Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.489
Filtrar
1.
Sci Total Environ ; 803: 150036, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525718

RESUMEN

Thallium (Tl) is a highly toxic trace metal. Lead (Pb)­zinc (Zn) smelting, which is a pillar industry in various countries, is regarded as one of the dominant anthropogenic sources of Tl contamination in the environment. In this study, thallium isotope data have been evaluated for raw material and a set of industrial wastes produced at different stages of Pb-Zn smelting in a representative large facility located by the North River, South China, in order to capture Tl isotope signatures of such typical anthropogenic origin for laying the foundation of tracking Tl pollution. Large variations in Tl isotopic compositions of raw Pb-Zn ores and solid smelting wastes produced along the process chain were observed. The ε205Tl values of raw Pb-Zn ores and return fines are -0.87 ± 0.26 and -1.0 ± 0.17, respectively, contrasted by increasingly more negative values for electrostatic precipitator dust (ε205Tl = -2.03 ± 0.14), lime neutralizing slag (ε205Tl = -2.36 ± 0.18), and acid sludge (ε205Tl = -4.62 ± 0.76). The heaviest ε205Tl (1.12 ± 0.51) was found in clinker. These results show that isotopic fractionation occurs during the smelting processes. Obviously, the lighter Tl isotope is enriched in the vapor phase (-3.75 ε205Tl units). Further XPS and STEM-EDS analyses show that Tl isotope fractionation conforms to the Rayleigh fractionation model, and adsorption of 205Tl onto hematite (Fe2O3) may play an important role in the enrichment of the heavier Tl isotope. The findings demonstrate that Tl isotope analysis is a robust tool to aid our understanding of Tl behavior in smelting processes and to provide a basis for source apportionment of Tl contaminations.


Asunto(s)
Talio , Zinc , Monitoreo del Ambiente , Residuos Industriales , Isótopos/análisis , Plomo , Talio/análisis
2.
Sci Total Environ ; 803: 149892, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500281

RESUMEN

The construction sector is the biggest driver of resource consumption and waste generation in Europe. The European Union (EU) is making efforts to move from its traditional linear resource and waste management system in the construction sector to a level of high circularity. Based on the theory of circular economy, a new paradigm called waste hierarchy was introduced in the EU Waste Framework Directive. This work uses the framework of the waste hierarchy to analyze the practice of construction and demolition waste (CDW) management in Europe. We explore the evolution of the waste hierarchy in Europe and how it compares with the circular economy. Then, based on the framework, we analyze the performance of CDW management in each EU member state. Innovative treatment methods of CDW, focusing on waste concrete, is investigated. This brings insight into optimizing and upgrading the CDW management in light of advanced technologies and steering the pathway for transitioning the EU towards a circular society.


Asunto(s)
Industria de la Construcción , Administración de Residuos , Materiales de Construcción , Europa (Continente) , Residuos Industriales/análisis , Reciclaje
3.
Chemosphere ; 286(Pt 1): 131623, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34346348

RESUMEN

The increasing demand for the development of sustainable strategies to utilize and process agro-industrial residues paves new paths for exploring innovative approaches in this area. Biotechnology based microbial transformations provide efficient, low cost and sustainable approaches for the production of value added products. The use of organic rich residues opens new avenues for the production of enzymes, pigments, biofuels, bioactive compounds, biopolymers etc. with vast industrial and therapeutic applications. Innovative technologies like strain improvement, enzyme immobilization, genome editing, morphological engineering, ultrasound/supercritical fluid/pulse electric field extraction, etc. can be employed. These will be helpful in achieving significant improvement in qualitative and quantitative parameters of the finished products. The global trend for the valorisation of biowaste has boosted the commercialization of these products which has transformed the markets by providing new investment opportunities. The upstream processing of raw materials using microbes poses a limitation in terms of product development and recovery which can be overcome by modifying the bioreactor design, physiological parameters or employing alternate technologies which will be discussed in this review. The other problems related to the processes include product stability, industrial applicability and cost competitiveness which needs to be addressed. This review comprehensively discusses the recent progress, avenues and challenges in the approaches aimed at valorisation of agro-industrial wastes along with possible opportunities in the bioeconomy.


Asunto(s)
Biocombustibles , Residuos Industriales , Reactores Biológicos , Biotecnología , Industrias
4.
J Hazard Mater ; 421: 126688, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34315634

RESUMEN

Improper disposal of copper mining wastes can threaten the ecosystem and human health due to the high levels of potentially toxic elements released into the environment. The objective of this study was to determine the properties of Cu mining wastes generated in the eastern Amazon and their potential risks to environment and human health. Samples of forest soil and artisanal/industrial Cu mining wastes were collected and subjected to characterization of properties and pseudo-total concentrations of Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, and Zn, in addition to chemical fractionation of Cu. The pH ranged from near neutrality to alkaline. Pseudo-total concentrations of Cu were high in all wastes, mainly in the artisanal rock waste, with 19,034 mg kg-1, of which 61% is concentrated in the most reactive fractions. Pollution indices indicated that the wastes are highly contaminated by Cu and moderately contaminated by Cr and Ni. However, only the artisanal rock waste is associated with environmental risk. Non-carcinogenic and carcinogenic human health risks were detected, especially from exposure to Cr in the artisanal rock waste. Prevention actions and monitoring of the artisanal mining area are necessary to avoid impacts to the local population.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cobre/toxicidad , Ecosistema , Monitoreo del Ambiente , Humanos , Residuos Industriales/análisis , Metales Pesados/análisis , Minería , Medición de Riesgo , Contaminantes del Suelo/análisis
5.
J Hazard Mater ; 421: 126687, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34332482

RESUMEN

E-wastes comprise complex combinations of potentially toxic elements that cause detrimental effects of the environmental contamination; besides their posing threat, most of the products also contain valuable and recoverable materials (Li, Au, Ag, W, Se, Te, etc.), which make them distinct from other forms of industrial wastes. Most of these value-added elements which are primarily employed in electronic goods are disposed of by incineration and land-filling. This is a serious issue besides just environmental pollution, as IUPAC recognized that such ignorance of or poor attention to e-waste recycling has put several elements in the periodic table to the list of endangered elements. Recycling these wastes utilized for electrocatalytic water splitting to produce H2. These recovered e-wastes materials are used as electrocatalysts for the water-splitting, additives to enhance reaction kinetics, and substrate electrodes as well. Recycling and recovery of value-added materials in the view of applying them to electrocatalytic water splitting with endangered elements' perspective have not been covered by any recent review so far. Hence, this review is dedicated to discussing the opportunities available with recycling e-wastes, types of value-added materials that can be recovered for water splitting, strategies exploited, and prospects are discussed in details.


Asunto(s)
Residuos Electrónicos , Residuos Electrónicos/análisis , Incineración , Residuos Industriales , Reciclaje , Agua
6.
Sci Total Environ ; 806(Pt 1): 150280, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560457

RESUMEN

The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized.


Asunto(s)
Metales Pesados , Acero , Carbono , Dióxido de Carbono , Humanos , Residuos Industriales/análisis
7.
Bioresour Technol ; 343: 126059, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34606921

RESUMEN

Waste generation is becoming a global concern owing to its adverse effects on environment and human health. The utilization of waste as a feedstock for production of value-added products has opened new avenues contributing to environmental sustainability. Microorganisms have been employed for production of biosurfactants as secondary metabolites by utilizing waste streams. Utilization of waste as a substrate significantly reduces the cost of overall process. Biosurfactant(s) derived from these processes can be utilized in environmental and different industrial sectors. This review focuses on global market of biosurfactants followed by discussion on production of biosurfactants from waste streams such as agro-industrial waste and waste cooking oil. The need for waste stream derived circular bioeconomy and scale up of biosurfactant production have been narrated with applications of biosurfactants in environment and industrial sectors. Road blocks and future directions for research have also been discussed.


Asunto(s)
Residuos Industriales , Tensoactivos , Culinaria , Humanos
8.
Environ Pollut ; 292(Pt B): 118342, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653589

RESUMEN

Restoring an environment contaminated with persistent organic pollutants (POPs) is highly challenging. Biodegradation by biofilm-forming bacteria through quorum sensing (QS) is a promising treatment process to remove these pollutants and promotes eco-restoration. QS plays an important role in biofilm formation, solubilization, and biotransformation of pollutants. QS is a density-based communication between microbial cells via signalling molecules, which coordinates specific characters and helps bacteria to acclimatize against stress conditions. Genetic diversification of a biofilm offers excellent opportunities for horizontal gene transfer, improves resistance against stress, and provides a suitable environment for the metabolism of POPs. To develop this technology in industrial scale, it is important to understand the fundamentals and ubiquitous nature of QS bacteria and appreciate the role of QS in the degradation of POPs. Currently, there are knowledge gaps regarding the environmental niche, abundance, and population of QS bacteria in wastewater treatment systems. This review aims to present up-to-date and state-of-the-art information on the roles of QS and QS-mediated strategies in industrial waste treatment including biological treatments (such as activated sludge), highlighting their potentials using examples from the pulp and paper mill industry, hydrocarbon remediation and phytoremediation. The information will help to provide a throughout understanding of the potential of QS to degrade POPs and advance the use of this technology. Current knowledge of QS strategies is limited to laboratory studies, full-scale applications remain challenging and more research is need to explore QS gene expression and test in full-scale reactors for wastewater treatment.


Asunto(s)
Residuos Industriales , Percepción de Quorum , Biopelículas , Contaminantes Orgánicos Persistentes , Aguas del Alcantarillado
9.
Bioresour Technol ; 343: 126126, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34673193

RESUMEN

Energy recovery from waste resources is a promising approach towards environmental consequences. In the prospect of environmental sustainability, utilization of agro-industrial waste residues as feedstock for biorefinery processes have gained widespread attention. In the agro-industry, various biomasses are exposed to different unit processes for offering value to various agro-industrial waste materials. Agro-industrial wastes can generate a substantial amount of valuable products such as fuels, chemicals, energy, electricity, and by-products. This paper reviews the methodologies for valorization of agro-industrial wastes and their exploitation for generation of renewable energy products. In addition, management of agro-industrial wastes and products from agro-industrial wastes have been elaborated. The waste biorefinery process using agro-industrial wastes does not only offer energy, it also offers environmentally sustainable modes, which address effective management of waste streams. This review aims to highlight the cascading use of biomass from agro-industrial wastes into the systemic approach for economic development.


Asunto(s)
Residuos Industriales , Industrias , Biomasa , Residuos Industriales/análisis
10.
Chemosphere ; 286(Pt 2): 131795, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34371360

RESUMEN

Biofilm formation ability of bacteria makes them potential in the field of tannery effluent treatment. However, the hazardous nature of effluent and environmental conditions may disturb the biofilm formation ability of bacteria which ultimately affects their effluent treatment efficiency. Accordingly, we isolated and characterized biofilm-forming bacteria Bacillus vallismortis (MT027009), Bacillus haynesii (MT027008), and Alcaligenes aquatilis (MT027005) from tannery sludge and examined them for biofilm formation under variable environmental conditions. Biofilm formation in tryptic soy broth (TSB) at different incubation times (24-120 h) revealed that the biofilm formation activity of the strain B. haynesii was not affected by incubation time, whereas the increase in biofilm formation was observed in the case of B. vallismortis (28 %) and A. aquatilis (52 %) after 48 h. The medium pH (pH 5.0-9.0) had a limited effect on biofilm formation except in the case of A. aquatilis at pH 5.0 (94 %) and pH 9.0 (80 %). Furthermore, compared to the controls (only TSB), the strains B. vallismortis, B. haynesii, and A. aquatilis showed enhanced biofilm formation in undiluted tannery effluent (28, 33, and 21 %) and 25 mg L-1 Cr(VI) (23 %, 48 % 32 %). The biofilm structure was influenced by Cr(VI) as revealed by scanning electron microscopy (SEM) analysis. The results of Cr(VI) bioreduction studies suggest that bacterial biofilm (60-99 %) has a greater potential to remove Cr(VI) than planktonic cells (43-94 %). The results of the study provide important data on biofilm formation by indigenous bacteria in effluent environment conditions, making them potential isolates for tannery effluent treatment.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Alcaligenes , Bacillus , Bacterias , Biodegradación Ambiental , Biopelículas , Cromo/análisis , Residuos Industriales/análisis , Contaminantes Químicos del Agua/análisis
11.
Chemosphere ; 287(Pt 3): 132274, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34562709

RESUMEN

Ladle furnace slag (LFS) is a by-product of the steel industry and is difficult to be reused due to its weak cementitious property, low strength, and potential leaching of heavy metals. The emission of carbon dioxide (CO2) is also a concern for the steel industry. Therefore, the aim of this study was to use CO2 to immobilize heavy metals in LFS and enhance its strength. The LFS specimens were carbonated with different initial water contents, CO2 pressures, and carbonation periods. The carbonated LFS were then studied by leaching test, unconfined compressive strength (UCS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX). The results showed that LFS had carbonation reactivity and could sequester CO2 up to 9.6% of its own mass. The carbonation also effectively reduced the leaching of heavy metals from LFS, especially Pb and Zn. The concentrations of leached Pb and Zn of carbonated LFS were significantly reduced from 2760 and 1460 µg/L to 0.11 and 0.56 µg/L, respectively, being one order of magnitude (Pb) or three orders of magnitude (Zn) lower than limits of inert waste and three drinking water regulations. The strength of the carbonated LFS also remarkably increased and was two orders of magnitude higher than that of the uncarbonated LFS. Following the carbonation, calcium carbonate, nesquehonite, and hydromagnesite were produced; these carbonates filled pores and bound LFS particles, which enhanced the strength of LFS.


Asunto(s)
Dióxido de Carbono , Metales Pesados , Secuestro de Carbono , Carbonatos , Residuos Industriales/análisis , Acero
12.
Sci Total Environ ; 805: 150330, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818753

RESUMEN

Composting is an advantageous and efficient process for recycling organic waste and producing organic fertilizers, and many kinds of microorganisms are involved in obtaining quality compost with suppressive activity against soil-borne pathogens. The aim of this work was to evaluate the main differences in the effects of three composting piles on the whole bacterial and fungal communities of baby-leaf lettuce crops and to determine the specific communities by high-throughput sequencing related to suppressiveness against the soil-borne plant pathogen Pythium irregulare- (P. irregulare). Compost pile A was composed of 47% vineyard pruning waste, 34% tomato waste and 19% leek waste; pile B was composed of 54% vineyard pruning waste and 46% tomato waste; and pile C was composed of 42% vineyard pruning waste, 25% tomato waste and 33% olive mill cake. The temperature and the chemical properties of the piles were monitored throughout the composting process. In addition, the potential suppressive capacity of the three composts (C_A, C_B and C_C) against P. irregulare in baby-leaf lettuce was assessed. We found that the bacterial community changed according to the composting phases and composting pile and was sensitive to chemical changes throughout the composting process. The fungal community, on the other hand, did not change between the composting piles and proved to be less influenced by chemical properties, but it did change, principally, according to the composting phases. All composts obtained were considered stable and mature, while compost C_C showed higher maturity than composts C_A and C_B. During composting, the three piles contained a greater relative abundance of Bacterioidetes, Proteobacterias and Actinobacterias related to the suppression of soil-borne pathogens such as Pythium irregulare. Composts C_A and C_B, however, showed higher suppressiveness against P. irregulare than compost C_C. Deeper study showed that this observed suppressiveness was favored by a higher abundance of genera that have been described as potential suppressive against P. irregulare, such as Aspergillus, Penicillium, Truepera and Luteimonas.


Asunto(s)
Compostaje , Micobioma , Productos Agrícolas , Fertilizantes , Residuos Industriales/análisis , Suelo
13.
Environ Monit Assess ; 193(12): 796, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34773145

RESUMEN

Road dust enriched with heavy metals (HMs) is detrimental to ecosystems and human health in urban environments. In this study, it is to explore the concentrations, spatial distribution, contaminated levels, and source identification of six HMs (lead (Pb), zinc (Zn), copper (Cu), cobalt (Co), chromium (Cr), and nickel (Ni)) based on 130 road dusts in Xinyang urban area. The results indicated that the contents of Pb, Zn, Cu, and Co were higher than the background values in more than 99% of the samples, and their average concentrations were 15.2, 9.2, 8.6, and 6.3 times the background value, respectively. The spatial distribution of high-value areas for Pb, Zn, Cu, Cr, and Ni was more similar, which was associated with traffic density near major roads and population and settlement patterns. Co was relatively different from the five elements, which was distributed in the areas of residence, commerce, and industry. Furthermore, the investigated HMs were clearly polluted, with Pb, Zn, Cu, and Co indicating high levels of contamination, while Cr and Ni were moderately polluted. The comprehensive pollution of the six HMs was mostly moderate to heavy in this study. Moreover, three sources of HMs designated by correlation analysis (CA) and principal component analysis (PCA) were mixed traffic emissions and industrial waste for Cu and Cr; automotive emissions for Pb, Ni, and Zn; and mixed domestic waste and industrial activities for Co, with contributions of 42.3%, 46.4%, and 11.3% via the principal component analysis-multiple linear regression (PCA-MLR) model. The multi-factor index for pollution assessment combined with source identification is extremely effective and practical for providing reliable data support and a theoretical reference for pollution monitoring and governance.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Ciudades , Polvo/análisis , Ecosistema , Monitoreo del Ambiente , Humanos , Residuos Industriales , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis
14.
Waste Manag ; 136: 295-302, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34735983

RESUMEN

Due to the relevance of construction and demolition waste (CDW) generation for circular economy and reduction of environmental impacts, it is important to evaluate the factors leading to constraints regarding waste. Previous researchers have assessed construction company attitudes and behaviors toward CDW management, but factors such as the presence of environmental technicians, registration of the CDW generated, commitment to the legal framework, the subcontracting regime, and construction works' oversight were rarely addressed in terms of the differences existing within the construction sector. Thus, the objective of this research is to evaluate the relationship of these factors with construction company size. A questionnaire was sent to Portuguese construction companies, and 652 responded. The sample was divided into three groups: micro, small, and medium/large companies. Statistical data treatment was carried out to assess whether there were statistically significant differences in the mentioned factors between groups. The main conclusions highlight: the prevalence of environmental technicians working in larger companies; the registration on waste platforms being only performed consistently by medium/large companies; a considerable proportion of micro and small companies having knowledge gaps about the practices adopted; the responsibility for CDW management within the subcontracting regime being mainly from subcontractors; and the presence of a gap regarding onsite construction works oversight. These differences lead to the need to reevaluate the strategies for CDW management and adapt the strategies to the specific conditions of the construction sector, including the size of construction companies.


Asunto(s)
Industria de la Construcción , Administración de Residuos , Materiales de Construcción , Residuos Industriales/análisis , Reciclaje
15.
BMC Vet Res ; 17(1): 348, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772402

RESUMEN

BACKGROUND: Herbal tea residue (HTR) is generally considered to be the waste of herbal tea beverage production while it still retains rich nutrients and active substances. The main aim of the present study was to investigate the effect of fermentation technology on improving the quality of HTRs, and focus on the fermented HTR-induced alleviation of summer heat stress in fattening cattle. RESULTS: In this study, the waste HTR was fermented and then fed to a total of 45 fattening cattle that were divided into 3 groups (fermented HTR replaced 0, 15, 30% of the forage component of the diet), and the feeding experiment was lasted for 40 days. The physiological indexes, growth performance and fecal microbiota of fattening cattle were evaluated and results showed that fermented HTR could effectively reduce the respiratory rate and rectal temperature of fattening cattle under heat stress, increase the daily feed intake and daily gain, and improve the antioxidant content and blood immune index. In addition, we studied the fecal microbiota composition of 6 fattening cattle in control and 30% HTR substitution groups and found fermented HTR significantly changed the composition of fecal microbiota and increased microbial diversity, and correlation analysis suggested that the bacteria were closely related to fecal SCFA levels of fattening cattle under heat stress. CONCLUSIONS: In this study, fermented HTR replaced 30% of the forage component of the diet that can change the intestine microorganisms, maintain health and alleviate the heat stress of fattening cattle.


Asunto(s)
Bebidas , Enfermedades de los Bovinos/terapia , Dieta/veterinaria , Industria de Alimentos , Trastornos de Estrés por Calor/veterinaria , Residuos Industriales , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bacterias/clasificación , Bacterias/genética , Bovinos , Enfermedades de los Bovinos/prevención & control , Heces/microbiología , Femenino , Fermentación , Trastornos de Estrés por Calor/prevención & control , Trastornos de Estrés por Calor/terapia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
16.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684778

RESUMEN

Biohydrometallurgy recovers metals through microbially mediated processes and has been traditionally applied for the extraction of base metals from low-grade sulfidic ores. New investigations explore its potential for other types of critical resources, such as rare earth elements. In recent times, the interest in rare earth elements (REEs) is growing due to of their applications in novel technologies and green economy. The use of biohydrometallurgy for extracting resources from waste streams is also gaining attention to support innovative mining and promote a circular economy. The increase in wastes containing REEs turns them into a valuable alternative source. Most REE ores and industrial residues do not contain sulfides, and bioleaching processes use autotrophic or heterotrophic microorganisms to generate acids that dissolve the metals. This review gathers information towards the recycling of REE-bearing wastes (fluorescent lamp powder, spent cracking catalysts, e-wastes, etc.) using a more sustainable and environmentally friendly technology that reduces the impact on the environment.


Asunto(s)
Residuos Industriales/análisis , Metalurgia/métodos , Metales de Tierras Raras/aislamiento & purificación , Microbiología Industrial/métodos , Minería , Reciclaje/métodos
17.
Appl Microbiol Biotechnol ; 105(23): 8663-8674, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34716789

RESUMEN

The stacking of steel slag has detrimental effects mainly for the waste of resources and the pollution of environment. In this study, a novel method based on microbially induced calcium precipitation (MICP) was proposed by utilizing a type of microorganism named Bacillus mucilaginosus, which could secrete carbonic anhydrase (CA) through the metabolism process, accelerating the hydration of carbon dioxide (CO2) and thus facilitating the formation of carbonate ions (CO32-). First, comparing the biologically deposited calcium carbonate with the chemically deposited one, it was found that the crystallinity and crystal size of the biological deposition was lower, leading to its cementitious properties. Under the condition of 1 wt. (weight) % dosage, the carbonation degree increased from 66.34 to 86.25% and the compressive strength improved greatly from 7.4 to 11.2 MPa as well. The weight gain rate of biologically carbonated specimens was also twice as much as the directly carbonated ones. This work strongly demonstrated that biological carbonation technology could not only improve the CO2 sequestration potential of steel slag but also enhance the mechanical properties and durability of steel slag products. KEY POINTS: • Bacillus mucilaginosus could resuscitate and proliferate in the steel slag environment. • B. mucilaginosus secreted carbon anhydrase, which could accelerate the hydration of CO2 and facilitate the precipitation of calcium carbonate. • Biologically carbonated steel slag had greater mechanical performance than directly carbonated one.


Asunto(s)
Residuos Industriales , Acero , Carbonato de Calcio , Dióxido de Carbono , Carbonatos , Residuos Industriales/análisis , Paenibacillus
18.
Molecules ; 26(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34684806

RESUMEN

Disposal of palm oil mill effluent (POME), which is highly polluting from the palm oil industry, needs to be handled properly to minimize the harmful impact on the surrounding environment. Photocatalytic technology is one of the advanced technologies that can be developed due to its low operating costs, as well as being sustainable, renewable, and environmentally friendly. This paper reports on the photocatalytic degradation of palm oil mill effluent (POME) using a BiVO4 photocatalyst under UV-visible light irradiation. BiVO4 photocatalysts were synthesized via sol-gel method and their physical and chemical properties were characterized using several characterization tools including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), surface area analysis using the BET method, Raman spectroscopy, electron paramagnetic resonance (EPR), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of calcination temperature on the properties and photocatalytic performance for POME degradation using BiVO4 photocatalyst was also studied. XRD characterization data show a phase transformation of BiVO4 from tetragonal to monoclinic phase at a temperature of 450 °C (BV-450). The defect site comprising of vanadium vacancy (Vv) was generated through calcination under air and maxima at the BV-450 sample and proposed as the origin of the highest reaction rate constant (k) of photocatalytic POME removal among various calcination temperature treatments with a k value of 1.04 × 10-3 min-1. These findings provide design guidelines to develop efficient BiVO4-based photocatalyst through defect engineering for potential scalable photocatalytic organic pollutant degradation.


Asunto(s)
Bismuto , Residuos Industriales/análisis , Aceite de Palma/aislamiento & purificación , Fotólisis , Vanadatos , Contaminantes Químicos del Agua/análisis , Bismuto/química , Catálisis , Cristalografía por Rayos X , Microscopía Electrónica de Rastreo , Espectrometría Raman , Vanadatos/síntesis química , Vanadatos/química , Administración de Residuos/métodos
19.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639147

RESUMEN

In this work, we verified the possibility of valorizing a major waste product of the potato starch industry, potato tuber juice (PJ). We obtained a cost-effective, ecological-friendly microbiological medium that yielded bacterial cellulose (BC) with properties equivalent to those from conventional commercial Hestrin-Schramm medium. The BC yield from the PJ medium (>4 g/L) was comparable, despite the lack of any pre-treatment. Likewise, the macro- and microstructure, physicochemical parameters, and chemical composition showed no significant differences between PJ and control BC. Importantly, the BC obtained from PJ was not cytotoxic against fibroblast cell line L929 in vitro and did not contain any hard-to-remove impurities. The PJ-BC soaked with antiseptic exerted a similar antimicrobial effect against Staphylococcus aureus and Pseudomonas aeruginosa as to BC obtained in the conventional medium and supplemented with antiseptic. These are very important aspects from an application standpoint, particularly in biomedicine. Therefore, we conclude that using PJ for BC biosynthesis is a path toward significant valorization of an environmentally problematic waste product of the starch industry, but also toward a significant drop in BC production costs, enabling wider application of this biopolymer in biomedicine.


Asunto(s)
Bacterias/metabolismo , Celulosa/biosíntesis , Análisis Costo-Beneficio , Fibroblastos/metabolismo , Residuos Industriales/economía , Solanum tuberosum/química , Animales , Celulosa/economía , Medios de Cultivo , Jugos de Frutas y Vegetales/análisis , Ratones , Almidón/química
20.
Artículo en Inglés | MEDLINE | ID: mdl-34639258

RESUMEN

Lead-zinc smelting slag (LZSS) is regarded as a hazardous waste containing heavy metals that poses a significant threat to the environment. LZSS is rich in aluminosilicate, which has the potential to prepare alkali-activated materials and solidify hazardous waste, realizing hazardous waste cotreatment. In this study, the experiment included two parts; i.e., the preparation of alkali-activated LZSS (pure smelting slag) and chromite ore processing residue (COPR) solidification/stabilization. Single-factor and orthogonal experiments were carried out that aimed to explore the effects of various parameters (alkali solid content, water glass modulus, liquid-solid ratio, and initial curing temperature) for alkali-activated LZSS. Additionally, compressive strength and leaching toxicity were the indexes used to evaluate the performance of the solidified bodies containing COPR. As a result, the highest compressive strength of alkali-activated LZSS reached 84.49 MPa, and when 40% COPR was added, the strength decreased to 1.42 MPa. However, the leaching concentrations of Zn and Cr from all the solidified bodies were far below the critical limits (US EPA Method 1311 and China GB5085.3-2007). Heavy-metal ions in LZSS and COPR were immobilized successfully by chemical and physical means, which was detected by analyses including environmental scanning electron microscopy with energy-dispersive spectrometry, Fourier transform infrared spectrometry, and X-ray diffraction.


Asunto(s)
Álcalis , Metales Pesados , Residuos Industriales/análisis , Plomo , Metales Pesados/análisis , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...