Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.312
Filtrar
1.
Nat Commun ; 11(1): 84, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31901081

RESUMEN

Areas of a junction between two types of epithelia are known to be cancer-prone in many organ systems. However, mechanisms for preferential malignant transformation at the junction areas remain insufficiently elucidated. Here we report that inactivation of tumor suppressor genes Trp53 and Rb1 in the gastric squamous-columnar junction (SCJ) epithelium results in preferential formation of metastatic poorly differentiated neoplasms, which are similar to human gastroesophageal carcinoma. Unlike transformation-resistant antral cells, SCJ cells contain a highly proliferative pool of immature Lgr5-CD44+ cells, which are prone to transformation in organoid assays, comprise early dysplastic lesions, and constitute up to 30% of all neoplastic cells. CD44 ligand osteopontin (OPN) is preferentially expressed in and promotes organoid formation ability and transformation of the SCJ glandular epithelium. OPN and CD44 overexpression correlate with the worst prognosis of human gastroesophageal carcinoma. Thus, detection and selective targeting of the active OPN-CD44 pathway may have direct clinical relevance.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Unión Esofagogástrica/metabolismo , Receptores de Hialuranos/metabolismo , Osteopontina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Gástricas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica , Estudios de Cohortes , Unión Esofagogástrica/patología , Femenino , Humanos , Receptores de Hialuranos/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Osteopontina/genética , Receptores Acoplados a Proteínas G/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Life Sci ; 243: 117294, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31927047

RESUMEN

Renal fibrosis is a common pathological manifestation of almost all forms of kidney disease irrespective of the etiological cause. Microvascular rarefaction represents itself as an important phenomenon associated with renal fibrosis and shows strong correlation with decline in renal functions. Lysyl oxidase (LOX) catalyzes crosslinking of extracellular matrix (ECM) proteins including collagens, plays an important role in stabilization of degradation resistant matrix. Since, there seems to be a causal link between deposition of excessive ECM and microvascular rarefaction, we investigated the effects of reduction in renal fibrosis on microvascular rarefaction in acute as well as end stage kidney. We used a well-established unilateral ureteral obstruction (UUO)-induced renal fibrosis model to produce renal fibrosis in animals. We treated animals with a LOX inhibitor, ß-aminopropionitrile (BAPN, 100 mg/kg, i.p.) and investigated effects on renal fibrosis and microvascular rarefaction. We observed that LOX inhibition was associated with reduction in collagen deposition in UUO-induced renal fibrosis animal model. Further, ECM normalization by LOX inhibition decreased the loss of peritubular capillaries (PTCs) in fibrotic kidney in acute study while the LOX inhibition failed to inhibit PTCs loss in end stage kidney. The results of present study suggested that inhibition of LOX reduces collagen deposition and renal fibrosis. Further, the reduction in fibrosis fails to protect from PTCs loss in chronic study suggesting the absence of strong link between reduction in fibrosis and improvement in PTCs in an end stage kidney.


Asunto(s)
Capilares/patología , Receptores de Hialuranos/metabolismo , Riñón/patología , Pericitos/patología , Proteína-Lisina 6-Oxidasa/antagonistas & inhibidores , Aminopropionitrilo/farmacología , Animales , Catálisis , Colágeno/metabolismo , Transición Epitelial-Mesenquimal , Fibrosis , Riñón/irrigación sanguínea , Riñón/metabolismo , Masculino , Ratones , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
3.
Nat Commun ; 11(1): 586, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996681

RESUMEN

The endothelial to haematopoietic transition (EHT) is the process whereby haemogenic endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). The intermediary steps of this process are unclear, in particular the identity of endothelial cells that give rise to HSPCs is unknown. Using single-cell transcriptome analysis and antibody screening, we identify CD44 as a marker of EHT enabling us to isolate robustly the different stages of EHT in the aorta-gonad-mesonephros (AGM) region. This allows us to provide a detailed phenotypical and transcriptional profile of CD44-positive arterial endothelial cells from which HSPCs emerge. They are characterized with high expression of genes related to Notch signalling, TGFbeta/BMP antagonists, a downregulation of genes related to glycolysis and the TCA cycle, and a lower rate of cell cycle. Moreover, we demonstrate that by inhibiting the interaction between CD44 and its ligand hyaluronan, we can block EHT, identifying an additional regulator of HSPC development.


Asunto(s)
Biomarcadores , Endotelio/metabolismo , Células Madre Hematopoyéticas/metabolismo , Receptores de Hialuranos/metabolismo , Transcriptoma , Animales , Aorta , Arterias , Ciclo Celular , Ciclo del Ácido Cítrico/genética , Biología Computacional , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación hacia Abajo , Glucólisis/genética , Gónadas , Hematopoyesis/fisiología , Receptores de Hialuranos/sangre , Receptores de Hialuranos/genética , Ácido Hialurónico , Mesonefro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Crecimiento Transformador beta/metabolismo
4.
Mol Carcinog ; 59(2): 237-245, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898340

RESUMEN

In humans, bone marrow (BM) failure syndromes, both constitutional and acquired, predispose to myeloid malignancies. We have modeled acquired immune aplastic anemia, the paradigmatic disease of these syndromes, in the mouse by infusing lymph node cells from specific pathogen-free (SPF) CD45.1 congenic C57BL/6 (B6) donors into hybrid CByB6F1 recipients housed either in conventional (CVB) or SPF facilities. The severity of BM damage was reduced in CVB recipients; they also had reduced levels of CD44+ CD62L- effector memory T cells, reduced numbers of donor-type CD44+ T cells, and reduced expansion of donor-type CD8 T cells carrying T-cell receptor ß-variable regions 07, 11, and 17. Analyses of fecal samples through 16S ribosomal RNA amplicon sequencing revealed greater gut microbial alpha diversity in CVB mice relative to that of SPF mice. Thus, the presence of a broader spectrum of gut microorganisms in CVB-housed CByB6F1 could have primed recipient animal's immune system leading to suppression of allogeneic donor T-cell activation and expansion and attenuation of host BM destruction. These results suggest the potential benefit of diverse gut microbiota in patients receiving BM transplants.


Asunto(s)
Anemia Aplásica/terapia , Trasplante de Médula Ósea/métodos , Médula Ósea/inmunología , Microbioma Gastrointestinal/inmunología , Linfocitos T/inmunología , Anemia Aplásica/inmunología , Anemia Aplásica/patología , Animales , Médula Ósea/patología , Heces/microbiología , Receptores de Hialuranos/inmunología , Receptores de Hialuranos/metabolismo , Memoria Inmunológica/inmunología , Activación de Linfocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Linfocitos T/metabolismo , Linfocitos T/trasplante , Inmunología del Trasplante , Trasplante Homólogo
5.
Anticancer Res ; 40(1): 169-176, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31892565

RESUMEN

BACKGROUND/AIM: Cancer stem cells (CSCs) are considered to be one of the causes of tumor recurrence after chemotherapy. The purpose of our study was to isolate CSCs from human colorectal cancer cell (CRC) lines. MATERIALS AND METHODS: Nine CRC lines were screened based on the expression level of potential CSC markers to identify putative CSCs. Tumor formation capacity in immunodeficient mice was compared with that of their counterparts. Stemness, differentiation potency and sensitivity to 5-fluorouracil (5-FU), in vitro, were also assessed. Microarray analysis was used to characterize the features of the putative CSCs. RESULTS: COLO 201 cells were separated into two populations based on CD44 expression. CD44 positive (CD44+) cells showed significantly higher tumor formation capacity than CD44- cells in immunodeficient mice. CD44+ cells also possessed stemness properties and lower sensitivity to 5-FU in vitro. Moreover, cancer stemness and chemoresistance-related genes were highly up-regulated in CD44+ cells. CONCLUSION: CD44+ COLO 201 cells possessed the features of CSCs; therefore, the present CSC model could serve as a valuable tool to accelerate CSC research.


Asunto(s)
Receptores de Hialuranos/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Biomarcadores , Biomarcadores de Tumor , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Fluorouracilo/farmacología , Xenoinjertos , Humanos , Receptores de Hialuranos/genética , Ratones
6.
Cell Mol Life Sci ; 77(2): 351-363, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31222373

RESUMEN

Cancer stem cells (CSC) are highly associated with poor prognosis in cancer patients. Our previous studies report that isorhapontigenin (ISO) down-regulates SOX2-mediated cyclin D1 induction and stem-like cell properties in glioma stem-like cells. The present study revealed that ISO could inhibit stem cell-like phenotypes and invasivity of human bladder cancer (BC) by specific attenuation of expression of CD44 but not SOX-2, at both the protein transcription and degradation levels. On one hand, ISO inhibited cd44 mRNA expression through decreases in Sp1 direct binding to its promoter region-binding site, resulting in attenuation of its transcription. On the other hand, ISO also down-regulated USP28 expression, which in turn reduced CD44 protein stability. Further studies showed that ISO treatment induced miR-4295, which specific bound to 3'-UTR activity of usp28 mRNA and inhibited its translation and expression, while miR-4295 induction was mediated by increased Dicer protein to enhance miR-4295 maturation upon ISO treatment. Our results provide the first evidence that ISO has a profound inhibitory effect on human BC stem cell-like phenotypes and invasivity through the mechanisms distinct from those previously noted in glioma stem-like cells.


Asunto(s)
Receptores de Hialuranos/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Estilbenos/farmacología , Regiones no Traducidas 3'/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Ciclina D1/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , ARN Mensajero/metabolismo , Factores de Transcripción SOXB1/metabolismo , Células Madre , Transcripción Genética/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Neoplasias de la Vejiga Urinaria
7.
Biomed Chromatogr ; 34(1): e4709, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31630417

RESUMEN

Hyaluronidase (Hyal) can be employed to accomplish a diversity of complications related to hyaluronic acid (HA). Hyal contains some classes of catalysts that cleave HA. This enzyme is detected in several human tissues as well as in animal venoms, pathogenic organisms and cancers. Destructive cancer cells regularly increase the CD44 receptor existing in a cell membrane. This receptor acts as an exact receptor for HA, and HA is recognized to motivate the migration, spread, attack and metastasis of cancer cells. Nearly all of the methods used to purify Hyal are highly costly and not proper for industrial applications. This survey aims to review different methods of Hyal purification, which acts as an anticancer agent by degrading HA in tissues and thus inhibiting the CD44-HA interaction. Hyal can be successfully employed in the management of cancer, which is associated with HA-CD44. This review has described different methods for Hyal purification to prepare an origin to develop a novel purification technique for this highly appreciated protein. Using multiple columns is not applicable for the purification of Hyal and thus cannot be used at the industrial level. It is better to use affinity chromatography of anti-Hyal for Hyal with one-step purification.


Asunto(s)
Cromatografía de Afinidad , Hialuronoglucosaminidasa , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Células Cultivadas , Humanos , Receptores de Hialuranos/química , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/química , Hialuronoglucosaminidasa/aislamiento & purificación , Hialuronoglucosaminidasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
8.
Biosci Biotechnol Biochem ; 84(1): 103-110, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31559912

RESUMEN

We previously reported that MDA-MB-231 and MCF-7 cells, which are breast cancer cell lines and have cancer and cancer-initiating cells (CICs), were killed following normothermic microwave irradiation in which the cellular temperature was maintained at 37°C. In this study, we investigated the percentages of live or dead cells among CD44+/CD24- cells, which were defined as CICs among MDA-MB-231 and MCF-7 cells, and other types of cells in response to microwave irradiation. CD44+/CD24- cells among MDA-MB-231 cells were killed, thereby decreasing the number of cells, whereas the number of live CD44+/CD24- MCF-7 cells was increased following microwave irradiation. Moreover, adhesion, invasion, and migration were decreased in MDA-MB-231 cells, and the activation of matrix metalloproteinase-2 (MMP-2) in MDA-MB-231 cells was increased following microwave irradiation. These decreased cell activities might have been caused by MMP-2 activation and population changes in CD44+/CD24- in MDA-MB-231 cells.Abbreviations: APC: allophecocyanin; CBB: coomassie Brilliant Blue; CD: cluster of differentiation; CICs: cancer-initiating cells; FACS: fluorescence-activated cell sorting; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; FTDT: finite-difference time domain; HER2: human epidermal growth factor receptor type 2; PI: propidium iodide.


Asunto(s)
Antígeno CD24/metabolismo , Adhesión Celular/efectos de la radiación , Movimiento Celular/efectos de la radiación , Receptores de Hialuranos/metabolismo , Microondas , Neoplasias de la Mama Triple Negativas/patología , Apoptosis/efectos de la radiación , Recuento de Células , Colorantes/metabolismo , Femenino , Citometría de Flujo , Humanos , Células MCF-7 , Metaloproteinasa 2 de la Matriz/metabolismo , Invasividad Neoplásica , Propidio/metabolismo , Temperatura
9.
Plast Reconstr Surg ; 145(1): 116-126, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31881612

RESUMEN

BACKGROUND: Radiofibrosis of breast tissue compromises breast reconstruction by interfering with tissue viability and healing. Autologous fat transfer may reduce radiotherapy-related tissue injury, but graft survival is compromised by the fibrotic microenvironment. Elevated expression of receptor for hyaluronan-mediated motility (RHAMM; also known as hyaluronan-mediated motility receptor, or HMMR) in wounds decreases adipogenesis and increases fibrosis. The authors therefore developed RHAMM peptide mimetics to block RHAMM profibrotic signaling following radiation. They propose that this blocking peptide will decrease radiofibrosis and establish a microenvironment favoring adipose-derived stem cell survival using a rat mammary fat pad model. METHODS: Rat mammary fat pads underwent a one-time radiation dose of 26 Gy. Irradiated (n = 10) and nonirradiated (n = 10) fat pads received a single intramammary injection of a sham injection or peptide NPI-110. Skin changes were examined clinically. Mammary fat pad tissue was processed for fibrotic and adipogenic markers using quantitative polymerase chain reaction and immunohistochemical analysis. RESULTS: Clinical assessments and molecular analysis confirmed radiation-induced acute skin changes and radiation-induced fibrosis in rat mammary fat pads. Peptide treatment reduced fibrosis, as detected by polarized microscopy of picrosirius red staining, increased collagen ratio of 3:1, reduced expression of collagen-1 crosslinking enzymes lysyl-oxidase, transglutaminase 2, and transforming growth factor ß1 protein, and increased adiponectin, an antifibrotic adipokine. RHAMM was expressed in stromal cell subsets and was downregulated by the RHAMM peptide mimetic. CONCLUSION: Results from this study predict that blocking RHAMM function in stromal cell subsets can provide a postradiotherapy microenvironment more suitable for fat grafting and breast reconstruction.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibrosis/metabolismo , Receptores de Hialuranos/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/fisiología , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Fibrosis/tratamiento farmacológico , Péptidos/farmacología
10.
Anticancer Res ; 39(12): 6575-6583, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31810923

RESUMEN

BACKGROUND/AIM: The aim of this study was to examine whether the Wnt/ß-catenin signal activation is a cause of radioresistance in colon cancer by assessing the ß-catenin localization and its correlation with cancer stem cells (CSCs). MATERIALS AND METHODS: The nuclear levels of ß-catenin, the hallmark of Wnt activation, were analyzed in HCT116 and SW480 cells by immunohistochemistry, before and after irradiation. Further, we assessed CSC populations by staining for aldehyde dehydrogenase-1 (ALDH1) and CD44. RESULTS: ß-catenin was localized predominantly in the nucleus and plasma membrane in SW480 and HCT116 cells, respectively. Compared to HCT116 cells, SW480 cells displayed higher Wnt activation. At 24 h after irradiation, most of the DSBs in SW480 cells were repaired, but were still present in HCT116 cells. Additionally, compared to HCT116 cells, a significantly higher proportion of SW480 cells were ALDH1- and CD44-positive. CONCLUSION: Colon cancers with nuclear ß-catenin accumulation demonstrated greater radio-resistance with a higher number of CSCs.


Asunto(s)
Núcleo Celular/metabolismo , Neoplasias del Colon/metabolismo , Células Madre Neoplásicas/metabolismo , Tolerancia a Radiación , beta Catenina/metabolismo , /metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Células HCT116 , Humanos , Receptores de Hialuranos/metabolismo , Vía de Señalización Wnt
11.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881770

RESUMEN

The treatment of metastatic breast cancer remained a challenge despite the recent breakthrough in the immunotherapy regimens. Here, we addressed the multidimensional immunophenotyping of 4T1 metastatic breast cancer by the state-of-the-art single cell mass cytometry (CyTOF). We determined the dose and time dependent cytotoxicity of cisplatin on 4T1 cells by the xCelligence real-time electronic sensing assay. Cisplatin treatment reduced tumor growth, number of lung metastasis, and the splenomegaly of 4T1 tumor bearing mice. We showed that cisplatin inhibited the tumor stroma formation, the polarization of carcinoma-associated fibroblasts by the diminished proteolytic activity of fibroblast activating protein. The CyTOF analysis revealed the emergence of CD11b+/Gr-1+/CD44+ or CD11b+/Gr-1+/IL-17A+ myeloid-derived suppressor cells (MDSCs) and the absence of B220+ or CD62L+ B-cells, the CD62L+/CD4+ and CD62L+/CD8+ T-cells in the spleen of advanced cancer. We could show the immunomodulatory effect of cisplatin via the suppression of splenic MDSCs and via the promotion of peripheral IFN-γ+ myeloid cells. Our data could support the use of low dose chemotherapy with cisplatin as an immunomodulatory agent for metastatic triple negative breast cancer.


Asunto(s)
Cisplatino/farmacología , Regulación hacia Abajo/efectos de los fármacos , Células Supresoras de Origen Mieloide/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Femenino , Gelatinasas/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Inmunofenotipificación , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide/citología , Serina Endopeptidasas/metabolismo , Trasplante Heterólogo
12.
Drug Deliv ; 26(1): 1125-1139, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31736389

RESUMEN

Stability in systemic circulation, effective tumor accumulation, and the subsequent crucial subcellular targeting are significant elements that maximize the therapeutic efficacy of a drug. Accordingly, novel nanoparticles based on polysaccharides that simultaneously presented prolonged systemic circulation and mitochondrial-targeted drug release were synthesized. First, the mitochondrial-targeted polymer, 3,4-dihydroxyphenyl propionic acid-chitosan oligosaccharide-dithiodipropionic acid-berberine (DHPA-CDB), was synthesized, which was used to form self-assembled curcumin (Cur)-encapsulated cationic micelles (DHPA-CDB/Cur). Negatively charged oligomeric hyaluronic acid-3-carboxyphenylboronic acid (oHA-PBA), a ligand to sialic acid and CD44, was further added to the surface of the preformed DHPA-CDB/Cur core to shield the positive charges and to prolong blood persistence. oHA-PBA@DHPA-CDB/Cur formed a covalent polyplex of oHA-PBA and DHPA-CDB/Cur via the pH-responsive borate ester bond between PBA and DHPA. The mildly acidic tumor environment led to the degradation of borate ester bonds, thereby realizing the exposure of the cationic micelles and causing a charge reversal from -19.47 to +12.01 mV, to promote cell internalization and mitochondrial localization. Compared with micelles without the oHA-PBA modification, the prepared oHA-PBA@DHPA-CDB/Cur showed enhanced cytotoxicity to PANC-1 cells and greater cellular uptake via receptor-mediated endocytosis. oHA-PBA@DHPA-CDB/Cur was effectively targeted to the mitochondria, which triggered mitochondrial membrane depolarization. In mice xenografted with PANC-1 cells, compared with control mice, oHA-PBA@DHPA-CDB/Cur resulted in more effective tumor suppression and greater biosafety with preferential accumulation in the tumor tissue. Thus, the long-circulating oHA-PBA@DHPA-CDB/Cur, with mitochondrial targeting and tumor environment charge-reversal capabilities, was shown to be an excellent candidate for subcellular-specific drug delivery.


Asunto(s)
Antineoplásicos/química , Preparaciones de Acción Retardada/química , Mitocondrias/efectos de los fármacos , Nanopartículas/química , Polisacáridos/química , Adenina/análogos & derivados , Adenina/química , Animales , Antineoplásicos/farmacología , Berberina/química , Línea Celular , Quitosano/química , Curcumina/química , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/efectos de los fármacos , Endocitosis/efectos de los fármacos , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Ratones , Ratones Desnudos , Micelas , Polímeros/química , Polisacáridos/farmacología
13.
Parasit Vectors ; 12(1): 517, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685001

RESUMEN

BACKGROUND: Bovine besnoitiosis, caused by the cyst-forming apicomplexan parasite Besnoitia besnoiti, is a chronic and debilitating cattle disease that continues to spread in Europe in the absence of control tools. In this scenario, in vitro culture systems are valuable tools to carry out drug screenings and to unravel host-parasite interactions. However, studies performed in bovine target cells are scarce. METHODS: The objective of the present study was to obtain primary bovine aortic endothelial cells (BAECs) and fibroblast cell cultures, target cells during the acute and the chronic stage of the disease, respectively, from healthy bovine donors. Afterwards, expression of surface (CD31, CD34 and CD44) and intracellular markers (vimentin and cytokeratin) was studied to characterize cell populations by flow cytometry. Next, the lytic cycle of B. besnoiti tachyzoites was studied in both target cells. Invasion rates (IRs) were determined by immunofluorescence at several time points post-infection, and proliferation kinetics were studied by quantitative PCR (qPCR). Finally, the influence of bovine viral diarrhea virus (BVDV) co-infection on the host cell machinery, and consequently on B. besnoiti invasion and proliferation, was investigated in BAECs. RESULTS: Morphology and cytometry results confirmed the endothelial and fibroblast origins. CD31 was the surface marker that best discriminated between BAECs and fibroblasts, since fibroblasts lacked CD31 labelling. Expression of CD34 was weak in low-passage BAECs and absent in high-passage BAECs and fibroblasts. Positive labelling for CD44, vimentin and cytokeratin was observed in both BAECs and fibroblasts. Regarding the lytic cycle of the parasite, although low invasion rates (approximately 3-4%) were found in both cell culture systems, more invasion was observed in BAECs at 24 and 72 hpi. The proliferation kinetics did not differ between BAECs and fibroblasts. BVDV infection favoured early Besnoitia invasion but there was no difference in tachyzoite yields observed in BVDV-BAECs compared to BAECs. CONCLUSIONS: We have generated and characterized two novel standardized in vitro models for Besnoitia besnoiti infection based on bovine primary target BAECs and fibroblasts, and have shown the relevance of BVDV coinfections, which should be considered in further studies with other cattle pathogens.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Coccidiosis/veterinaria , Células Endoteliales/parasitología , Fibroblastos/parasitología , Sarcocystidae/crecimiento & desarrollo , Animales , Antígenos CD34/metabolismo , Bovinos , Coccidiosis/parasitología , Receptores de Hialuranos/metabolismo , Estadios del Ciclo de Vida , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Factores de Tiempo
14.
Drug Deliv ; 26(1): 1002-1016, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31571501

RESUMEN

In this study, novel multifunctional folic acid, biotin, and CD44 receptors targeted and pH-sensitive "nano-actiniaes" were fabricated with icariin (ICA) and curcumin (Cur) as loaded model drugs for breast cancer therapy. The newly synthesized polymer oligomeric hyaluronic acid-hydrazone bond-folic acid-biotin (Bio-oHA-Hyd-FA) was characterized by 1H NMR spectrogram (proton nuclear magnetic resonance). The obtained drug carrier Bio-oHA-Hyd-FA self-assembled into nanomicelles, named as "nano-actiniaes", in aqueous media with hydrodynamic diameter of 162.7 ± 5 nm. The size, surface zeta potential, and morphology of the "nano-actiniaes" were observed via TEM. The in vitro release experiment indicated that much more encapsulated icariin (ICA) and curcumin (Cur) were released from the Bio-oHA-Hyd-FA micelles (nano-actiniaes) in the acidic environment. Additionally, the cytotoxicity research demonstrated that the Bio-oHA-Hyd-FA carrier material was completely nontoxic, and the ICA&Cur "nano-actiniaes" had greater cytotoxicity compared with other control groups. In addition, the "nano-actiniaes" were found to significantly inhibit cancer cell invasion by Transwell assay. Moreover, in vivo evaluation of anti-tumor effect illustrated that the ICA and Cur "nano-actiniaes" possessed inhibitory effect on tumors. Consequently, the multi-targeted pH-sensitive "nano-actiniaes" can realize significant tumor targeting and effectively inhibit tumor growth.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Biotina/química , Neoplasias de la Mama/tratamiento farmacológico , Ácido Fólico/química , Receptores de Hialuranos/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Curcumina/química , Curcumina/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Ácido Hialurónico/química , Concentración de Iones de Hidrógeno , Células MCF-7 , Ratones Desnudos , Micelas , Tamaño de la Partícula , Polímeros/química , Anémonas de Mar
15.
Int J Nanomedicine ; 14: 7549-7560, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31571863

RESUMEN

Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor in the world. Studies in recent years have demonstrated that cancer stem cells (CSCs) are present in many tumor tissues, including HNSCC, and CSCs are the root cause of tumor recurrence and metastasis. Thus, taking new treatment measures to target the killing of CSCs that are resistant to chemotherapy and radiotherapy is key to the success of cancer treatment. Methods: We explored a method for preparing anti-CD44 antibody-modified superparamagnetic iron oxide nanoparticles (SPIONPs). Biocompatibility was evaluated by a CCK-8 assay. The CSCs were obtained by a 3D cell culture technique from Cal-27 (human oral squamous cell carcinoma) cells, and then the CSCs were identified by quantitative real-time polymerase chain reaction (qRT-PCR). The targeting efficiency of the CD44-SPIONPs to CSCs was confirmed by Prussian blue staining and visualized by laser scanning confocal microscopy (LSCM). Flow cytometry was used to detect the apoptosis of CSCs after alternating magnetic field (AMF) treatment. The efficacy of tumor growth inhibition by CD44-SPIONP-mediated magnetic hyperthermia therapy was evaluated with tumor xenografts in nude mice. Results: The CD44-SPIONPs exhibited no negative effect on CSCs, indicating good biocompatibility. After SPIONPs were cocultured with stem cells, the majority of CD44-SPIONPs labeled with FITC penetrated the cell membrane into the cytoplasm. After AMF treatment, CD44-SPIONPs induced CSCs to undergo programmed death. The inhibitory ratio of the treated group was 33.43%, and necrotic areas in the tumor tissue were mainly distributed around the magnetic fluid. Conclusion: These results demonstrate that it is possible to kill CSCs using targeted magnetic nanoparticles and an AMF and that magnetic fluid hyperthermia significantly inhibited the growth of grafted Cal-27 tumors in mice.


Asunto(s)
Apoptosis , Receptores de Hialuranos/metabolismo , Campos Magnéticos , Nanopartículas de Magnetita/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Animales , Línea Celular Tumoral , Proliferación Celular , Endocitosis , Regulación Neoplásica de la Expresión Génica , Humanos , Nanopartículas de Magnetita/ultraestructura , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Neoplásicas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
16.
Medicina (Kaunas) ; 55(10)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581595

RESUMEN

Background and objectives: Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT) are two pleiotropic and primarily, but not exclusively, proinflammatory cytokines belonging to the MIF family of cytokines that have recently been shown to be implicated in the pathogenesis of progressive forms of human progressive Multiple Sclerosis (MS) and the experimental model counterpart in rodents. Materials and Methods: We have presently evaluated a transcriptomic analysis of the expression of MIF, DDT, their receptors CD74 and CD44, and MIF co-receptors CXCR2, CXCR4, and CXCR7 in peripheral blood of patients with Clinically Isolated Syndrome (CIS), with rapid progression to clinical defined MS. Results: Our analysis reveals that MIF, DDT, and CD44 are overexpressed in CD4+ T cells from patients with CIS, as compared to healthy controls. Accordingly, a significant overlap was observed between the genes overexpressed in CD4+ T cells from patients with CIS and the genes belonging to the MIF regulatory network. This upregulated expression appeared to be unique for CD4+T cells, as other immune cells including CD8+ T cells, B cells, and monocytes from these patients exhibited expression levels of these molecules that were superimposable to those observed in healthy controls. Conclusions: Overall, our data suggest that the overexpression MIF cytokine family signature may occur in CD4+ T cells from patients with CIS, and that this phenomenon may be implicated in the pathogenesis of the disease, offering the possibility to represent both a diagnostic marker and a therapeutic target.


Asunto(s)
Receptores de Hialuranos/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Esclerosis Múltiple/metabolismo , Regulación hacia Arriba , Adolescente , Adulto , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Femenino , Humanos , Masculino , Esclerosis Múltiple/sangre , Adulto Joven
17.
Tissue Cell ; 60: 21-24, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31582014

RESUMEN

Cancer stem cells (CSCs) have been implicated in growth, metastasis, recurrence and chemo-/radio-resistance in several cancer types. Despite a plenty of literature about different in vitro techniques to enrich/isolate CSCs, their comparative characterization for stemness is not well established. In the present study, cells obtained following three in vitro assays [clonogenic assay, tumorsphere assay (TSA) and single cell assay (SCA)] were compared for their cancer stem-like cell characteristics in human lung adenocarcinoma (A549) cells. Expression of the pluripotent (OCT4, NANOG) and lung cancer stem cell marker (CD166) genes were studied in these cells. Results showed that in comparison to cells obtained from routine culture (CC), the cells obtained from TSA showed significantly higher expression of OCT-4 and NANOG. These results were further validated with quantification of cell surface cancer stem cell markers i.e. CD44+/CD24- in the cells obtained from different methods, which were higher in TSA and SCA. Additionally, functional characterization of cancer stem-like cells (CSLCs) using ALDH assay showed the highest % of ALDH+ cells in TSA. These results were in agreement with higher resistance of these cells against 5-Fluorouracil suggesting higher fraction of CSLCs in TSA than the other assays. These results showed that TSA provides a better method to enrich CSLCs in A549 lung adenocarcinoma cells.


Asunto(s)
Técnicas In Vitro , Células Madre Neoplásicas/patología , Células A549 , Biomarcadores de Tumor/metabolismo , Separación Celular , Humanos , Receptores de Hialuranos/metabolismo , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo
18.
Carbohydr Polym ; 226: 115281, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31582066

RESUMEN

In this work, tumor acidity and CD44 dual targeting hyaluronic acid-coated gold nanorods (AuNRs) are investigated for combined chemo- and photothermal cancer therapy. Low molecular weight hyaluronic acid (LMWHA) is conjugated with pH-sensitive groups for pH-induced aggregation and lipoic acid for coating of AuNRs. By changing pH-sensitive groups with different pKa values, pH-sensitivity of modified LMWHA can be tuned. After coating modified LMWHA onto AuNRs, biocompatibility of the AuNRs is significantly improved. These LMWHA-coated AuNRs can gradually aggregate under slightly acidic conditions, making them favorable for accumulation at acidic tumor sites. Surface LMWHA allows the nanocomposites to be selectively uptaken by CD44-expressing cancer cells, and AuNRs endows the nanocomposites with excellent photothermal ability. Loading of doxorubicin, a chemical drug, provides the LMWHA-coated AuNRs synergistic cancer cell-killing (in vitro) and tumor growth inhibiting (in vivo) ability. Taken together, these results demonstrate that this multifunctional nanosystem with pH-induced aggregation and CD44 targeting has potential for combined chemo- and photothermal cancer therapy.


Asunto(s)
Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Receptores de Hialuranos/metabolismo , Animales , Línea Celular Tumoral , Quimioterapia Combinada , Oro , Humanos , Ácido Hialurónico/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Nanocompuestos/uso terapéutico , Nanotubos , Neoplasias/terapia , Fototerapia
19.
Chem Commun (Camb) ; 55(82): 12352-12355, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31559405

RESUMEN

We report a new biofunctionalized nanoplatform based on hyaluronic acid-coated gold-nano-dot-decorated hollow carbon nanospheres (AuHCNs-HA) for microRNA imaging in living cells. Importantly, the HA-coated nanoplatform could be internalized into target cells via CD44 receptor-mediated endocytosis. It can be further applied for intracellular miR-21 imaging in CD44-positive colorectal cancer cells.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Oro/química , Nanopartículas del Metal/química , MicroARNs/análisis , Imagen Óptica/métodos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Imagen Óptica/instrumentación , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
20.
J Exp Clin Cancer Res ; 38(1): 399, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511084

RESUMEN

BACKGROUND: Radiotherapy (RT) is a highly effective multimodal nonsurgical treatment that is essential for patients with advanced colorectal cancer (CRC). Nevertheless, cell subpopulations displaying intrinsic radioresistance survive after RT. The reactivation of their proliferation and successful colonization at local or distant sites may increase the risk of poor clinical outcomes. Recently, radioresistant cancer cells surviving RT were reported to exhibit a more aggressive phenotype than parental cells, although the underlying mechanisms remain unclear. METHODS: By investigating public databases containing CRC patient data, we explored potential radioresistance-associated signaling pathways. Then, their mechanistic roles in radioresistance were investigated through multiple validation steps using patient-derived primary CRC cells, human CRC cell lines, and CRC xenografts. RESULTS: Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling was activated in radioresistant CRC tissues in correlation with local and distant metastases. JAK2 was preferentially overexpressed in the CRC stem cell subpopulation, which was accompanied by the phosphorylation of STAT proteins, especially STAT3. JAK2/STAT3 signaling played an essential role in promoting tumor initiation and radioresistance by limiting apoptosis and enhancing clonogenic potential. Mechanistically, the direct binding of STAT3 to the cyclin D2 (CCND2) promoter increased CCND2 transcription. CCND2 expression was required for persistent cancer stem cell (CSC) growth via the maintenance of an intact cell cycle and proliferation with low levels of DNA damage accumulation. CONCLUSION: Herein, we first identified JAK2/STAT3/CCND2 signaling as a resistance mechanism for the persistent growth of CSCs after RT, suggesting potential biomarkers and regimens for improving outcomes among CRC patients.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Ciclina D2/metabolismo , Janus Quinasa 2/metabolismo , Células Madre Neoplásicas/metabolismo , Tolerancia a Radiación , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/radioterapia , Técnicas de Inactivación de Genes , Humanos , Receptores de Hialuranos/metabolismo , Modelos Biológicos , Tolerancia a Radiación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA