Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.116
Filtrar
1.
Molecules ; 26(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806967

RESUMEN

Bats are unique in their potential to serve as reservoir hosts for intracellular pathogens. Recently, the impact of COVID-19 has relegated bats from biomedical darkness to the frontline of public health as bats are the natural reservoir of many viruses, including SARS-Cov-2. Many bat genomes have been sequenced recently, and sequences coding for antimicrobial peptides are available in the public databases. Here we provide a structural analysis of genome-predicted bat cathelicidins as components of their innate immunity. A total of 32 unique protein sequences were retrieved from the NCBI database. Interestingly, some bat species contained more than one cathelicidin. We examined the conserved cysteines within the cathelin-like domain and the peptide portion of each sequence and revealed phylogenetic relationships and structural dissimilarities. The antibacterial, antifungal, and antiviral activity of peptides was examined using bioinformatic tools. The peptides were modeled and subjected to docking analysis with the region binding domain (RBD) region of the SARS-CoV-2 Spike protein. The appearance of multiple forms of cathelicidins verifies the complex microbial challenges encountered by these species. Learning more about antiviral defenses of bats and how they drive virus evolution will help scientists to investigate the function of antimicrobial peptides in these species.


Asunto(s)
Catelicidinas/química , Catelicidinas/farmacología , Quirópteros/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/química , Antivirales/farmacología , Sitios de Unión , Catelicidinas/genética , Catelicidinas/metabolismo , Biología Computacional/métodos , Simulación por Computador , Genoma , Simulación del Acoplamiento Molecular , Filogenia
3.
Medicina (Kaunas) ; 57(2)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33673004

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic and is posing a serious challenge to mankind. As per the current scenario, there is an urgent need for antiviral that could act as a protective and therapeutic against SARS-CoV-2. Previous studies have shown that SARS-CoV-2 is much similar to the SARS-CoV bat that occurred in 2002-03. Since it is a zoonotic virus, the exact source is still unknown, but it is believed bats may be the primary reservoir of SARS-CoV-2 through which it has been transferred to humans. In this review, we have tried to summarize some of the approaches that could be effective against SARS-CoV-2. Firstly, plants or plant-based products have been effective against different viral diseases, and secondly, plants or plant-based natural products have the minimum adverse effect. We have also highlighted a few vitamins and minerals that could be beneficial against SARS-CoV-2.


Asunto(s)
Antivirales/uso terapéutico , Productos Biológicos/uso terapéutico , Nutrientes/uso terapéutico , Virosis/tratamiento farmacológico , Animales , Quirópteros/virología , Humanos
4.
Nat Commun ; 12(1): 1607, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707453

RESUMEN

In recognizing the host cellular receptor and mediating fusion of virus and cell membranes, the spike (S) glycoprotein of coronaviruses is the most critical viral protein for cross-species transmission and infection. Here we determined the cryo-EM structures of the spikes from bat (RaTG13) and pangolin (PCoV_GX) coronaviruses, which are closely related to SARS-CoV-2. All three receptor-binding domains (RBDs) of these two spike trimers are in the "down" conformation, indicating they are more prone to adopt the receptor-binding inactive state. However, we found that the PCoV_GX, but not the RaTG13, spike is comparable to the SARS-CoV-2 spike in binding the human ACE2 receptor and supporting pseudovirus cell entry. We further identified critical residues in the RBD underlying different activities of the RaTG13 and PCoV_GX/SARS-CoV-2 spikes. These results collectively indicate that tight RBD-ACE2 binding and efficient RBD conformational sampling are required for the evolution of SARS-CoV-2 to gain highly efficient infection.


Asunto(s)
/virología , Quirópteros/virología , Coronavirus/química , Coronavirus/genética , /química , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Animales , /transmisión , Microscopía por Crioelectrón , Evolución Molecular , Interacciones Microbiota-Huesped , Humanos , Modelos Moleculares , Pandemias , Dominios Proteicos , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/ultraestructura
5.
J Parasitol ; 107(1): 125-128, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33647984

RESUMEN

The chigger, Euschoengastia pipistrelli Brennan, is a trombiculid mite that infests a variety of vespertilionid bats in North America. It has been reported from at least 9 species of bats from 18 U.S. states. However, nothing is available on the actual in situ infestation and ultrastructure of this chigger. Here we document some stereoscopic photographs of the infestation as well as a scanning electron micrograph of the mite from a common bat species. We also provide a summation of host and state records for this chigger.


Asunto(s)
Quirópteros/parasitología , Trombiculiasis/veterinaria , Trombiculidae/ultraestructura , Animales , Microscopía Electrónica de Rastreo/veterinaria , Trombiculiasis/parasitología , Estados Unidos
6.
PLoS Biol ; 19(3): e3001115, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33711012

RESUMEN

Virus host shifts are generally associated with novel adaptations to exploit the cells of the new host species optimally. Surprisingly, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has apparently required little to no significant adaptation to humans since the start of the Coronavirus Disease 2019 (COVID-19) pandemic and to October 2020. Here we assess the types of natural selection taking place in Sarbecoviruses in horseshoe bats versus the early SARS-CoV-2 evolution in humans. While there is moderate evidence of diversifying positive selection in SARS-CoV-2 in humans, it is limited to the early phase of the pandemic, and purifying selection is much weaker in SARS-CoV-2 than in related bat Sarbecoviruses. In contrast, our analysis detects evidence for significant positive episodic diversifying selection acting at the base of the bat virus lineage SARS-CoV-2 emerged from, accompanied by an adaptive depletion in CpG composition presumed to be linked to the action of antiviral mechanisms in these ancestral bat hosts. The closest bat virus to SARS-CoV-2, RmYN02 (sharing an ancestor about 1976), is a recombinant with a structure that includes differential CpG content in Spike; clear evidence of coinfection and evolution in bats without involvement of other species. While an undiscovered "facilitating" intermediate species cannot be discounted, collectively, our results support the progenitor of SARS-CoV-2 being capable of efficient human-human transmission as a consequence of its adaptive evolutionary history in bats, not humans, which created a relatively generalist virus.


Asunto(s)
/virología , Quirópteros/virología , /virología , Animales , /transmisión , Evolución Molecular , Genoma Viral , Especificidad del Huésped , Humanos , Pandemias , Filogenia , Receptores Virales/genética , Selección Genética , /transmisión
7.
Nat Commun ; 12(1): 1615, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712580

RESUMEN

Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.


Asunto(s)
Quirópteros/genética , Metilación de ADN , Longevidad/genética , Envejecimiento/genética , Animales , Carcinogénesis/genética , Cromatina , Epigénesis Genética , Técnicas Genéticas , Histonas , Inmunidad Innata/genética , Filogenia
8.
Carbohydr Polym ; 260: 117797, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712145

RESUMEN

Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has resulted in a pandemic and continues to spread at an unprecedented rate around the world. Although a vaccine has recently been approved, there are currently few effective therapeutics to fight its associated disease in humans, COVID-19. SARS-CoV-2 and the related severe acute respiratory syndrome (SARS-CoV-1), and Middle East respiratory syndrome (MERS-CoV) result from zoonotic respiratory viruses that have bats as the primary host and an as yet unknown secondary host. While each of these viruses has different protein-based cell-surface receptors, each rely on the glycosaminoglycan, heparan sulfate as a co-receptor. In this study we compare, for the first time, differences and similarities in the structure of heparan sulfate in human and bat lungs. Furthermore, we show that the spike glycoprotein of COVID-19 binds 3.5 times stronger to human lung heparan sulfate than bat lung heparan sulfate.


Asunto(s)
Heparitina Sulfato/metabolismo , Pulmón/química , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Quirópteros , Femenino , Heparitina Sulfato/química , Heparitina Sulfato/aislamiento & purificación , Humanos , Masculino , Estructura Molecular , Peso Molecular , Unión Proteica , Receptores Virales/química , Receptores Virales/aislamiento & purificación
9.
BMC Microbiol ; 21(1): 89, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757449

RESUMEN

BACKGROUND: When a virus that has grown in a nonhuman host starts an epidemic in the human population, human cells may not provide growth conditions ideal for the virus. Therefore, the invasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is usually prevalent in the bat population, into the human population is thought to have necessitated changes in the viral genome for efficient growth in the new environment. In the present study, to understand host-dependent changes in coronavirus genomes, we focused on the mono- and oligonucleotide compositions of SARS-CoV-2 genomes and investigated how these compositions changed time-dependently in the human cellular environment. We also compared the oligonucleotide compositions of SARS-CoV-2 and other coronaviruses prevalent in humans or bats to investigate the causes of changes in the host environment. RESULTS: Time-series analyses of changes in the nucleotide compositions of SARS-CoV-2 genomes revealed a group of mono- and oligonucleotides whose compositions changed in a common direction for all clades, even though viruses belonging to different clades should evolve independently. Interestingly, the compositions of these oligonucleotides changed towards those of coronaviruses that have been prevalent in humans for a long period and away from those of bat coronaviruses. CONCLUSIONS: Clade-independent, time-dependent changes are thought to have biological significance and should relate to viral adaptation to a new host environment, providing important clues for understanding viral host adaptation mechanisms.


Asunto(s)
Composición de Base , Evolución Molecular , Genoma Viral , /genética , Animales , Quirópteros/virología , Humanos , Oligonucleótidos
10.
Viruses ; 13(2)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572857

RESUMEN

Three major outbreaks of the coronavirus, a zoonotic virus known to cause respiratory disease, have been reported since 2002, including SARS-CoV, MERS-CoV and the most recent 2019-nCoV, or more recently known as SARS-CoV-2. Bats are known to be the primary animal reservoir for coronaviruses. However, in the past few decades, the virus has been able to mutate and adapt to infect humans, resulting in an animal-to-human species barrier jump. The emergence of a novel coronavirus poses a serious global public health threat and possibly carries the potential of causing a major pandemic outbreak in the naïve human population. The recent outbreak of COVID-19, the disease caused by SARS-CoV-2, in Wuhan, Hubei Province, China has infected over 36.5 million individuals and claimed over one million lives worldwide, as of 8 October 2020. The novel virus is rapidly spreading across China and has been transmitted to 213 other countries/territories across the globe. Researchers have reported that the virus is constantly evolving and spreading through asymptomatic carriers, further suggesting a high global health threat. To this end, current up-to-date information on the coronavirus evolution and SARS-CoV-2 modes of transmission, detection techniques and current control and prevention strategies are summarized in this review.


Asunto(s)
/prevención & control , /aislamiento & purificación , Animales , /terapia , China/epidemiología , Quirópteros/virología , Salud Global , Humanos , Pandemias , Salud Pública , /transmisión , /virología
11.
Nat Commun ; 12(1): 972, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563978

RESUMEN

Among the many questions unanswered for the COVID-19 pandemic are the origin of SARS-CoV-2 and the potential role of intermediate animal host(s) in the early animal-to-human transmission. The discovery of RaTG13 bat coronavirus in China suggested a high probability of a bat origin. Here we report molecular and serological evidence of SARS-CoV-2 related coronaviruses (SC2r-CoVs) actively circulating in bats in Southeast Asia. Whole genome sequences were obtained from five independent bats (Rhinolophus acuminatus) in a Thai cave yielding a single isolate (named RacCS203) which is most related to the RmYN02 isolate found in Rhinolophus malayanus in Yunnan, China. SARS-CoV-2 neutralizing antibodies were also detected in bats of the same colony and in a pangolin at a wildlife checkpoint in Southern Thailand. Antisera raised against the receptor binding domain (RBD) of RmYN02 was able to cross-neutralize SARS-CoV-2 despite the fact that the RBD of RacCS203 or RmYN02 failed to bind ACE2. Although the origin of the virus remains unresolved, our study extended the geographic distribution of genetically diverse SC2r-CoVs from Japan and China to Thailand over a 4800-km range. Cross-border surveillance is urgently needed to find the immediate progenitor virus of SARS-CoV-2.


Asunto(s)
Quirópteros/virología , /fisiología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/sangre , Asia Sudoriental , Quirópteros/sangre , Geografía , Pruebas de Neutralización , Filogenia , Dominios Proteicos , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo
13.
Pathog Dis ; 79(1)2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-33537740

RESUMEN

A vast proportion of coronavirus disease 2019 (COVID-19) individuals remain asymptomatic and can shed severe acute respiratory syndrome (SARS-CoV) type 2 virus to transmit the infection, which also explains the exponential increase in the number of COVID-19 cases globally. Furthermore, the rate of recovery from clinical COVID-19 in certain pockets of the globe is surprisingly high. Based on published reports and available literature, here, we speculated a few immunovirological mechanisms as to why a vast majority of individuals remain asymptomatic similar to exotic animal (bats and pangolins) reservoirs that remain refractile to disease development despite carrying a huge load of diverse insidious viral species, and whether such evolutionary advantage would unveil therapeutic strategies against COVID-19 infection in humans. Understanding the unique mechanisms that exotic animal species employ to achieve viral control, as well as inflammatory regulation, appears to hold key clues to the development of therapeutic versatility against COVID-19.


Asunto(s)
Animales Exóticos/virología , /virología , Reservorios de Enfermedades/virología , Inmunidad Innata/inmunología , /inmunología , Animales , Infecciones Asintomáticas , Quirópteros/virología , Humanos , /virología
14.
J Vet Sci ; 22(1): e12, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33522164

RESUMEN

BACKGROUND: Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). OBJECTIVES: The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. METHODS: The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. RESULTS: Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%-67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. CONCLUSIONS: These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.


Asunto(s)
Quirópteros/virología , Coronavirus/genética , Virus del SRAS/genética , /genética , Animales , Genes Virales/genética , Genoma Viral/genética , Genómica , Humanos , Funciones de Verosimilitud , Filogenia , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo , República de Corea , Análisis de Secuencia de ADN , Homología de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Acoplamiento Viral
15.
BMC Infect Dis ; 21(1): 162, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563231

RESUMEN

BACKGROUND: In June 2019, Nipah virus (NiV) infection was detected in a 21-year-old male (index case) of Ernakulum, Kerala, India. This study was undertaken to determine if NiV was in circulation in Pteropus species (spp) in those areas where the index case had visit history in 1 month. METHODS: Specialized techniques were used to trap the Pteropus medius bats (random sampling) in the vicinity of the index case area. Throat and rectal swabs samples of 141 bats along with visceral organs of 92 bats were collected to detect the presence of NiV by real-time reverse transcriptase-polymerase chain reaction (qRTPCR). Serum samples of 52 bats were tested for anti-NiV Immunoglobulin (Ig) G antibodies by Enzyme-Linked Immunosorbent Assay (ELISA). The complete genome of NiV was sequenced by next-generation sequencing (NGS) from the tissues and swab samples of bats. RESULTS: One rectal swab sample and three bats visceral organs were found positive for the NiV. Interestingly, 20.68% (12/58) of Pteropus were positive for anti-NiV IgG antibodies. NiV sequences of 18,172; 17,200 and 15,100 nucleotide bps could be retrieved from three Pteropus bats. CONCLUSION: A distinct cluster of NiV sequences, with significant net-evolutionary nucleotide divergence, was obtained, suggesting the circulation of new genotype (I-India) in South India. NiV Positivity in Pteropus spp. of bats revealed that NiV is circulating in many districts of Kerala state, and active surveillance of NiV should be immediately set up to know the hotspot area for NiV infection.


Asunto(s)
Quirópteros/virología , Infecciones por Henipavirus/diagnóstico , Virus Nipah/genética , Animales , Anticuerpos Antivirales/sangre , Brotes de Enfermedades , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Infecciones por Henipavirus/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoglobulina G/sangre , India/epidemiología , Virus Nipah/clasificación , Virus Nipah/inmunología , Filogenia , ARN Viral/química , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Recto/virología
16.
Science ; 371(6531)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602827

RESUMEN

Genes with novel cellular functions may evolve through exon shuffling, which can assemble novel protein architectures. Here, we show that DNA transposons provide a recurrent supply of materials to assemble protein-coding genes through exon shuffling. We find that transposase domains have been captured-primarily via alternative splicing-to form fusion proteins at least 94 times independently over the course of ~350 million years of tetrapod evolution. We find an excess of transposase DNA binding domains fused to host regulatory domains, especially the Krüppel-associated box (KRAB) domain, and identify four independently evolved KRAB-transposase fusion proteins repressing gene expression in a sequence-specific fashion. The bat-specific KRABINER fusion protein binds its cognate transposons genome-wide and controls a network of genes and cis-regulatory elements. These results illustrate how a transcription factor and its binding sites can emerge.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Regulación de la Expresión Génica , Factores de Transcripción/genética , Transposasas/genética , Vertebrados/genética , Empalme Alternativo , Animales , Sitios de Unión , Quirópteros/genética , Redes Reguladoras de Genes , Dominios Proteicos , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Transposasas/química , Transposasas/metabolismo , Vertebrados/metabolismo
17.
J Wildl Dis ; 57(1): 238-241, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33635981

RESUMEN

The global SARS-CoV-2 pandemic and the role of bats in zoonotic spillover have renewed interest in the flight-as-fever hypothesis, which posits that high body temperatures experienced by bats during flight contribute to their high viral tolerance. We argue that flight-as-fever is unlikely to explain why bats harbor more viruses than other mammals on the basis of two lines of reasoning. First, flight temperatures reported in the literature overestimate true flight temperatures because of methodologic limitations. Second, body temperatures in bats are only high relative to humans, and not relative to many other mammals. We provide examples of mammals from diverse habitats to show that temperatures in excess of 40 C during activity are quite common in species with lower viral diversity than bats. We caution scientists against stating the flight-as-fever hypothesis as unquestioned truth, as has repeatedly occurred in the popular media in the wake of the SARS-CoV-2 pandemic.


Asunto(s)
Temperatura Corporal/fisiología , Quirópteros/fisiología , Quirópteros/virología , /fisiología , Animales , Portador Sano/veterinaria , Portador Sano/virología , Reservorios de Enfermedades/virología , Vuelo Animal/fisiología , Zoonosis
18.
Sci Total Environ ; 767: 145413, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33558040

RESUMEN

Bats are the likely zoonotic origin of several coronaviruses (CoVs) that infect humans, including SARS-CoV-1 and SARS-CoV-2, both of which have caused large-scale epidemics. The number of CoVs present in an area is strongly correlated with local bat species richness, which in turn is affected by climatic conditions that drive the geographical distributions of species. Here we show that the southern Chinese Yunnan province and neighbouring regions in Myanmar and Laos form a global hotspot of climate change-driven increase in bat richness. This region coincides with the likely spatial origin of bat-borne ancestors of SARS-CoV-1 and SARS-CoV-2. Accounting for an estimated increase in the order of 100 bat-borne CoVs across the region, climate change may have played a key role in the evolution or transmission of the two SARS CoVs.


Asunto(s)
Quirópteros , Animales , China/epidemiología , Cambio Climático , Evolución Molecular , Genoma Viral , Humanos , Laos , Mianmar , Filogenia
20.
Commun Biol ; 4(1): 225, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580175

RESUMEN

Serodiagnosis of SARS-CoV-2 infection is impeded by immunological cross-reactivity among the human coronaviruses (HCoVs): SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43, 229E, HKU1, and NL63. Here we report the identification of humoral immune responses to SARS-CoV-2 peptides that may enable discrimination between exposure to SARS-CoV-2 and other HCoVs. We used a high-density peptide microarray and plasma samples collected at two time points from 50 subjects with SARS-CoV-2 infection confirmed by qPCR, samples collected in 2004-2005 from 11 subjects with IgG antibodies to SARS-CoV-1, 11 subjects with IgG antibodies to other seasonal human coronaviruses (HCoV), and 10 healthy human subjects. Through statistical modeling with linear regression and multidimensional scaling we identified specific peptides that were reassembled to identify 29 linear SARS-CoV-2 epitopes that were immunoreactive with plasma from individuals who had asymptomatic, mild or severe SARS-CoV-2 infections. Larger studies will be required to determine whether these peptides may be useful in serodiagnostics.


Asunto(s)
/inmunología , Mapeo Peptídico , Péptidos/inmunología , /fisiología , Secuencia de Aminoácidos , Animales , Quirópteros , Epítopos/inmunología , Humanos , Inmunoglobulina G/metabolismo , Péptidos/química , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...