Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.310
Filtrar
1.
Theor Appl Genet ; 137(7): 150, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847846

RESUMEN

Grain size is a crucial agronomic trait that determines grain weight and final yield. Although several genes have been reported to regulate grain size in rice (Oryza sativa), the function of Wall-Associated Kinase family genes affecting grain size is still largely unknown. In this study, we identified GRAIN WEIGHT AND NUMBER 1 (GWN1) using map-based cloning. GWN1 encodes the OsWAK74 protein kinase, which is conserved in plants. GWN1 negatively regulates grain length and weight by regulating cell proliferation in spikelet hulls. We also found that GWN1 negatively influenced grain number by influencing secondary branch numbers and finally increased plant grain yield. The GWN1 gene was highly expressed in inflorescences and its encoded protein is located at the cell membrane and cell wall. Moreover, we identified three haplotypes of GWN1 in the germplasm. GWN1hap1 showing longer grain, has not been widely utilized in modern rice varieties. In summary, GWN1 played a very important role in regulating grain length, weight and number, thereby exhibiting application potential in molecular breeding for longer grain and higher yield.


Asunto(s)
Grano Comestible , Oryza , Proteínas de Plantas , Semillas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/enzimología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Fenotipo , Regulación de la Expresión Génica de las Plantas , Clonación Molecular , Mapeo Cromosómico , Haplotipos , Pared Celular/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Genes de Plantas
2.
Sci Adv ; 10(23): eadm7452, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848363

RESUMEN

Understanding CRISPR-Cas9's capacity to produce native overexpression (OX) alleles would accelerate agronomic gains achievable by gene editing. To generate OX alleles with increased RNA and protein abundance, we leveraged multiplexed CRISPR-Cas9 mutagenesis of noncoding sequences upstream of the rice PSBS1 gene. We isolated 120 gene-edited alleles with varying non-photochemical quenching (NPQ) capacity in vivo-from knockout to overexpression-using a high-throughput screening pipeline. Overexpression increased OsPsbS1 protein abundance two- to threefold, matching fold changes obtained by transgenesis. Increased PsbS protein abundance enhanced NPQ capacity and water-use efficiency. Across our resolved genetic variation, we identify the role of 5'UTR indels and inversions in driving knockout/knockdown and overexpression phenotypes, respectively. Complex structural variants, such as the 252-kb duplication/inversion generated here, evidence the potential of CRISPR-Cas9 to facilitate significant genomic changes with negligible off-target transcriptomic perturbations. Our results may inform future gene-editing strategies for hypermorphic alleles and have advanced the pursuit of gene-edited, non-transgenic rice plants with accelerated relaxation of photoprotection.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Mutagénesis , Oryza , Oryza/genética , Edición Génica/métodos , Alelos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transgenes , Regulación de la Expresión Génica de las Plantas
3.
Arch Virol ; 169(7): 141, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850364

RESUMEN

The brown planthopper (BPH), Nilaparvata lugens, is a significant agricultural pest capable of long-distance migration and transmission of viruses that cause severe disease in rice. In this study, we identified a novel segmented RNA virus in a BPH, and this virus exhibited a close relationship to members of a recently discovered virus lineage known as "quenyaviruses" within the viral kingdom Orthornavirae. This newly identified virus was named "Nilaparvata lugens quenyavirus 1" (NLQV1). NLQV1 consists of five positive-sense, single-stranded RNAs, with each segment containing a single open reading frame (ORF). The genomic characteristics and phylogenetic analysis support the classification of NLQV1 as a novel quenyavirus. Notably, all of the genome segments of NLRV contained the 5'-terminal sequence AUCUG. The characteristic virus-derived small interfering RNA (vsiRNA) profile of NLQV1 suggests that the antiviral RNAi pathway of the host BPH was activated in response to virus infection. These findings represent the first documented report of quenyaviruses in planthoppers, contributing to our understanding of quenyaviruses and expanding our knowledge of insect-specific viruses in planthoppers.


Asunto(s)
Genoma Viral , Hemípteros , Sistemas de Lectura Abierta , Filogenia , Virus ARN , ARN Viral , Animales , Hemípteros/virología , Genoma Viral/genética , ARN Viral/genética , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Enfermedades de las Plantas/virología , Oryza/virología , Secuenciación Completa del Genoma , ARN Interferente Pequeño/genética
4.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38832465

RESUMEN

BACKGROUND: As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. RESULTS: We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. CONCLUSIONS: RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.


Asunto(s)
Minería de Datos , Estudio de Asociación del Genoma Completo , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Programas Informáticos , Epigenómica/métodos , Biología Computacional/métodos , Polimorfismo de Nucleótido Simple , Genómica/métodos , Genoma de Planta , Mapeo Cromosómico , Bases de Datos Genéticas
5.
PeerJ ; 12: e17475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827300

RESUMEN

Fertilization plays a crucial role in ensuring global food security and ecological balance. This study investigated the impact of substituting innovative biological manure for chemical fertilization on rice (Oryza sativa L) productivity and soil biochemical properties based on a three-year experiment. Our results suggested rice yield and straw weight were increased under manure addition treatment. Specifically, 70% of total nitrogen (N) fertilizer substituted by biological manure derived from straw, animal waste and microbiome, led to a substantial 13.6% increase in rice yield and a remarkable 34.2% boost in straw weight. In comparison to the conventional local farmer practice of applying 165 kg N ha-1, adopting 70% of total N plus biological manure demonstrated superior outcomes, particularly in enhancing yield components and spike morphology. Fertilization treatments led to elevated levels of soil microbial biomass carbon and N. However, a nuanced comparison with local practices indicated that applying biological manure alongside urea resulted in a slight reduction in N content in vegetative and economic organs, along with decreases of 10.4%, 11.2%, and 6.1% in N recovery efficiency (NRE), respectively. Prudent N management through the judicious application of partial biological manure fertilizer in rice systems could be imperative for sustaining productivity and soil fertility in southern China.


Asunto(s)
Fertilizantes , Estiércol , Nitrógeno , Oryza , Suelo , Nitrógeno/metabolismo , Nitrógeno/análisis , Estiércol/análisis , Fertilizantes/análisis , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Suelo/química , China , Agricultura/métodos , Microbiología del Suelo , Biomasa , Animales , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo
6.
Antonie Van Leeuwenhoek ; 117(1): 87, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833203

RESUMEN

Two novel Gram-stain-negative strains designated P7T and P8T, were isolated from the soil of a paddy field in Goyang, Republic of Korea, and identified as new species within the genus Roseateles through a polyphasic taxonomic approach. These aerobic, rod-shaped, non-sporulating strains demonstrated optimal growth at 30 °C, pH 7, and in the absence of NaCl (0% w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated close relationships with Roseateles saccharophilus DSM654T (98.7%) and Roseateles puraquae CCUG 52769T (98.96%), respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the isolates with the most closely related strains with publicly available whole genomes were 82.0-85.5% and 25.0-30.2%, respectively. The predominant fatty acids identified were C16:0 and summed feature 3 (composed of C16:1 ω6c and/or C16:1 ω7c), with minor amounts of C12:0, C10:0 3-OH and summed feature 8 (composed of C18:1 ω7c and/or C18:1 ω6c; 26.4%). Ubiquinone 8 was the main quinone, and the polar lipid profile included phosphatidylethanolamine, phosphatidylglycerol, two unidentified phosphoaminolipids, one unidentified phosphoglycolipid, three unidentified phospholipids, and one unidentified aminolipid. The draft genome sequences revealed genomic DNA G + C contents of 70.1% for P7T and 68.2% for P8T. Comprehensive physiological, biochemical, and 16S rRNA sequence analyses confirm these isolates as novel species of the genus Roseateles, proposed to be named Roseateles caseinilyticus sp. nov for strain P7T (= KACC 22504T = TBRC 15694T) and Roseateles cellulosilyticus sp. nov. for strain P8T (= KACC 22505T = TBRC 15695T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Oryza , Filogenia , ARN Ribosómico 16S , Microbiología del Suelo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , República de Corea , Methylobacteriaceae/genética , Methylobacteriaceae/clasificación , Methylobacteriaceae/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfolípidos/análisis , Análisis de Secuencia de ADN
7.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824148

RESUMEN

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Glycine max , Nitrógeno , Oryza , Fósforo , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Fósforo/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glycine max/genética , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Nutrientes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Calor , Transportadores de Nitrato , Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Anión/genética , Temperatura , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico
8.
Dev Cell ; 59(11): 1361-1362, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38834032

RESUMEN

The ability to germinate, develop, and thrive underwater is key to efficient rice cultivation. In this issue of Developmental Cell, Wang et al. (2024) illuminate a hormone synthesis and inactivation cascade that promotes germination of submerged rice seeds and may allow improved germination in the field.


Asunto(s)
Germinación , Oryza , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Germinación/fisiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Agua/metabolismo
9.
Nat Commun ; 15(1): 4881, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849358

RESUMEN

N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3' UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.


Asunto(s)
Adenosina , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Oryza , ARN Mensajero , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Adenosina/análogos & derivados , Adenosina/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transcriptoma/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Regiones no Traducidas 3'/genética , Perfilación de la Expresión Génica/métodos , Estabilidad del ARN/genética , Exones/genética , Codón de Terminación/genética
10.
Environ Geochem Health ; 46(7): 222, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849580

RESUMEN

In previous studies, iron-based nanomaterials, especially biochar (BC)-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC), have been widely used for the remediation of soil contaminants. However, its potential risks to the soil ecological environment are still unknown. This study aims to explore the effects of 3% added S-nZVI/BC on soil environment and microorganisms during the remediation of Cd contaminated yellow-brown soil of paddy field. The results showed that after 49 d of incubation, S-nZVI/BC significantly reduced physiologically based extraction test (PBET) extractable Cd concentration (P < 0.05), and increased the immobilization efficiency of Cd by 16.51% and 17.43% compared with S-nZVI and nZVI/BC alone, respectively. Meanwhile, the application of S-nZVI/BC significantly increased soil urease and sucrase activities by 0.153 and 0.446 times, respectively (P < 0.05), improving the soil environmental quality and promoting the soil nitrogen cycle and carbon cycle. The results from the analysis of the 16S rRNA genes indicated that S-nZVI/BC treatment had a minimal effect on the bacterial community and did not appreciably alter the species of the original dominant bacterial phylum. Importantly, compared to other iron-based nanomaterials, incorporating S-nZVI/BC significantly increased the soil organic carbon (OC) content and decreased the excessive release of iron (P < 0.05). This study also found a significant negative correlation between OC content and Fe(II) content (P < 0.05). It might originate from the reducing effect of Fe-reducing bacteria, which consumed OC to promote the reduction of Fe(III). Accompanying this process, the redistribution of Cd and Fe mineral phases in the soil as well as the generation of secondary Fe(II) minerals facilitated Cd immobilization. Overall, S-nZVI/BC could effectively reduce the bioavailability of Cd, increase soil nutrients and enzyme activities, with less toxic impacts on the soil microorganisms.


Asunto(s)
Cadmio , Carbón Orgánico , Hierro , Microbiología del Suelo , Contaminantes del Suelo , Carbón Orgánico/química , Cadmio/química , Hierro/química , Oryza , Suelo/química , Bacterias/metabolismo , Restauración y Remediación Ambiental/métodos , ARN Ribosómico 16S , Biodegradación Ambiental
11.
J Water Health ; 22(5): 878-886, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38822466

RESUMEN

The health district of Sakassou is one of the 83 health districts in Côte d'Ivoire, located in a zone with very high malarial transmission rates, with an incidence rate of ≥40% Therefore, to guide vector control methods more effectively, it was crucial to have a good understanding of the vectors in the area. This study aimed to determine the level of malarial transmission during the dry season in Sakassou, Côte d'Ivoire. Female Anopheles mosquitoes were sampled using human landing catches (HLCs) and pyrethrum spraying catches (PSCs). The larvae were collected using the 'dipping' method. A total of 10,875 adult female mosquitoes of Anopheles gambiae were collected. The PCR analysis revealed that all individuals were Anopheles coluzzii. The geographical distribution of potential breeding sites of Anopheles showed the presence of An. coluzzii in all the wetlands of the city of Sakassou. During the dry season, the human-biting rate of An. coluzzii was 139.1 bites/person/night. An exophagic trend was displayed by an adult female of An. coluzzii. The entomological inoculation rate during the dry season was 1.49 infectious bites/person/night. This study demonstrated that An. coluzzii was the main vector of malarial transmission in Sakassou, and the intensity of transmission remains high throughout the dry season.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Estaciones del Año , Animales , Anopheles/fisiología , Anopheles/parasitología , Côte d'Ivoire/epidemiología , Mosquitos Vectores/fisiología , Mosquitos Vectores/parasitología , Malaria/transmisión , Malaria/epidemiología , Femenino , Humanos , Oryza/parasitología , Riego Agrícola , Control de Mosquitos
12.
Food Res Int ; 188: 114399, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823854

RESUMEN

In the context of replacing animal proteins in food matrices, rice proteins (RP) become promised because they come from an abundant plant source, are hypoallergenic, and have high digestibility and nutritional value. However, commercial protein isolates obtained by spray drying have low solubility and poor functionality, especially in their isoelectric point. One way to modify these properties is through interaction with polysaccharides, such as gum arabic (GA). Therefore, this work aims to evaluate the effects of pH and GA concentration on the interaction and emulsifying activity of RP:GA coacervates. First, the effects of pH (2.5 to 7.0) and GA concentrations (0.2 to 1.0 wt%, giving rise to RP:GA mass ratios of 1:0.2 to 1:1.0) in RP:GA blends were evaluated. The results demonstrated that biopolymers present opposite net charges at pH between 2.5 and 4.0. At pH 3.0, insoluble coacervates with complete charge neutralization were formed by electrostatic interactions, while at pH 5.0 it was observed that the presence of GA prevented the RP massive aggregation. Second, selected blends with 0.4 or 1.0 wt% of GA (RP:GA mass ratios of 1:0.4 or 1:1.0) at pH 3.0 or 5.0 were tested for their ability to stabilize oil-in-water emulsions. The emulsions were characterized for 21 days. It was observed that the GA increased the stability of RP emulsions, regardless of the pH and polysaccharide concentration. Taken together, our results show that it is possible to combine RP and GA to improve the emulsifying properties of these plant proteins at pH conditions close to their isoelectric point, expanding the possibility of implementation in food systems.


Asunto(s)
Emulsiones , Goma Arábiga , Oryza , Proteínas de Plantas , Polisacáridos , Agua , Goma Arábiga/química , Emulsiones/química , Concentración de Iones de Hidrógeno , Proteínas de Plantas/química , Oryza/química , Polisacáridos/química , Agua/química , Emulsionantes/química , Solubilidad
13.
Food Res Int ; 188: 114441, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823858

RESUMEN

Rice (Oryza sativa L.) is one of the most consumed cereals that along with several important nutritional constituents typically provide more than 21% of the caloric requirements of human beings. Aflatoxins (AFs) are toxic secondary metabolites of several Aspergillus species that are prevalent in cereals, including rice. This review provides a comprehensive overview on production factors, prevalence, regulations, detection methods, and decontamination strategies for AFs in the rice production chain. The prevalence of AFs in rice is more prominent in African and Asian than in European countries. Developed nations have more stringent regulations for AFs in rice than in the developing world. The contamination level of AFs in the rice varied at different stages of rice production chain and is affected by production practices, environmental conditions comprising temperature, humidity, moisture, and water activity as well as milling operations such as de-husking, parboiling, and polishing. A range of methods including chromatographic techniques, immunochemical methods, and spectrophotometric methods have been developed, and used for monitoring AFs in rice. Chromatographic methods are the most used methods of AFs detection followed by immunochemical techniques. AFs decontamination strategies adopted worldwide involve various physical, chemical, and biological strategies, and even using plant materials. In conclusion, adopting good agricultural practices, implementing efficient AFs detection methods, and developing innovative aflatoxin decontamination strategies are imperative to ensure the safety and quality of rice for consumers.


Asunto(s)
Aflatoxinas , Descontaminación , Contaminación de Alimentos , Oryza , Oryza/química , Oryza/microbiología , Aflatoxinas/análisis , Contaminación de Alimentos/análisis , Descontaminación/métodos , Humanos , Aspergillus/metabolismo , Manipulación de Alimentos/métodos , Microbiología de Alimentos
14.
Carbohydr Polym ; 339: 122264, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823928

RESUMEN

Normal rice starch consists of amylopectin and amylose, whose relative amounts and chain-length distributions (CLDs) are major determinants of the digestibility and rheology of cooked rice, and are related to metabolic health and consumer preference. Here, the mechanism of how molecular structural features of pure amylopectin (waxy) starches affect starch properties was explored. Following debranching, chain-length distributions of seven waxy varieties were measured using size-exclusion chromatography, and parameterized using biosynthesis-based models, which involve breaking up the chain-length distribution into contributions from five enzyme sets covering overlapping ranges of chain length; structure-property correlations involving the fifth set were found to be statistically significant. Digestibility was measured in vitro, and parameters for the slower and longer digestion phase quantified using non-linear least-squares fitting. The coefficient for the significant correlation involving amylopectin fine structure for the fifth set was -0.903, while the amounts of amylopectin short and long chains were found to dominate breakdown viscosity (correlation coefficients 0.801 and - 0.911, respectively). This provides a methodology for finding or developing healthier starch in terms of lower digestion rate, while also having acceptable palatability. As rice breeders can to some extent control CLDs, this can help the development of waxy rices with improved properties.


Asunto(s)
Amilopectina , Amilosa , Oryza , Oryza/química , Amilopectina/química , Viscosidad , Amilosa/química , Amilosa/análisis , Almidón/química , Digestión , Reología
15.
Physiol Plant ; 176(3): e14369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828612

RESUMEN

High temperature (HT) affects the production of chlorophyll (Chl) pigment and inhibits cellular processes that impair photosynthesis, and growth and development in plants. However, the molecular mechanisms underlying heat stress in rice are not fully understood yet. In this study, we identified two mutants varying in leaf color from the ethylmethanesulfonate mutant library of indica rice cv. Zhongjiazao-17, which showed pale-green leaf color and variegated leaf phenotype under HT conditions. Mut-map revealed that both mutants were allelic, and their phenotype was controlled by a single recessive gene PALE GREEN LEAF 10 (PGL10) that encodes NADPH:protochlorophyllide oxidoreductase B, which is required for the reduction of protochlorophyllide into chlorophyllide in light-dependent tetrapyrrole biosynthetic pathway-based Chl synthesis. Overexpression-based complementation and CRISPR/Cas9-based knockout analyses confirmed the results of Mut-map. Moreover, qRT-PCR-based expression analysis of PGL10 showed that it expresses in almost all plant parts with the lowest expression in root, followed by seed, third leaf, and then other green tissues in both mutants, pgl10a and pgl10b. Its protein localizes in chloroplasts, and the first 17 amino acids from N-terminus are responsible for signals in chloroplasts. Moreover, transcriptome analysis performed under HT conditions revealed that the genes involved in the Chl biosynthesis and degradation, photosynthesis, and reactive oxygen species detoxification were differentially expressed in mutants compared to WT. Thus, these results indicate that PGL10 is required for maintaining chloroplast function and plays an important role in rice adaptation to HT stress conditions by controlling photosynthetic activity.


Asunto(s)
Oryza , Fotosíntesis , Proteínas de Plantas , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Cloroplastos/metabolismo , Calor , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Clorofila/metabolismo , Mutación , Respuesta al Choque Térmico/genética , Mutación con Pérdida de Función , Fenotipo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH
16.
Sci Rep ; 14(1): 12626, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824223

RESUMEN

This study aims to develop predictive models for rice yield by applying multivariate techniques. It utilizes stepwise multiple regression, discriminant function analysis and logistic regression techniques to forecast crop yield in specific districts of Haryana. The time series data on rice crop have been divided into two and three classes based on crop yield. The yearly time series data of rice yield from 1980-81 to 2020-21 have been taken from various issues of Statistical Abstracts of Haryana. The study also utilized fortnightly meteorological data sourced from the Agrometeorology Department of CCS HAU, India. For comparing various predictive models' performance, evaluation of measures like Root Mean Square Error, Predicted Error Sum of Squares, Mean Absolute Deviation and Mean Absolute Percentage Error have been used. Results of the study indicated that discriminant function analysis emerged as the most effective to predict the rice yield accurately as compared to logistic regression. Importantly, the research highlighted that the optimum time for forecasting the rice yield is 1 month prior to the crops harvesting, offering valuable insight for agricultural planning and decision-making. This approach demonstrates the fusion of weather data and advanced statistical techniques, showcasing the potential for more precise and informed agricultural practices.


Asunto(s)
Oryza , Oryza/crecimiento & desarrollo , Análisis Multivariante , Modelos Logísticos , India , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Tiempo (Meteorología) , Conceptos Meteorológicos
17.
Theor Appl Genet ; 137(7): 154, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856926

RESUMEN

KEY MESSAGE: Our findings highlight a valuable breeding resource, demonstrating the potential to concurrently enhance grain shape, thermotolerance, and alkaline tolerance by manipulating Gγ protein in rice. Temperate Geng/Japonica (GJ) rice yields have improved significantly, bolstering global food security. However, GJ rice breeding faces challenges, including enhancing grain quality, ensuring stable yields at warmer temperatures, and utilizing alkaline land. In this study, we employed CRISPR/Cas9 gene-editing technology to knock out the GS3 locus in seven elite GJ varieties with superior yield performance. Yield component measurements revealed that GS3 knockout mutants consistently enhanced grain length and reduced plant height in diverse genetic backgrounds. The impact of GS3 on the grain number per panicle and setting rate depended on the genetic background. GS3 knockout did not affect milling quality and minimally altered protein and amylose content but notably influenced chalkiness-related traits. GS3 knockout indiscriminately improved heat and alkali stress tolerance in the GJ varieties studied. Transcriptome analysis indicated differential gene expression between the GS3 mutants and their wild-type counterparts, enriched in biological processes related to photosynthesis, photosystem II stabilization, and pathways associated with photosynthesis and cutin, suberine, and wax biosynthesis. Our findings highlight GS3 as a breeding resource for concurrently improving grain shape, thermotolerance, and alkaline tolerance through Gγ protein manipulation in rice.


Asunto(s)
Grano Comestible , Oryza , Fitomejoramiento , Proteínas de Plantas , Termotolerancia , Oryza/genética , Oryza/fisiología , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Termotolerancia/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Edición Génica , Álcalis , Sistemas CRISPR-Cas , Plantas Modificadas Genéticamente/genética
18.
Sci Rep ; 14(1): 13088, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849431

RESUMEN

It is important to ensure the nutritional quality and safe production of rice. Here, plot experiments were used to analyze the effects of three soil amendments-10 t ha-1 of biochar (BC), 1.5 t ha-1 of lime (LM), and 2.25 t ha-1 of silicon-calcium fertilizer (SC)-on the soil characteristics, rice yield and quality of double-cropping rice grown in mildly cadmium-polluted paddy fields. Compared with the control treatment (CK), the BC and SC treatments significantly improved rice processing, appearance and nutritional quality, but reduced cooking quality. All three soil amendments significantly reduced cadmium (Cd) content in brown rice. Soil amendments could significantly increase soil pH and reduce soil available Cd content. The application of the BC and SC treatments increased the content of each nutrient index in the soil (SOM, NN, AP, AK). Correlation analysis showed that the improvement in rice processing, appearance, and nutritional quality was mainly affected by the comprehensive effects of soil SOM, NN, AP and AK; the hygiene quality was mainly affected by soil pH and available Cd. In terms of benefit analysis combined with cost, the SC treatment had the highest benefit effect. Taken together, in mildly cadmium-polluted paddy fields, the application of silicon-calcium fertilizer improved the soil quality, thereby increased the yield and quality of rice, and had the best effect on increasing income.


Asunto(s)
Cadmio , Calcio , Fertilizantes , Oryza , Silicio , Suelo , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Fertilizantes/análisis , Silicio/química , Suelo/química , Calcio/análisis , Calcio/metabolismo , Cadmio/análisis , Contaminantes del Suelo/análisis , Compuestos de Calcio/química , Carbón Orgánico/química , Concentración de Iones de Hidrógeno , Óxidos
19.
Sci Rep ; 14(1): 13137, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849505

RESUMEN

Acclimation to crop niches for thousands of years has made indigenous rice cultivars better suited for stress-prone environments. Still, their response to UV-B resiliency is unknown. 38 rice landraces were grown in cemented pots in a randomised block design with three replicates under open field conditions in Sambalpur University in the wet season of 2022. Half of the plants in each of the cultivars were administered UV-B radiation at the panicle emergence stage in an adjustable UV-B chamber permitting sunlight, and the effects of the stress on various morpho-physiological features, such as spikelet sterility, flag leaf photosynthetic and flavonoid pigment contents, and lipid peroxidation activities, were estimated for calibration of stress resistance. The experiment identified Swarnaprabha and Lalkain as the most sensitive and resilient to stress respectively, and the differential response between them was further revealed in the expression of genes related to UV-B sensitivity. Subject to the stress, Swarnaprabha exhibited symptoms of injuries, like leaf burns, and a higher loss of various photosynthetic parameters, such as pigment contents, SPAD and Fv/Fm, ETR and qP values, while NPQ increased only in Lalkain. Exposure to UV-B increased the total phenolic and flavonoid contents in Lalkain while depressing them in Swarnaprabha. Such an effect amounted to a higher release of fluorescent energy in the latter. The levels of expression of gene families controlling flavonoid activation and UV-B signal transduction, such as OsWRKY, OsUGT, OsRLCK, OsBZIP, OsGLP, and CPD photolyase were similar in both the cultivars in the control condition. However, exposure to UV-B stress overexpressed them in resilient cultivars only. The magnitude of expression of the genes and the impact of the stress on photosynthetic parameters, phenolic compounds and pubescent hair structure at the panicle emergence stage could be valid indicators among indigenous rice for UV-B tolerance.


Asunto(s)
Variación Genética , Oryza , Fotosíntesis , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Oryza/genética , Oryza/efectos de la radiación , Oryza/crecimiento & desarrollo , Fotosíntesis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Flavonoides/metabolismo , Estrés Fisiológico
20.
BMC Plant Biol ; 24(1): 519, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851682

RESUMEN

Rice seeds of different varieties exhibited distinct metabolic profiles in our study. We analyzed the metabolites in seeds of six rice varieties (CH, HM, NX, YX, HY, and MX) using non-targeted GC-MS. Our findings revealed that amino acids, sugars, and organic acids were predominant in all varieties, with significant differences observed in CH compared to the others. Specifically phenylalanine and glycine content differed notably in NX and YX, respectively. Additionally, 1,5-anhydroglucitol content in NX, and glutamate, aspartate, and lactulose in NX, YX, HM, HY, and MX were up-regulated. Due to the biological functions of these amino acids and sugars, these indicated that compared to CH, rice of NX were more conducive to metabolism of carbohydrate and fat, and healthy growth maintenance in the human body, but mightThese variations suggest that NX rice may be more beneficial for carbohydrate and fat metabolism and overall health maintenance compared to CH. However, it may not be suitable for diabetic patients. YX rice may not be an ideal glycine supplement, rice ofwhile HM, HY, and MX rice could serve as potential lactulose sources. Furthermore, NX and YX rice exhibited higher levels of main storage proteins compared to CH. This study offers valuable insights into the metabolic differences among various rice varieties.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Oryza , Semillas , Oryza/metabolismo , Semillas/metabolismo , Semillas/química , Metabolómica/métodos , Aminoácidos/metabolismo , Aminoácidos/análisis , Metaboloma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...