Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Viruses ; 15(2)2023 02 16.
Article En | MEDLINE | ID: mdl-36851758

Over the past decades, both 4'-modified nucleoside and carbocyclic nucleoside analogs have been under the spotlight as several compounds from either family showed anti-HIV, HCV, RSV or SARS-CoV-2 activity. Herein, we designed compounds combining these two features and report the synthesis of a series of novel 4'-substituted carbocyclic uracil derivatives along with their corresponding monophosphate prodrugs. These compounds were successfully prepared in 19 to 22 steps from the commercially available (-)-Vince lactam and were evaluated against a panel of RNA viruses including SARS-CoV-2, influenza A/B viruses and norovirus.


COVID-19 , Influenza A virus , Prodrugs , Humans , Antiviral Agents/pharmacology , Hepatitis C Antibodies , Influenza B virus , Nucleosides , Prodrugs/pharmacology , SARS-CoV-2 , Uracil
2.
Bioorg Med Chem Lett ; 21(22): 6788-92, 2011 Nov 15.
Article En | MEDLINE | ID: mdl-21983447

Based on the anti-hepatitis C activity of 2'-C-methyl-adenosine and 2'-C-methyl-guanosine, a series of new modified purine 2'-C-methyl nucleosides was prepared as potential anti-hepatitis C virus agents. Herein, we report the synthesis of both 6-modified and 2-modified purine 2'-C-methyl-nucleosides along with their anti-HCV replication activity and cytotoxicity in different cells.


Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Purine Nucleosides/chemistry , Purine Nucleosides/pharmacology , Animals , Antiviral Agents/chemical synthesis , Cell Line , Cell Survival/drug effects , Hepatitis C/drug therapy , Humans , Purine Nucleosides/chemical synthesis
...