Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.828
Filtrar
1.
Front Immunol ; 15: 1377270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585268

RESUMEN

Introduction: Signal peptide peptidase (SPP) is an intramembrane protease involved in a variety of biological processes, it participates in the processing of signal peptides after the release of the nascent protein to regulate the endoplasmic reticulum associated degradation (ERAD) pathway, binds misfolded membrane proteins, and aids in their clearance process. Additionally, it regulates normal immune surveillance and assists in the processing of viral proteins. Although SPP is essential for many viral infections, its role in silkworms remains unclear. Studying its role in the silkworm, Bombyx mori , may be helpful in breeding virus-resistant silkworms. Methods: First, we performed RT-qPCR to analyze the expression pattern of BmSPP. Subsequently, we inhibited BmSPP using the SPP inhibitor 1,3-di-(N-carboxybenzoyl-L-leucyl-L-leucylaminopropanone ((Z-LL)2-ketone) and downregulated the expression of BmSPP using CRISPR/Cas9 gene editing. Furthermore, we assessed the impact of these interventions on the proliferation of Bombyx mori nucleopolyhedrovirus (BmNPV). Results: We observed a decreased in the expression of BmSPP during viral proliferation. It was found that higher concentration of the inhibitor resulted in greater inhibition of BmNPV proliferation. The down-regulation of BmSPP in both in vivo and in vitro was found to affect the proliferation of BmNPV. In comparison to wild type silkworm, BmSPPKO silkworms exhibited a 12.4% reduction in mortality rate. Discussion: Collectively, this work demonstrates that BmSPP plays a negative regulatory role in silkworm resistance to BmNPV infection and is involved in virus proliferation and replication processes. This finding suggests that BmSPP servers as a target gene for BmNPV virus resistance in silkworms and can be utilized in resistance breeding programs.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/genética , Edición Génica , Regulación hacia Abajo
2.
Arch Virol ; 169(5): 108, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658418

RESUMEN

The occlusion bodies of Autographa californica multiple nucleopolyhedrovirus are proteinaceous formations with significant biotechnological potential owing to their capacity to integrate foreign proteins through fusion with polyhedrin, their primary component. However, the strategy for successful heterologous protein inclusion still requires further refinement. In this study, we conducted a comparative assessment of various conditions to achieve the embedding of recombinant proteins within polyhedra. Two baculoviruses were constructed: AcPHGFP (polh+), with GFP as a fusion to wild type (wt) polyhedrin and AcΔPHGFP (polh+), with GFP fused to a fragment corresponding to amino acids 19 to 110 of polyhedrin. These baculoviruses were evaluated by infecting Sf9 cells and stably transformed Sf9, Sf9POLH, and Sf9POLHE44G cells. The stably transformed cells contributed another copy of wt or a mutant polyhedrin, respectively. Polyhedra of each type were isolated and characterized by classical methods. The fusion PHGFP showed more-efficient incorporation into polyhedra than ΔPHGFP in the three cell lines assayed. However, ΔPHGFP polyhedron yields were higher than those of PHGFP in Sf9 and Sf9POLH cells. Based on an integral analysis of the studied parameters, it can be concluded that, except for the AcΔPHGFP/Sf9POLHE44G combination, deficiencies in one factor can be offset by improved performance by another. The combinations AcPHGFP/Sf9POLHE44G and AcΔPHGFP/Sf9POLH stand out due to their high level of incorporation and the large number of recombinant polyhedra produced, respectively. Consequently, the choice between these approaches becomes dependent on the intended application.


Asunto(s)
Biotecnología , Nucleopoliedrovirus , Spodoptera , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/metabolismo , Animales , Células Sf9 , Biotecnología/métodos , Spodoptera/virología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Matriz de Cuerpos de Oclusión , Cuerpos de Oclusión Viral/metabolismo , Cuerpos de Oclusión Viral/genética , Línea Celular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Int J Biol Macromol ; 264(Pt 2): 130842, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484820

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes significant losses to the silkworm industry. Numerous antiviral genes and proteins have been identified by studying silkworm resistance to BmNPV. However, the molecular mechanism of silkworm resistance to BmNPV is unclear. We analyzed the differences between the susceptible strain 871 and a near-isogenic resistant strain 871C. The survival of strain 871C was significantly greater than that of 871 after oral and subcutaneous exposure to BmNPV. Strain 871C exhibited a nearly 10,000-fold higher LD50 for BmNPV compared to 871. BmNPV proliferation was significantly inhibited in all tested tissues of strain 871C using HE strain and fluorescence analysis. Strain 871C exhibited cellular resistance to BmNPV rather than peritrophic membrane or serum resistance. Strain 871C suppressed the expression of the viral early gene Bm60. This led to the inhibition of BmNPV DNA replication and late structural gene transcription based on the cascade regulation of baculovirus gene expression. Bm60 could also interact with the viral DNA binding protein and alkaline nuclease, as well as host proteins Methylcrotonoyl-CoA carboxylase subunit alpha, mucin-2-like protein, and 30 K-8. Overexpression of 30 K-8 significantly inhibited BmNPV proliferation. These results increase understanding of the molecular mechanism behind silkworm resistance to BmNPV and suggest targets for the breeding of resistant silkworm strains and the controlling pest of Lepidoptera.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Bombyx/metabolismo , Nucleopoliedrovirus/fisiología , Genes Virales , Proliferación Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124158, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513318

RESUMEN

A convenient, low-cost, and rapid detection of BmNPV-infected silkworms is of great significance for the safety of the sericulture industry. In this study, a portable NIR system was used to collect the spectra of normal silkworms and the infected silkworms induced by the administration of Bombyx mori nuclear polyhedrosis virus (BmNPV). Different spectral pretreatment methods were applied, then principal component analysis (PCA), linear discriminant analysis (LDA), and partial least squares discriminant analysis (PLSDA) were used for the classification analysis. The results showed that PCA and LDA were unable to achieve the purpose. For the PLSDA calibration, after the pretreatment of SNV combining 2nd derivative, it had a high identification performance, and obtained low classification errors of 0.023, 0.033, and 0.030 for the calibration set, cross-validation set, and test set, respectively, with higher sensitivity and specificity. Therefore, the BmNPV-infected silkworms can be identified by portable NIR spectroscopy, which will effectively reduce losses for the sericulture industry.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Espectroscopía Infrarroja Corta/métodos , Quimiometría
5.
J Invertebr Pathol ; 203: 108072, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38341022

RESUMEN

Pathogenic microorganism of silkworm are important factors that threaten the high-quality development of sericulture. Among them, Bombyx mori nucleopolyhedrovirus (BmNPV) caused diseases often lead to frequent outbreaks and high mortality, resulting in huge losses to sericultural industry. Current molecular detection methods for BmNPV require expensive equipment and sikilled technical personnel. As a result, the most commonly detection method for silkworm egg production enterprises involves observing the presence of polyhedra under a microscope. However, this method has low accuracy and sensitivity. There is an urgent need to develop a new detection technology with high sensitivity, high specificity, and applicability for silkworm farms, silkworm egg production enterprises and quarantine departments. In this study, we successfully established the CRISPR/Cas13a BmNPV visualized detection technology by combining Recombinase Polymerase Amplification (RPA) technology and CRISPR/Cas13a system. This technology is based on microplate lateral, flow test strips and portable fluorescence detector. The detection sensitivity can reach up to 1 copies/µL for positive standard plasmid and 1 fg/µL for BmNPV genome in 30-45 min, demonstrating high sensitivity. By detecting silkworm tissues infected with different pathogens, we determined that CRISPR/Cas13a detection technology has good specificity. In summary, the newly established nucleic acid detection technology for BmNPV is characterized by high sensitivity, high specificity, low cost and convenience for visualization. It can be applied in field detection and silkworm egg quality monitory system.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Nucleopoliedrovirus/genética , Sensibilidad y Especificidad
6.
J Gen Virol ; 105(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38314674

RESUMEN

Baculoviruses are highly host specific, and their host range is usually restricted to a single or a few closely related insect species, except for few virus species, e.g. Alphabaculovirus aucalifonicae and Alphabaculovirus mabrassicae. In this study, two new alphabaculovirus isolates were isolated from the larvae of Mamestra brassicae and Mythimna separata, which were named as Mamestra brassicae multiple nucleopolyhedrovirus isolate QD (MbMNPV-QD) and Mythimna separata multiple nucleopolyhedrovirus isolate Hb (MyseMNPV-Hb), respectively. The Kimura two-parameter values based on the concatenated 38 core genes of baculovirus revealed that MbMNPV (isolates QD/CHb1/K1/CTa), MyseMNPV-Hb, Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV) and Mamestra configurata nucleopolyhedrovirus B (MacoNPV-B) were different isolates of a same virus species. A phylogenetic tree of baculoviruses and nudiviruses constructed from their 20 homologous gene sequences, and that of their isolated hosts constructed from 13 protein-coding genes of the insect mitochondrial genomes, were used to analyse the coevolution of baculoviruses with their isolated hosts. The results showed that M. brassicae was the most likely ancestral host of these virus isolates, included MbMNPV isolates, MyseMNPV-Hb, HearMNPV, and MacoNPV-B. Therefore, we concluded that these virus isolates belong to the existing virus species - Alphabaculovirus mabrassicae with M. brassicae as their ancestral host.


Asunto(s)
Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/genética , Filogenia , Larva , Baculoviridae , Especificidad del Huésped , Insectos
7.
J Gen Virol ; 105(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376497

RESUMEN

Baculoviruses are insect-specific pathogens. Novel baculovirus isolates provide new options for the biological control of pests. Therefore, research into the biological characteristics of newly isolated baculoviruses, including accurate classification and nomenclature, is important. In this study, a baculovirus was isolated from Mythimna separata and its complete genome sequence was determined by next-generation sequencing. The double-stranded DNA genome was 153 882 bp in length, encoding 163 open reading frames. The virus was identified as a variant of Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and designated Mamestra brassicae multiple nucleopolyhedrovirus CHN1 (MbMNPV-CHN1) according to ultrastructural analysis, genome comparison and phylogenetic analysis. Phylogenetic inference placed MbMNPV-CHN1 in a clade containing isolates of MacoNPV-A, MacoNPV-B and MbMNPV, which we have designated the Mb-McNPV group. The genomes of isolates in the Mb-McNPV group exhibited a high degree of collinearity with relatively minor differences in the content of annotated open reading frames. The development of codon usage bias in the Mb-McNPV group was affected mainly by natural selection. MbMNPV-CHN1 shows high infectivity against seven species of Lepidoptera. The yield of MbMNPV-CHN1 in the fourth- and fifth-instar M. separata larvae was 6.25×109-1.23×1010 OBs/cadaver. Our data provide insights into the classification, host range and virulence differences among baculoviruses of the Mb-McNPV group, as well as a promising potential new baculoviral insecticide.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Lepidópteros , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/genética , Filogenia , Baculoviridae/genética , Evolución Biológica
8.
J Innate Immun ; 16(1): 173-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38387449

RESUMEN

INTRODUCTION: The brain is considered as an immune-privileged organ, yet innate immune reactions can occur in the central nervous system of vertebrates and invertebrates. Silkworm (Bombyx mori) is an economically important insect and a lepidopteran model species. The diversity of cell types in the silkworm brain, and how these cell subsets produce an immune response to virus infection, remains largely unknown. METHODS: Single-nucleus RNA sequencing (snRNA-seq), bioinformatics analysis, RNAi, and other methods were mainly used to analyze the cell types and gene functions of the silkworm brain. RESULTS: We used snRNA-seq to identify 19 distinct clusters representing Kenyon cell, glial cell, olfactory projection neuron, optic lobes neuron, hemocyte-like cell, and muscle cell types in the B. mori nucleopolyhedrovirus (BmNPV)-infected and BmNPV-uninfected silkworm larvae brain at the late stage of infection. Further, we found that the cell subset that exerts an antiviral function in the silkworm larvae brain corresponds to hemocytes. Specifically, antimicrobial peptides were significantly induced by BmNPV infection in the hemocytes, especially lysozyme, exerting antiviral effects. CONCLUSION: Our single-cell dataset reveals the diversity of silkworm larvae brain cells, and the transcriptome analysis provides insights into the immune response following virus infection at the single-cell level.


Asunto(s)
Bombyx , Encéfalo , Hemocitos , Inmunidad Innata , Larva , Muramidasa , Animales , Bombyx/inmunología , Bombyx/virología , Encéfalo/inmunología , Encéfalo/virología , Larva/inmunología , Larva/virología , Hemocitos/inmunología , Muramidasa/metabolismo , Muramidasa/genética , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/inmunología , Análisis de la Célula Individual , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
9.
Protein Expr Purif ; 218: 106450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38395208

RESUMEN

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the global pandemic of COVID-19 in 2020. Through structural analysis, it was found that several amino acid residues in the human angiotensin-converting enzyme-2 (hACE2) receptor directly interact with those in the receptor binding domain (RBD) of the spike glycoprotein (S-protein). Various cell lines, including HEK293, HeLa cells, and the baculovirus expression vector system (BEVS) with the insect cell line Sf9, have been utilized to produce the RBD. In this study, we investigated the use of Bombyx mori nucleopolyhedrovirus (BmNPV) and BEVS. For efficient production of a highly pure recombinant RBD protein, we designed it with two tags (His tag and STREP tag) at the C-terminus and a solubilizing tag (SUMO) at the N-terminus. After expressing the protein using BmNPV and silkworm and purifying it with a HisTrap excel column, the eluted protein was digested with SUMO protease and further purified using a Strep-Tactin Superflow column. As a result, we obtained the RBD as a monomer with a yield of 2.6 mg/10 mL serum (equivalent to 30 silkworms). The RBD showed an affinity for the hACE2 receptor. Additionally, the RBDs from the Alpha, Beta, Gamma, Delta, and Omicron variants were expressed and purified using the same protocol. It was found that the RBD from the Alpha, Beta, Gamma, and Delta variants could be obtained with yields of 1.4-2.6 mg/10 mL serum and had an affinity to the hACE2 receptor.


Asunto(s)
Bombyx , COVID-19 , Nucleopoliedrovirus , Animales , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Bombyx/genética , Bombyx/metabolismo , Células HeLa , Células HEK293 , Proteínas Recombinantes , Unión Proteica
10.
Viruses ; 16(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38400028

RESUMEN

Baculoviridae, a virus family characterized by a single large double stranded DNA, encompasses the majority of viral bioinsecticides, representing a highly promising and environmentally friendly pesticide approach to insect control. This study focuses on the characterization of a baculovirus isolated from larvae of Calliteara abietis (Erebidae, Lymantriidae) collected in Mongolian pinaceae forests. This new isolate was called Calliteara abietis nucleopolyhedrovirus (CaabNPV). CaabNPV exhibits an irregular polyhedron shape, and significant variation in the diameter of its occlusion bodies (OBs) was observed. Nucleotide distance calculations confirmed CaabNPV as a novel baculovirus. The CaabNPV genome spans 177,161 bp with a G+C content of 45.12% and harbors 150 potential open reading frames (ORFs), including 38 core genes. A comprehensive genomic analysis categorizes CaabNPV within Group II alphabaculovirus, revealing a close phylogenetic relationship with Alphabaculovirus orleucostigmae (OrleNPV). Additionally, repeat sequence analysis identified three highly repetitive sequences consisting of 112 bp repeat units, known as homologous regions (hrs). This research contributes valuable insights into CaabNPV's phylogenetic placement, genomic structure, and its potential applications in insect biocontrol.


Asunto(s)
Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Baculoviridae/genética , Filogenia , Genoma Viral , Análisis de Secuencia de ADN , Sistemas de Lectura Abierta
11.
Open Biol ; 14(2): 230278, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38378139

RESUMEN

Neuroparasitism concerns the hostile take-over of a host's nervous system by a foreign invader, in order to alter the behaviour of the host in favour of the parasite. One of the most remarkable cases of parasite-induced host behavioural manipulation comprises the changes baculoviruses induce in their caterpillar hosts. Baculoviruses may manipulate caterpillar behaviour in two ways: hyperactivity (increased movement in the horizontal plane) and/or tree-top disease (movement to elevated levels in the vertical plane). Those behavioural changes are followed by liquefaction and death of the caterpillar. In Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected Spodoptera exigua caterpillars, an enzymatic active form of the virally encoded protein tyrosine phosphatase (PTP) is needed for the expression of hyperactivity from 3 days post infection (dpi). Using eGFP-expressing recombinant AcMNPV strains, we show that infection of the caterpillar's central nervous system (CNS) can be observed primarily from 3 dpi onwards. In addition, we demonstrate that the structural and enzymatic function of PTP does not play a role in infection of the CNS. Instead we show that the virus entered the CNS via the trachea, progressing caudally to frontally through the CNS and that the infection progressed from the outermost cell layers towards the inner cell layers of the CNS, in a PTP independent manner. These findings help to further understand parasitic manipulation and the mechanisms by which neuroparasites infect the host nervous system to manipulate host behaviour.


Asunto(s)
Baculoviridae , Sistema Nervioso Central , Nucleopoliedrovirus , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Spodoptera/metabolismo , Sistema Nervioso Central/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
12.
J Invertebr Pathol ; 203: 108063, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286330

RESUMEN

Whole genome sequencing and multiplex PCR analysis were used to characterize previously isolated baculovirus isolates from Mamestra populations in Eurasia. Although these viruses have been previously described as Mamestra brassicae nucleopolyhedrovirus (MbNPV/MabrNPV), we demonstrate here that these isolates represent strains of the baculovirus species Alphabaculovirus maconfiguratae (MacoNPV-A) and Alphabaculovirus altermaconfiguratae (MacoNPV-B). The MabrNPV-Bu and -Uk isolates had 96% nucleotide (nt) identity to the type isolate MacoNPV-A 90/2 at the whole genome level and in addition contained a lef-7 homologue which is found in MacoNPV-A but not MacoNPV-B. MabrNPV-Si, -De and -Nl had 96.6, 96.6 and 98.5% nt identity to the type isolate MacoNPV-B 96/2 at the whole genome level, respectively and contained a helicase-2 homologue. Gene content, synteny and K-2-P lef-8, lef-9 and polh analysis also confirmed the presence of both MacoNPV-A and MacoNPV-B isolates in Eurasia. Thus, both these alphabaculovirus species have wide Holarctic distributions in Mamestra host species. MacoNPV-A and MacoNPV-B have wide host ranges and in addition we showed that MacoNPV-B isolates trended to higher infectivity for T. ni larvae.


Asunto(s)
Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/genética , Secuencia de Bases , Larva , Genoma Viral , Genómica , Filogenia
13.
Virus Genes ; 60(2): 194-207, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240955

RESUMEN

The complete genome of a European pine sawfly Neodiprion sertifer nucleopolyhedrovirus (NeseNPV-TR) was sequenced and characterized from next-generation sequencing data of N. sertifer larva from Türkiye. This genome was analyzed and compared to previously reported genomes of baculoviruses. The baculovirus phylogeny was reconstructed and the species identity of the NeseNPV-TR was delineated using K2P distance. The length of the genome was 82,052 bp, with a G + C content of 33.28%. It contained 83 putative ORFs, including 38 baculovirus core genes, three lepidopteran baculovirus core genes, and three non-conserved genes. It had five hrs with 20.6% overall mean distance on average. The pairwise K2P distances of lef-8, lef-9, and polh genes and combinations of three genes and 38 genes between NeseNPV-TR and NeseNPV were slightly higher than the specified threshold values for species demarcation. The most variable genes were lef-2, helicase, p40, desmoplakin, pif7, p6.9, vp91, and vp39, while the most conserved were lef-8, lef-9, odv-e18, pif2, and lef-5 among baculoviruses. The genome of NeseNPV-TR is smaller and contains the fewest ORFs among baculoviruses. Some of unassigned ORFs had conserved domains and hence, we suggest further investigation to determine their structural and functional roles. Phylogenetic analyses confirmed its position within genus Gammabaculovirus. Taking into account the phylogenetic position, K2P distances, and NJ tree, the NeseNPV-TR can be classified in the same species (Gammabaculovirus nesertiferis) with NeseNPV. The different divergence rates in the baculovirus core genes may be related with different selection pressures acting on the genes. The lower genetic diversity of Group I alphabaculoviruses is most probably due to recent emergence.


Asunto(s)
Nucleopoliedrovirus , Nucleopoliedrovirus/genética , Baculoviridae/genética , Turquia , Filogenia , Sistemas de Lectura Abierta , Genoma Viral , Análisis de Secuencia de ADN , Genómica
14.
BMC Genomics ; 25(1): 91, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253995

RESUMEN

BACKGROUND: Spodoptera litura is a harmful pest that feeds on more than 80 species of plants, and can be infected and killed by Spodoptera litura nucleopolyhedrovirus (SpltNPV). SpltNPV-C3 is a type C SpltNPV clone, that was observed and collected in Japan. Compared with type A or type B SpltNPVs, SpltNPV-C3 can cause the rapid mortality of S. litura larvae. METHODS: In this study, occlusion bodies (OBs) and occlusion-derived viruses (ODVs) of SpltNPV-C3 were purified, and OBs were observed by scanning electron microscopy (SEM). ODVs were observed under a transmission electron microscope (TEM). RESULTS: Both OBs and ODVs exhibit morphological characteristics typical of nucleopolyhedroviruses (NPVs).The genome of SpltNPV-C3 was sequenced and analyzed; the total length was 148,634 bp (GenBank accession 780,426,which was submitted as SpltNPV-II), with a G + C content of 45%. A total of 149 predicted ORFs were found. A phylogenetic tree of 90 baculoviruses was constructed based on core baculovirus genes. LC‒MS/MS was used to analyze the proteins of SpltNPV-C3; 34 proteins were found in the purified ODVs, 15 of which were core proteins. The structure of the complexes formed by per os infectivity factors 1, 2, 3 and 4 (PIF-1, PIF-2, PIF-3 and PIF-4) was predicted with the help of the AlphaFold multimer tool and predicted conserved sequences in PIF-3. SpltNPV-C3 is a valuable species because of its virulence, and the analysis of its genome and proteins in this research will be beneficial for pest control efforts.


Asunto(s)
Nucleopoliedrovirus , Proteoma , Animales , Nucleopoliedrovirus/genética , Spodoptera , Cromatografía Liquida , Filogenia , Espectrometría de Masas en Tándem , Baculoviridae
15.
Arch Insect Biochem Physiol ; 115(1): e22079, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288491

RESUMEN

HSP90 is a highly conserved chaperone that facilitates the proliferation of many viruses, including silkworm (bombyx mori) nucleopolyhedrovirus (BmNPV), but the underlying regulatory mechanism was unclear. We found that suppression of HSP90 by 17-AAG, a HSP90-specific inhibitor, significantly reduced the expression of BmNPV capsid protein gp64 and viral genome replication, whereas overexpression of B. mori HSP90(BmHSP90) promoted BmNPV replication. Furthermore, in a recent study of the lysine acetylome of B. mori infected with BmNPV, we focused on the reduced viral proliferation due to changes of BmHSP90 lysine acetylation. Site-directed introduction of acetylated (K/Q) or deacetylated (K/R) mimic mutations into BmHSP90 revealed that lysine 64 (K64) acetylation activated the JAK/STAT pathway and reduced BmHSP90 ATPase activity, leading to diminished chaperone activity and ultimately inhibiting BmNPV proliferation. In this study, a single lysine 64 acetylation change of BmHSP90 was elucidated as a model of posttranslational modifications occurring in the wake of host-virus interactions, providing novel insights into potential antiviral strategies.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Bombyx/genética , Nucleopoliedrovirus/genética , Acetilación , Lisina , Quinasas Janus/metabolismo , Proteínas de Insectos/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo
16.
J Virol ; 98(2): e0190023, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289107

RESUMEN

The endosomal sorting complex required for transport (ESCRT) is a conserved protein machine mediating membrane remodeling and scission. In the context of viral infection, different components of the ESCRT-III complex, which serve as the core machinery to catalyze membrane fission, are involved in diverse viruses' entry, replication, and/or budding. However, the interplay between ESCRT-III and viral factors in the virus life cycle, especially for that of large enveloped DNA viruses, is largely unknown. Recently, the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 were determined for entry and/or egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we identified the final three ESCRT-III components Chm7, Ist1, and Vps2A of Spodoptera frugiperda. Overexpression of the dominant-negative forms of these proteins or RNAi downregulation of their transcripts significantly reduced infectious budded viruses (BVs) production of AcMNPV. Quantitative PCR together with confocal and transmission electron microscopy analysis revealed that these proteins were required for internalization and trafficking of BV during entry and egress of nucleocapsids. In infected Sf9 cells, nine ESCRT-III components were distributed on the nuclear envelope and plasma membrane, and except for Chm7, the other components were also localized to the intranuclear ring zone. Y2H and BiFC analysis revealed that 42 out of 64 BV-related proteins including 35 BV structural proteins and 7 non-BV structural proteins interacted with single or multiple ESCRT-III components. By further mapping the interactome of 64 BV-related proteins, we established the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress.IMPORTANCEFrom archaea to eukaryotes, the endosomal sorting complex required for transport (ESCRT)-III complex is hijacked by many enveloped and nonenveloped DNA or RNA viruses for efficient replication. However, the mechanism of ESCRT-III recruitment, especially for that of large enveloped DNA viruses, remains elusive. Recently, we found the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 are necessary for the entry and/or egress of budded viruses (BVs) of Autographa californica multiple nucleopolyhedrovirus. Here, we demonstrated that the other three ESCRT-III components Chm7, Ist1, and Vps2A play similar roles in BV infection. By determining the subcellular localization of ESCRT-III components in infected cells and mapping the interaction of nine ESCRT-III components and 64 BV-related proteins, we built the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress. These studies provide a fundamental basis for understanding the mechanism of the ESCRT-mediated membrane remodeling for replication of baculoviruses.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Interacciones Microbiota-Huesped , Nucleopoliedrovirus , Spodoptera , Proteínas Virales , Internalización del Virus , Liberación del Virus , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/ultraestructura , Nucleopoliedrovirus/metabolismo , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/ultraestructura , Spodoptera/citología , Spodoptera/metabolismo , Spodoptera/ultraestructura , Spodoptera/virología , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura , Replicación Viral , Transporte Biológico , Células Sf9
17.
Insect Biochem Mol Biol ; 166: 104073, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215915

RESUMEN

The peritrophic matrix (or peritrophic membrane, PM) is present in most insects where it acts as a barrier to mechanical insults and pathogens, as well as a facilitator of digestive processes. The PM is formed by the binding of structural PM proteins, referred to as peritrophins, to chitin fibrils and spans the entire midgut in lepidopterans. To investigate the role of peritrophins in a highly polyphagous lepidopteran pest, namely the cotton leafworm (Spodoptera littoralis), we generated Insect Intestinal Mucin (IIM-) and non-mucin Peritrophin (PER-) mutant strains via CRISPR/Cas9 mutagenesis. Both strains exhibited deformed PMs and retarded developmental rates. Bioassays conducted with Bacillus thuringiensis (Bt) and nucleopolyhedrovirus (SpliNPV) formulations showed that both the IIM- and PER- mutant larvae were more susceptible to these bioinsecticides compared to the wild-type (WT) larvae with intact PM. Interestingly, the provision of chitin-binding agent Calcofluor (CF) in the diet lowered the toxicity of Bt formulations in both WT and IIM- larvae and the protective effect of CF was significantly lower in PER- larvae. This suggested that the interaction of CF with PER is responsible for Bt resistance mediated by CF. In contrast, the provision of CF caused increased susceptibility to SpliNPV in both mutants and WT larvae. The study showed the importance of peritrophins in the defense against pathogens in S. littoralis and revealed novel insights into CF-mediated resistance to Cry toxin.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Bacillus thuringiensis/metabolismo , Spodoptera/metabolismo , Nucleopoliedrovirus/metabolismo , Mariposas Nocturnas/metabolismo , Larva/metabolismo , Endotoxinas/farmacología , Quitina/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Hemolisinas/farmacología
18.
Int J Biol Macromol ; 256(Pt 2): 128466, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38035957

RESUMEN

Spider silks with excellent mechanical properties attract more attention from scientists worldwide, and the dragline silk that serves as the framework of the spider's web is considered one of the strongest fibers. However, it is unfeasible for large-scale production of spider silk due to its highly territorial, cannibalistic, predatory, and solitary behavior. Herein, to alleviate some of these problems and explore aneasy way to produce spider fibers, we constructed recombinant baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) simultaneously expressing Trichonephila clavipes native ampullate spidroin 2 (MaSp-G) and spidroin 1 (MaSp-C) driven by the promoters of silkworm fibroin genes, to infect the nonpermissive Bombyx mori larvae at the fifth instar. MaSp-G and MaSp-C were co-expressed in the posterior silk glands (PSGs) of infected silkworms and successfully secreted into the lumen of the silk gland for fibroin globule assembly. The integration of MaSp-G and MaSp-C into silkworm silk fibers significantly improved the mechanical properties of these chimeric silk fibers, especially the strength and extensibility, which may be caused by the increment of ß-sheet in the chimeric silkworm/spider silk fiber. These results demonstrated that silkworms could be developed as the nonpermissive heterologous host for the mass production of chimeric silkworm/spider silk fibers via the recombinant baculovirus AcMNPV.


Asunto(s)
Bombyx , Fibroínas , Nucleopoliedrovirus , Arañas , Animales , Seda/genética , Bombyx/genética , Fibroínas/genética , Animales Modificados Genéticamente , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa
19.
Insect Biochem Mol Biol ; 164: 104043, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013005

RESUMEN

The midgut is an important barrier against microorganism invasion and proliferation, yet is the first tissue encountered when a baculovirus naturally invades the host. However, only limited knowledge is available how different midgut cell types contribute to the immune response and the clearance or promotion of viral infection. Here, single-nucleus RNA sequencing (snRNA seq) was employed to analyze the responses of various cell subpopulations in the silkworm larval midgut to B. mori nucleopolyhedrovirus (BmNPV) infection. We identified 22 distinct clusters representing enteroendocrine cells (EEs), enterocytes (ECs), intestinal stem cells (ISCs), Goblet cell-like and muscle cell types in the BmNPV-infected and uninfected silkworm larvae midgut at 72 h post infection. Further, our results revealed that the strategies for immune escape of BmNPV in the midgut at the late stage of infection include (1) inhibiting the response of antiviral pathways; (2) inhibiting the expression of antiviral host factors; (3) stimulating expression levels of genes promoting BmNPV replication. These findings suggest that the midgut, as the first line of defense against the invasion of the baculovirus, has dual characteristics of "resistance" and "tolerance". Our single-cell dataset reveals the diversity of silkworm larval midgut cells, and the transcriptome analysis provides insights into the interaction between host and virus infection at the single-cell level.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/metabolismo , Bombyx/genética , Bombyx/metabolismo , Larva/metabolismo , Sistema Digestivo , Antivirales
20.
Arch Insect Biochem Physiol ; 115(1): e22066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013610

RESUMEN

Stilbene-based fluorescent brighteners (FBs) have been demonstrated to improve the insecticidal activities of entomopathogenic viruses; however, there is limited information regarding their effect on entomopathogenic bacteria. We conducted this study to investigate the effect of two FBs (FB 28 and FB 71) on the insecticidal activities of Bacillus thuringiensis var. kurstaki (Btk) and Lymantria dispar multiple nuclear polyhedrosis virus (LdMNPV) on Lymantria dispar asiatica. FB 28 and Btk combination at low concentration (1.6 × 102 IU/mL) increased the mortality, whereas FB 71 and Btk combination at intermediate and high concentrations (1.6 × 103 and 1.6 × 104 IU/mL) slightly reduced the mortality compared with that with Btk alone. The lethal time was also shorter with combinations of Btk and FB 28 than with FB 71. Both FB 28 and FB 71 increased the mortality in combination with LdMNPV at all concentrations (3 × 102 , 3 × 104 , and 3 × 106 polyhedral occlusion bodies/mL compared with that with LdMNPV alone. Our results suggest that FBs improve the insecticidal activities of Btk and LdMNPV, and their activities depend on their interactions with the midgut structures of the host insect species.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Nucleopoliedrovirus , Animales , Insecticidas/farmacología , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...