Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.345
Filtrar
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 153-158, 2024 Jan 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38615177

RESUMEN

Bipolar affective disorder refers to a category of mood disorders characterized clinically by the presence of both manic or hypomanic episodes and depressive episodes. Lithium stands out as the primary pharmacological intervention for managing bipolar affective disorder. However, its therapeutic dosage closely approaches toxic levels. Toxic symptoms appear when the blood lithium concentration surpasses 1.4 mmol/L, typically giving rise to gastrointestinal and central nervous system reactions. Cardiac toxicity is rare but serious in cases of lithium poisoning. The study reports a case of a patient with bipolar affective disorder who reached a blood lithium concentration of 6.08 mmol/L after the patient took lithium carbonate sustained-release tablets beyond the prescribed dosage daily and concurrently using other mood stabilizers. This resulted in symptoms such as arrhythmia, shock, impaired consciousness, and coarse tremors. Following symptomatic supportive treatment, including blood dialysis, the patient's physical symptoms gradually improved. It is necessary for clinicians to strengthen the prevention and recognition of lithium poisoning.


Asunto(s)
Hemodinámica , Litio , Humanos , Anticonvulsivantes , Arritmias Cardíacas/inducido químicamente , Sistema Nervioso Central
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1154-1163, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621962

RESUMEN

Ischemic stroke is divided into acute phase, subacute phase, and recovery phase, with different pathological and physiological characteristics manifested at each stage. Among them, immune and inflammatory reactions persist for several days and weeks after ischemia. Ischemic stroke not only triggers local inflammation in damaged brain regions but also induces a disorder in the immune system, thereby promoting neuroinflammation and exacerbating brain damage. Therefore, conducting an in-depth analysis of the interaction between the central nervous system and the immune system after ischemic stroke, intervening in the main factors of the interaction between them, blocking pathological cascades, and thereby reducing brain inflammation have become the treatment strategies for ischemic stroke. This study summarizes and sorts out the interaction pathways between the central nervous system and the immune system. The impact of the central nervous system on the immune system can be analyzed from the perspective of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis(HPA), and local inflammatory stimulation. The impact of the immune system on the central nervous system can be analyzed from the dynamic changes of immune cells. At the same time, the relevant progress in the prevention and treatment of traditional Chinese medicine(TCM) is summarized, so as to provide new insights for the analysis of complex mechanisms of TCM in preventing and treating ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Medicina Tradicional China , Sistema Hipotálamo-Hipofisario/patología , Sistema Hipófiso-Suprarrenal/patología , Sistema Nervioso Central , Isquemia Encefálica/terapia , Sistema Inmunológico , Inflamación
3.
Methods Mol Biol ; 2782: 167-173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38622401

RESUMEN

Microglia and oligodendrocyte precursor cells (OPCs) are critical glia subsets in the central nervous system (CNS) and are actively engaged in a body of diseases, such as stroke, Alzheimer's disease, multiple sclerosis, etc. Microglia and OPC serve as compelling tools for the study of CNS diseases as well as the repair and damage of myelin sheath in vitro. In this protocol, we summarized a method which is capable of using the same batch of new-born mice to isolate and culture microglia and OPCs. It integrates the characteristics of practicality, convenience, and efficiency, providing a convenient, easy, and reliable technique for research.


Asunto(s)
Microglía , Células Precursoras de Oligodendrocitos , Ratones , Animales , Diferenciación Celular/fisiología , Vaina de Mielina , Sistema Nervioso Central , Oligodendroglía
4.
J Neuroinflammation ; 21(1): 97, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627787

RESUMEN

The unfavorable prognosis of many neurological conditions could be attributed to limited tissue regeneration in central nervous system (CNS) and overwhelming inflammation, while liver X receptor (LXR) may regulate both processes due to its pivotal role in cholesterol metabolism and inflammatory response, and thus receives increasing attentions from neuroscientists and clinicians. Here, we summarize the signal transduction of LXR pathway, discuss the therapeutic potentials of LXR agonists based on preclinical data using different disease models, and analyze the dilemma and possible resolutions for clinical translation to encourage further investigations of LXR related therapies in CNS disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Receptores Nucleares Huérfanos , Humanos , Receptores X del Hígado , Receptores Nucleares Huérfanos/metabolismo , Sistema Nervioso Central/metabolismo , Inflamación , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico
5.
Methods Mol Biol ; 2794: 45-62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630219

RESUMEN

Immunocytochemistry, a method of delineating the subcellular localization of target proteins, was developed from immunohistochemistry. In principle, proteins are labeled using an antigen-antibody reaction. In order to observe under an electron microscope, the reaction product must scatter the electron beam with sufficient contrast while it is necessary to have an amplifying label that can withstand the observation. We have some detailed tips on making electron microscope samples to achieve this objective, and we would be happy to help you.


Asunto(s)
Sistema Nervioso Central , Microscopía Inmunoelectrónica
6.
Neuromolecular Med ; 26(1): 14, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630350

RESUMEN

Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.


Asunto(s)
Microbioma Gastrointestinal , Esclerosis Múltiple , Humanos , Sistema Nervioso Central , Colon , Ácidos Grasos Volátiles , Inflamación
7.
Neurosurg Rev ; 47(1): 146, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38600419

RESUMEN

This critique evaluates a letter to the editor discussing prognostic factors in primary central nervous system lymphoma (PCNSL), focusing on C-reactive protein (CRP) levels, prognostic nutritional index (PNI), and lactate dehydrogenase (LDH)-to-lymphocyte ratio. While the letter provides valuable insights, limitations including reliance on a single-center dataset, lack of consideration for potential confounders, insufficient contextualization within existing literature, and limited discussion of clinical implications are identified. Addressing these limitations is crucial for enhancing the relevance and applicability of the findings in PCNSL management.


Asunto(s)
Proteína C-Reactiva , Neoplasias del Sistema Nervioso Central , Lactato Deshidrogenasas , Linfocitos , Linfoma , Humanos , Proteína C-Reactiva/análisis , Sistema Nervioso Central , Neoplasias del Sistema Nervioso Central/diagnóstico , Lactato Deshidrogenasas/análisis , Linfoma/diagnóstico , Evaluación Nutricional , Pronóstico , Estudios Retrospectivos
8.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587074

RESUMEN

The central nervous system HIV reservoir is incompletely understood and is a major barrier to HIV cure. We profiled people with HIV (PWH) and uninfected controls through single-cell transcriptomic and T cell receptor (TCR) sequencing to understand the dynamics of HIV persistence in the CNS. In PWH on ART, we found that most participants had single cells containing HIV-1 RNA, which was found predominantly in CD4 central memory T cells, in both cerebrospinal fluid (CSF) and blood. HIV-1 RNA-containing cells were found more frequently in CSF than blood, indicating a higher burden of reservoir cells in the CNS than blood for some PWH. Most CD4 T cell clones containing infected cells were compartment specific, while some (22%) - including rare clones with members of the clone containing detectable HIV RNA in both blood and CSF - were found in both CSF and blood. These results suggest that infected T cells trafficked between tissue compartments and that maintenance and expansion of infected T cell clones contributed to the CNS reservoir in PWH on ART.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Sistema Nervioso Central , ARN , Células Clonales
9.
Neurol Clin ; 42(2): 389-432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575258

RESUMEN

Vasculitis refers to heterogeneous clinicopathologic disorders that share the histopathology of inflammation of blood vessels. Unrecognized and therefore untreated, vasculitis of the nervous system leads to pervasive injury and disability making this a disorder of paramount importance to all clinicians. Headache may be an important clue to vasculitic involvement of central nervous system (CNS) vessels. CNS vasculitis may be primary, in which only intracranial vessels are involved in the inflammatory process, or secondary to another known disorder with overlapping systemic involvement. Primary neurologic vasculitides can be diagnosed with assurance after intensive evaluation that incudes tissue confirmation whenever possible.


Asunto(s)
Cefalea , Vasculitis del Sistema Nervioso Central , Humanos , Cefalea/diagnóstico , Cefalea/etiología , Vasculitis del Sistema Nervioso Central/complicaciones , Vasculitis del Sistema Nervioso Central/diagnóstico , Vasculitis del Sistema Nervioso Central/patología , Sistema Nervioso Central/patología , Inflamación
10.
PLoS One ; 19(4): e0301430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578715

RESUMEN

BACKGROUND: SCI is a time-sensitive debilitating neurological condition without treatment options. Although the central nervous system is not programmed for effective endogenous repairs or regeneration, neuroplasticity partially compensates for the dysfunction consequences of SCI. OBJECTIVE AND HYPOTHESIS: The purpose of our study is to investigate whether early induction of hypothermia impacts neuronal tissue compensatory mechanisms. Our hypothesis is that although neuroplasticity happens within the neuropathways, both above (forelimbs) and below (hindlimbs) the site of spinal cord injury (SCI), hypothermia further influences the upper limbs' SSEP signals, even when the SCI is mid-thoracic. STUDY DESIGN: A total of 30 male and female adult rats are randomly assigned to four groups (n = 7): sham group, control group undergoing only laminectomy, injury group with normothermia (37°C), and injury group with hypothermia (32°C +/-0.5°C). METHODS: The NYU-Impactor is used to induce mid-thoracic (T8) moderate (12.5 mm) midline contusive injury in rats. Somatosensory evoked potential (SSEP) is an objective and non-invasive procedure to assess the functionality of selective neuropathways. SSEP monitoring of baseline, and on days 4 and 7 post-SCI are performed. RESULTS: Statistical analysis shows that there are significant differences between the SSEP signal amplitudes recorded when stimulating either forelimb in the group of rats with normothermia compared to the rats treated with 2h of hypothermia on day 4 (left forelimb, p = 0.0417 and right forelimb, p = 0.0012) and on day 7 (left forelimb, p = 0.0332 and right forelimb, p = 0.0133) post-SCI. CONCLUSION: Our results show that the forelimbs SSEP signals from the two groups of injuries with and without hypothermia have statistically significant differences on days 4 and 7. This indicates the neuroprotective effect of early hypothermia and its influences on stimulating further the neuroplasticity within the upper limbs neural network post-SCI. Timely detection of neuroplasticity and identifying the endogenous and exogenous factors have clinical applications in planning a more effective rehabilitation and functional electrical stimulation (FES) interventions in SCI patients.


Asunto(s)
Hipotermia , Traumatismos de la Médula Espinal , Humanos , Ratas , Masculino , Femenino , Animales , Traumatismos de la Médula Espinal/terapia , Potenciales Evocados Somatosensoriales/fisiología , Sistema Nervioso Central , Plasticidad Neuronal/fisiología , Médula Espinal
11.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611758

RESUMEN

Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system that is clinically characterized by a progressive decline in memory and cognitive function. The pathogenesis of AD is intricate and not yet fully understood. Neuroinflammation, particularly microglial activation-mediated neuroinflammation, is believed to play a crucial role in increasing the risk, triggering the onset, and hastening the progression of AD. Modulating microglial activation and regulating microglial energy metabolic disorder are seen as promising strategies to intervene in AD. The application of anti-inflammatory drugs and the targeting of microglia for the prevention and treatment of AD has emerged as a new area of research interest. This article provides a comprehensive review of the role of neuroinflammation of microglial regulation in the development of AD, exploring the connection between microglial energy metabolic disorder, neuroinflammation, and AD development. Additionally, the advancements in anti-inflammatory and microglia-regulating therapies for AD are discussed.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Microglía , Enfermedades Neuroinflamatorias , Sistema Nervioso Central , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
12.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612597

RESUMEN

Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.


Asunto(s)
Analgésicos Opioides , Imidazoles , Naftalenos , Nitrocompuestos , Sulfóxidos , Traumatismos del Sistema Nervioso , Humanos , Animales , Ratones , Ratas , Maraviroc , Sistema Nervioso Central , Sistema Nervioso Periférico
13.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612605

RESUMEN

Central nervous system (CNS) damage leads to severe neurological dysfunction as a result of neuronal cell death and axonal degeneration. As, in the mature CNS, neurons have little ability to regenerate their axons and reconstruct neural loss, demyelination is one of the hallmarks of neurological disorders such as multiple sclerosis (MS). Unfortunately, remyelination, as a regenerative process, is often insufficient to prevent axonal loss and improve neurological deficits after demyelination. Currently, there are still no effective therapeutic tools to restore neurological function, but interestingly, emerging studies prove the beneficial effects of lipid supplementation in a wide variety of pathological processes in the human body. In the future, available lipids with a proven beneficial effect on CNS regeneration could be included in supportive therapy, but this topic still requires further studies. Based on our and others' research, we review the role of exogenous lipids, pointing to substrates that are crucial in the remyelination process but are omitted in available studies, justifying the properly profiled supply of lipids in the human diet as a supportive therapy during CNS regeneration.


Asunto(s)
Sistema Nervioso Central , Esclerosis Múltiple , Humanos , Ácidos Grasos Monoinsaturados , Esclerosis Múltiple/tratamiento farmacológico , Suplementos Dietéticos
14.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612804

RESUMEN

Neurodegenerative disorders (NDs) have become increasingly common during the past three decades. Approximately 15% of the total population of the world is affected by some form of NDs, resulting in physical and cognitive disability. The most common NDs include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Although NDs are caused by a complex interaction of genetic, environmental, and lifestyle variables, neuroinflammation is known to be associated with all NDs, often leading to permanent damage to neurons of the central nervous system. Furthermore, numerous emerging pieces of evidence have demonstrated that inflammation not only supports the progression of NDs but can also serve as an initiator. Hence, various medicines capable of preventing or reducing neuroinflammation have been investigated as ND treatments. While anti-inflammatory medicine has shown promising benefits in several preclinical models, clinical outcomes are often questionable. In this review, we discuss various NDs with their current treatment strategies, the role of neuroinflammation in the pathophysiology of NDs, and the use of anti-inflammatory agents as a potential therapeutic option.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Humanos , Enfermedades Neuroinflamatorias , Inflamación/terapia , Sistema Nervioso Central
15.
Nutrients ; 16(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38613126

RESUMEN

Given the comprehensive examination of the role of fatty acid-rich diets in central nervous system development in children, this study bridges significant gaps in the understanding of dietary effects on neurodevelopment. It delves into the essential functions of fatty acids in neurodevelopment, including their contributions to neuronal membrane formation, neuroinflammatory modulation, neurogenesis, and synaptic plasticity. Despite the acknowledged importance of these nutrients, this review reveals a lack of comprehensive synthesis in current research, particularly regarding the broader spectrum of fatty acids and their optimal levels throughout childhood. By consolidating the existing knowledge and highlighting critical research gaps, such as the effects of fatty acid metabolism on neurodevelopmental disorders and the need for age-specific dietary guidelines, this study sets a foundation for future studies. This underscores the potential of nutritional strategies to significantly influence neurodevelopmental trajectories, advocating an enriched academic and clinical understanding that can inform dietary recommendations and interventions aimed at optimizing neurological health from infancy.


Asunto(s)
Dieta , Neurogénesis , Niño , Humanos , Ácidos Grasos , Valor Nutritivo , Sistema Nervioso Central
16.
Front Immunol ; 15: 1370107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596673

RESUMEN

Tissue damage elicits a wound healing response of inflammation and remodeling aimed at restoring homeostasis. Dysregulation of wound healing leads to accumulation of effector cells and extracellular matrix (ECM) components, collectively termed fibrosis, which impairs organ functions. Fibrosis of the central nervous system, neurofibrosis, is a major contributor to the lack of neural regeneration and it involves fibroblasts, microglia/macrophages and astrocytes, and their deposited ECM. Neurofibrosis occurs commonly across neurological conditions. This review describes processes of wound healing and fibrosis in tissues in general, and in multiple sclerosis in particular, and considers approaches to ameliorate neurofibrosis to enhance neural recovery.


Asunto(s)
Esclerosis Múltiple , Humanos , Cicatrización de Heridas , Sistema Nervioso Central , Fibrosis , Biología
17.
Cell Mol Life Sci ; 81(1): 181, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615095

RESUMEN

In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.


Asunto(s)
Vaina de Mielina , Trastornos del Neurodesarrollo , Animales , Cognición , Sistema Nervioso Central , Encéfalo
18.
Rev Neurol ; 78(8): 229-235, 2024 Apr 16.
Artículo en Español | MEDLINE | ID: mdl-38618670

RESUMEN

In pediatric patients, an acute altered mental status refers to a sudden and significant change in a child's brain function and level of consciousness. It may manifest as confusion, disorientation, agitation, lethargy or even a loss of consciousness. This condition is a medical emergency, and requires immediate evaluation and attention. There are several causes of acute altered mental status in children, including infections of the central nervous system such as meningitis or encephalitis, traumatic brain injury, metabolic disorders, seizures and poisoning, among others. The aim of this study was to analyse, prepare and classify the current literature in order to determine the best recommendations for the treatment of cases of acute altered mental status with various causes in pediatric patients. The study was based on opinions from experts in the field in order to classify the recommendations, and was submitted to the scientific committee of the Iberoamerican Academy of Pediatric Neurology for review. Our guide is an aid for the treatment of this non-specific symptom based on a basic and advanced approach, which can be applied by any pediatric neurologist.


TITLE: Guía de tratamiento de la alteración aguda del estado mental. Academia Iberoamericana de Neurología Pediátrica.La alteración aguda del estado mental en pediatría se refiere a un cambio repentino y significativo en la función cerebral y el nivel de conciencia de un niño. Puede manifestarse como confusión, desorientación, agitación, letargo o incluso pérdida de la conciencia. Esta condición es una emergencia médica, y requiere una evaluación y una atención inmediatas. Existen diversas causas de alteración aguda del estado mental en niños, algunas de las cuales incluyen infecciones del sistema nervioso central, como la meningitis o la encefalitis, los traumatismos craneoencefálicos, los trastornos metabólicos, las convulsiones o las intoxicaciones, entre otras. Este estudio tuvo como objetivo analizar, preparar y calificar la bibliografía actual para determinar las mejores recomendaciones sobre el tratamiento ante casos de alteración aguda del estado mental en pediatría de diferentes causas. El estudio se basó en la calificación de expertos en el campo para poder determinar la calificación de las recomendaciones, además de ser sometido a la revisión por parte del comité científico de la Academia Iberoamericana de Neurología Pediátrica. Nuestra guía representa una ayuda para el tratamiento de este síntoma inespecífico desde un enfoque básico y avanzado, aplicable por cualquier neurólogo pediatra.


Asunto(s)
Trastornos Mentales , Neurología , Humanos , Niño , Confusión , Sistema Nervioso Central , Neurólogos
19.
J Vis Exp ; (205)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38619261

RESUMEN

Gene therapy is a powerful technology to deliver new genes to a patient for the treatment of disease, be it to introduce a functional gene, inactivate a toxic gene, or provide a gene whose product can modulate the biology of the disease. The delivery method for the therapeutic vector can take many forms, ranging from intravenous infusion for systemic delivery to direct injection into the target tissue. For neurodegenerative disorders, it is often desirable to skew transduction towards the brain and/or spinal cord. The least invasive approach to target the entire central nervous system involves injection into the cerebrospinal fluid (CSF), allowing the therapeutic to reach a large fraction of the central nervous system. The safest approach to deliver a vector into the CSF is the lumbar intrathecal injection, where a needle is introduced into the lumbar cistern of the spinal cord. This technique, also known as a lumbar puncture, has been widely used in neonatal and adult rodents and in large animal models. While the technique is similar across species and developmental stages, subtle differences in size, structure, and elasticity of tissues surrounding the intrathecal space require accommodations in the approach. This article describes a method for performing lumbar puncture in juvenile rats to deliver an adeno-associated serotype 9 vector. Here, 25-35 µL of vector were injected into the lumbar cistern, and a green fluorescent protein (GFP) reporter was used to evaluate the transduction profile resulting from each injection. The benefits and challenges of this approach are discussed.


Asunto(s)
Sistema Nervioso Central , Médula Espinal , Adulto , Ratas , Animales , Humanos , Inyecciones , Acomodación Ocular , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...