seepage flow, and it further resulted in the increase of hillslope snowmelt erosion amount. The main reason for soil thaw depth enhancing hillslope snowmelt erosion amount under the treatment without seepage flow was that both sloping runoff erosivity and erodible materials increased with increasing soil thaw depth. Furthermore, soil thaw depth had a significant impact on hillslope rill morphology development under the treatment with seepage flow. Rill widening process was dominated when soil thaw depth was 5 cm, whereas rill incision process was dominant when soil thaw depth was 10 cm. This study could improve the understanding of hillslope snowmelt erosion mechanism in Chinese Mollisol region and provide theoretical guidance for the development of water erosion model.


Asunto(s)
Suelo , Movimientos del Agua , China , Sedimentos Geológicos , Hidrología
18.
Environ Monit Assess ; 193(12): 836, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34802075

RESUMEN

The Awash River basin is one of the most developed basins in Ethiopia, and its water resources are crucial to development. The collective impact of land cover (LC) changes has driven a difference in the hydrological components, substantially impacting the availability of water resources and demand. This review aimed (i) to examine the extent of change quantitatively and its effects; (ii) to analyze the relationship with a mean annual rainfall that would further reveal the causes and potential LC type response to hydrologic variables in the Awash River basin, Ethiopia. The results have revealed that urbanization and agricultural activities in the basin are the most trending types of LC, while the forest, shrubland, grassland, and pasture land have been decreasing significantly in the subbasins. As a result, the change in these subbasins has triggered hydrologic variations (runoff, groundwater flow, base flow, and evapotranspiration), and its impacts on downstream basins have mostly been flood and drought. In addition, farmland, urbanization, and shrubland trends showed a significant positive interaction, while forest and water bodies had a substantial and slight negative relation to mean annual rainfall, respectively. Vegetation, bareland, urbanization, and agriculture/farmland are directly responsible for the hydrologic variation. LC change significantly affected hydrologic regimes and the distribution of spatial rainfall is correlated significantly to LC change pattern. Besides, due to the lack of LC management practices, the impact continues to propagate. Hence, this review helps to portray the potential implications and extent of effects of changes in LC on the hydrological regimes. As a result, the implementation of sound water management strategies and practices in response to changing environments to resurrect water scarcity and mitigate flood and sediment are needed straightaway.


Asunto(s)
Erosión del Suelo , Movimientos del Agua , Monitoreo del Ambiente , Etiopía , Hidrología
19.
Water Sci Technol ; 84(9): 2194-2213, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34810305

RESUMEN

This study aims to investigate the effectiveness of the low impact development (LID) practices on sustainable urban flood storm water management. We applied three LID techniques, i.e. green roof, permeable pavements and bioretention cells, on a highly urbanized watershed in Istanbul, Turkey. The EPA-SWMM was used as a hydrologic-hydraulic model and the model calibration was performed by the well-known Parameter ESTimation (PEST) tool. The rainfall-runoff events occurred between 2012 and 2020. A sensitivity analysis on the parameter selection was applied to reduce the computational cost. The Nash-Sutcliffe efficiency coefficient (NSE) was used as the objective function and it was calculated as 0.809 in the model calibration. The simulations were conducted for six different return periods of a storm event, i.e. 2, 5, 10, 25, 50 and 100 years, in which the synthetic storm event hyetographs were produced by means of the alternating block method. The results revealed that the combination of green roof and permeable pavements have the major impact on both the peak flood reduction and runoff volume reduction compared to the single LIDs. The maximum runoff reduction percentage was obtained as 56.02% for a 10 years return period of a storm event in the combination scenario.


Asunto(s)
Lluvia , Movimientos del Agua , Hidrología , Modelos Teóricos , Agua , Abastecimiento de Agua
20.
Water Sci Technol ; 84(9): 2214-2227, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34810306

RESUMEN

The permeable brick pavement system (PBPs) is one of a widely used low impact development (LID) measures to alleviate runoff volume and pollution caused by urbanization. The performance of PBPs on decreasing runoff volume is decided by its permeability, and it was general described by hydraulic conductivity based on Darcy's law. But there is large error when using hydraulic conductivity to describe the infiltration of PBPs, and which infiltration process is not following Darcy's law, so it is important to find more accurate infiltration models to describe the infiltration of PBPs. The Horton, Philip, Green-Ampt, and Kostiakov infiltration models were selected to find an optimal model to investigate infiltration performance of PBPs via a laboratory-scale experiment, and the maximum absolute error (MAE), Bias, and coefficient of determination (R2) were selected to evaluate the models' errors via fitting with experiment data. The results showed that the fitting accuracy of Kostiakov, Philip, and Green-Ampt models was significantly affected by the monitoring area and hydraulic gradients. Meanwhile, Horton model fitted well (MAE = 0.25-0.32 cm/h, Bias = 0.07-0.11 cm/h, and R2 = 0.98-0.99) with the experiment data, and the parameters of the Horton model often can be achieved by monitoring, such as the maximum infiltration rate and the stable infiltration rate. Therefore, the Horton model is an optimal model to describe the infiltration performance of PBPs, which can also be adopted to evaluate hydrological characterization of PBPs.


Asunto(s)
Lluvia , Movimientos del Agua , Hidrología , Laboratorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...