Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Environ Sci Technol ; 57(48): 19316-19329, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37962559

We investigated the metabolomic profile associated with exposure to trihalomethanes (THMs) and nitrate in drinking water and with colorectal cancer risk in 296 cases and 295 controls from the Multi Case-Control Spain project. Untargeted metabolomic analysis was conducted in blood samples using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. A variety of univariate and multivariate association analyses were conducted after data quality control, normalization, and imputation. Linear regression and partial least-squares analyses were conducted for chloroform, brominated THMs, total THMs, and nitrate among controls and for case-control status, together with a N-integration model discriminating colorectal cancer cases from controls through interrogation of correlations between the exposure variables and the metabolomic features. Results revealed a total of 568 metabolomic features associated with at least one water contaminant or colorectal cancer. Annotated metabolites and pathway analysis suggest a number of pathways as potentially involved in the link between exposure to these water contaminants and colorectal cancer, including nicotinamide, cytochrome P-450, and tyrosine metabolism. These findings provide insights into the underlying biological mechanisms and potential biomarkers associated with water contaminant exposure and colorectal cancer risk. Further research in this area is needed to better understand the causal relationship and the public health implications.


Colorectal Neoplasms , Drinking Water , Water Pollutants, Chemical , Humans , Drinking Water/analysis , Drinking Water/chemistry , Trihalomethanes/analysis , Nitrates/analysis , Spain/epidemiology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/epidemiology , Water Pollutants, Chemical/analysis
2.
Article En | MEDLINE | ID: mdl-35768489

BACKGROUND: Knowledge about human exposure and health effects associated with non-routinely monitored disinfection by-products (DBPs) in drinking water is sparse. OBJECTIVE: To provide insights to estimate exposure to regulated and non-regulated DBPs in drinking water. METHODS: We collected tap water from homes (N = 42), bottled water (N = 10), filtered tap water with domestic activated carbon jars (N = 6) and reverse osmosis (N = 5), and urine (N = 39) samples of participants from Barcelona, Spain. We analyzed 11 haloacetic acids (HAAs), 4 trihalomethanes (THMs), 4 haloacetonitriles (HANs), 2 haloketones, chlorate, chlorite, and trichloronitromethane in water and HAAs in urine samples. Personal information on water intake and socio-demographics was ascertained in the study population (N = 39) through questionnaires. Statistical models were developed based on THMs as explanatory variables using multivariate linear regression and machine learning techniques to predict non-regulated DBPs. RESULTS: Chlorate, THMs, HAAs, and HANs were quantified in 98-100% tap water samples with median concentration of 214, 42, 18, and 3.2 µg/L, respectively. Multivariate linear regression models had similar or higher goodness of fit (R2) compared to machine learning models. Multivariate linear models for dichloro-, trichloro-, and bromodichloroacetic acid, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetonitrile, trichloropropnanone, and chlorite showed good predictive ability (R 2 = 0.8-0.9) as 80-90% of total variance could be explained by THM concentrations. Activated carbon filters reduced DBP concentrations to a variable extent (27-80%), and reverse osmosis reduced DBP concentrations ≥98%. Only chlorate was detected in bottled water samples (N = 3), with median = 13.0 µg/L. Creatinine-adjusted trichloroacetic acid was the most frequently detected HAA in urine samples (69.2%), and moderately correlated with estimated drinking water intake (r = 0.48). SIGNIFICANCE: Findings provide valuable insights for DBP exposure assessment in epidemiological studies. Validation of predictive models in a larger number of samples and replication in different settings is warranted. IMPACT STATEMENT: Our study focused on assessing and describing the occurrence of several classes of DBPs in drinking water and developing exposure models of good predictive ability for non-regulated DBPs.

...