Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.335
Filtrar
1.
Sci Rep ; 14(1): 15027, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951138

RESUMEN

Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial-temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant's life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil-plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.


Asunto(s)
Nitrificación , Nitrógeno , Raíces de Plantas , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Microbiología del Suelo , Nitratos/metabolismo , Plantas/metabolismo , Compuestos de Amonio/metabolismo , Suelo/química , Rizosfera , Fertilizantes
2.
Methods Mol Biol ; 2827: 109-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985266

RESUMEN

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Técnicas de Cultivo de Tejidos/métodos , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Plantas/metabolismo , Plantas/efectos de los fármacos , Lactonas/farmacología , Lactonas/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Acetatos/farmacología , Acetatos/metabolismo
3.
Methods Mol Biol ; 2827: 303-322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985279

RESUMEN

For centuries plants have been intensively utilized as reliable sources of food, flavoring, and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to the climate change and agriculture. Plant biotechnology offers a sustainable approach for the bioproduction of specialized plant metabolites. The unique structural features of plant-derived specialized metabolites, such as their safety profile and multi-target spectrum, have led to the establishment of many plant-derived drugs. However, there are still many challenges to overcome regarding the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant specialized metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this book chapter, we attempted to focus on the advantages of plant in vitro systems and in particular plant cell suspensions for their cultivation as a source of plant-derived specialized metabolites. A state-of-the-art technological platform for plant cell suspension cultivation from callus induction to lab-scale cultivation, extraction, and purification is presented. Possibilities for bioreactor cultivation of plant cell suspensions in benchtop and large-scale volumes are highlighted, including several examples and patents for industrial production of specialized metabolites.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Células Vegetales , Técnicas de Cultivo de Célula/métodos , Células Vegetales/metabolismo , Plantas/metabolismo , Biotecnología/métodos
4.
Mol Biol Rep ; 51(1): 810, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001942

RESUMEN

Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.


Asunto(s)
Carotenoides , Regulación de la Expresión Génica de las Plantas , Plastidios , Plastidios/metabolismo , Carotenoides/metabolismo , Plantas/metabolismo , Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desarrollo de la Planta/genética , Diferenciación Celular
5.
Methods Mol Biol ; 2827: 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985259

RESUMEN

Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.


Asunto(s)
Células Vegetales , Técnicas de Cultivo de Tejidos , Técnicas de Cultivo de Célula/métodos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Fitomejoramiento/métodos , Células Vegetales/metabolismo , Desarrollo de la Planta/genética , Plantas/genética , Plantas/metabolismo , Técnicas de Cultivo de Tejidos/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38996445

RESUMEN

Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level. However, the application of single-cell technologies to plants is more limited due to the challenges posed by cell structure. This review outlines the advancements in single-cell omics technologies, their implications in plant systems, future research applications, and the challenges of single-cell omics in plant systems.


Asunto(s)
Genómica , Metabolómica , Plantas , Proteómica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Plantas/genética , Plantas/metabolismo , Metabolómica/métodos , Proteómica/métodos , Genómica/métodos , Epigenómica/métodos , Transcriptoma/genética
7.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000260

RESUMEN

Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.


Asunto(s)
Bacterias , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares , Plantas , Vesículas Extracelulares/metabolismo , Bacterias/metabolismo , Humanos , Plantas/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Levaduras/metabolismo , Portadores de Fármacos/química
8.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000361

RESUMEN

Plant lipids are essential cell constituents with many structural, storage, signaling, and defensive functions. During plant-pathogen interactions, lipids play parts in both the preexisting passive defense mechanisms and the pathogen-induced immune responses at the local and systemic levels. They interact with various components of the plant immune network and can modulate plant defense both positively and negatively. Under biotic stress, lipid signaling is mostly associated with oxygenated natural products derived from unsaturated fatty acids, known as oxylipins; among these, jasmonic acid has been of great interest as a specific mediator of plant defense against necrotrophic pathogens. Although numerous studies have documented the contribution of oxylipins and other lipid-derived species in plant immunity, their specific roles in plant-pathogen interactions and their involvement in the signaling network require further elucidation. This review presents the most relevant and recent studies on lipids and lipid-derived signaling molecules involved in plant-pathogen interactions, with the aim of providing a deeper insight into the mechanisms underpinning lipid-mediated regulation of the plant immune system.


Asunto(s)
Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Plantas , Transducción de Señal , Plantas/metabolismo , Plantas/inmunología , Plantas/microbiología , Oxilipinas/metabolismo , Inmunidad de la Planta , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Lípidos , Ciclopentanos/metabolismo
9.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000414

RESUMEN

Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Metabolismo Secundario , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Plantas/metabolismo , Plantas/genética , Terpenos/metabolismo , Fotoperiodo , Estrés Fisiológico
10.
ACS Appl Bio Mater ; 7(7): 4690-4701, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38952293

RESUMEN

Dopamine, alongside norepinephrine and epinephrine, belongs to the catecholamine group, widely distributed across both plant and animal kingdoms. In mammals, these compounds serve as neurotransmitters with roles in glycogen mobilization. In plants, their synthesis is modulated in response to stress conditions aiding plant survival by emitting these chemicals, especially dopamine that relieves their resilience against stress caused by both abiotic and biotic factors. In present studies, there is a lack of robust methods to monitor the operations of dopamine under stress conditions or any adverse situations across the plant's developmental stages from cell to cell. In our study, we have introduced a groundbreaking approach to track dopamine generation and activity in various metabolic pathways by using the simple nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs). These CQDs exhibit dominant biocompatibility, negligible toxicity, and environmentally friendly characteristics using a quenching process for fluorometric dopamine detection. This innovative nanomarker can detect even small amounts of dopamine within plant cells, providing insights into plant responses to strain and anxiety. Confocal microscopy has been used to corroborate this occurrence and to provide visual proof of the process of binding dopamine with these N, S-CQDs inside the cells.


Asunto(s)
Dopamina , Puntos Cuánticos , Dopamina/metabolismo , Puntos Cuánticos/química , Tamaño de la Partícula , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Plantas/metabolismo , Plantas/química , Carbono/química
11.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990962

RESUMEN

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Asunto(s)
Biodiversidad , Carbono , Gases de Efecto Invernadero , Plantas , Suelo , Suelo/química , Gases de Efecto Invernadero/análisis , Carbono/metabolismo , Carbono/análisis , Plantas/metabolismo , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Ecosistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Metano/metabolismo , Efecto Invernadero
12.
Plant Cell Rep ; 43(8): 197, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014054

RESUMEN

Reactive oxygen species (ROS) play a complex role in interactions between plant viruses and their host plants. They can both help the plant defend against viral infection and support viral infection and spread. This review explores the various roles of ROS in plant-virus interactions, focusing on their involvement in symptom development and the activation of plant defense mechanisms. The article discusses how ROS can directly inhibit viral infection, as well as how they can regulate antiviral mechanisms through various pathways involving miRNAs, virus-derived small interfering RNAs, viral proteins, and host proteins. Additionally, it examines how ROS can enhance plant resistance by interacting with hormonal pathways and external substances. The review also considers how ROS might promote viral infection and transmission, emphasizing their intricate role in plant-virus dynamics. These insights offer valuable guidance for future research, such as exploring the manipulation of ROS-related gene expression through genetic engineering, developing biopesticides, and adjusting environmental conditions to improve plant resistance to viruses. This framework can advance research in plant disease resistance, agricultural practices, and disease control.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Virus de Plantas , Plantas , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Virus de Plantas/fisiología , Virus de Plantas/patogenicidad , Enfermedades de las Plantas/virología , Resistencia a la Enfermedad/genética , Plantas/virología , Plantas/metabolismo , Interacciones Huésped-Patógeno , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39013383

RESUMEN

Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitation has resulted into underdevelopment of plant regulatory research and rampant use of Arabidopsis-like model species, generating misleading results. Here, we report a revolutionary transformers-based deep-learning approach, PTFSpot, which learns from TF structures and their binding regions' co-variability to bring a universal TF-DNA interaction model to detect TFBR with complete freedom from TF and species-specific models' limitations. During a series of extensive benchmarking studies over multiple experimentally validated data, it not only outperformed the existing software by >30% lead but also delivered consistently >90% accuracy even for those species and TF families that were never encountered during the model-building process. PTFSpot makes it possible now to accurately annotate TFBRs across any plant genome even in the total lack of any TF information, completely free from the bottlenecks of species and TF-specific models.


Asunto(s)
Aprendizaje Profundo , Factores de Transcripción , Factores de Transcripción/metabolismo , Sitios de Unión , Programas Informáticos , Arabidopsis/metabolismo , Arabidopsis/genética , Genoma de Planta , Biología Computacional/métodos , Plantas/metabolismo , Plantas/genética
14.
J Exp Bot ; 75(14): 4167-4170, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039837

RESUMEN

Plants face the most diverse climatic conditions throughout their life cycle. As sessile organisms, they are remarkably resilient to adverse environments, which have been exacerbated in the current context of global change. The way in which plants sense and respond to various types of abiotic stresses varies depending on the severity of the stress and the developmental stage of the plant, affecting both vegetative and reproductive aspects. Understanding how plants respond and adapt to a changing environment is crucial for predicting and mitigating the impacts of climate change on ecosystems and ensuring the future survival and reproduction of plant species.


Asunto(s)
Cambio Climático , Desarrollo de la Planta , Adaptación Fisiológica , Ecosistema , Ambiente , Desarrollo de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Reproducción , Estrés Fisiológico
15.
PeerJ ; 12: e17735, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035155

RESUMEN

Insect-plant interactions are shaped by the exchange of chemical cues called semiochemicals, which play a vital role in communication between organisms. Plants release a variety of volatile organic compounds in response to environmental cues, such as herbivore attacks. These compounds play a crucial role in mediating the interactions between plants and insects. This review provides an in-depth analysis of plant semiochemicals, encompassing their classification, current understanding of extraction, identification, and characterization using various analytical techniques, including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. The article also delves into the manner in which insects perceive and respond to plant semiochemicals, as well as the impact of environmental factors on plant odor emission and insect orientation. Furthermore, it explores the underlying mechanisms by which insects perceive and interpret these chemical cues, and how this impacts their behavioral responses, including feeding habits, oviposition patterns, and mating behaviors. Additionally, the potential applications of plant semiochemicals in integrated pest management strategies are explored. This review provides insight into the intricate relationships between plants and insects mediated by semiochemicals, highlighting the significance of continued research in this field to better understand and leverage these interactions for effective pest control.


Asunto(s)
Insectos , Feromonas , Plantas , Compuestos Orgánicos Volátiles , Animales , Insectos/fisiología , Plantas/química , Plantas/metabolismo , Feromonas/metabolismo , Feromonas/química , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología
16.
Annu Rev Plant Biol ; 75(1): 239-263, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038247

RESUMEN

Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.


Asunto(s)
Lignina , Plantas , Lignina/metabolismo , Lignina/química , Plantas/metabolismo , Biocombustibles , Biomasa
17.
Annu Rev Plant Biol ; 75(1): 153-183, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038250

RESUMEN

Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.


Asunto(s)
Fitocromo , Fitocromo/química , Fitocromo/metabolismo , Fitocromo/fisiología , Plantas/metabolismo , Plantas/química , Luz
20.
Physiol Plant ; 176(4): e14419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973451

RESUMEN

Abiotic stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. Increasing studies reported that strigolactones (SL) are plant hormones that enhance plant stress resistance by regulating plant physiological processes and gene expressions. In this review, we introduce the response and regulatory role of SL in salt, drought, light, heat, cold and cadmium stresses in plants. This review also discusses how SL alleviate the damage of abiotic stress in plants, furthermore, introducing the mechanisms of SL enhancing plant stress resistance at the genetic level. Under abiotic stress, the exogenous SL analog GR24 can induce the biosynthesis of SL in plants, and endogenous SL can alleviate the damage caused by abiotic stress. SL enhanced the stress resistance of plants by protecting photosynthesis, enhancing the antioxidant capacity of plants and promoting the symbiosis between plants and arbuscular mycorrhiza (AM). SL interact with abscisic acid (ABA), salicylic acid (SA), auxin, cytokinin (CK), jasmonic acid (JA), hydrogen peroxide (H2O2) and other signal molecules to jointly regulate plant stress resistance. Lastly, both the importance of SL and their challenges for future work are outlined in order to further elucidate the specific mechanisms underlying the roles of SL in plant responses to abiotic stress.


Asunto(s)
Lactonas , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA