Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(24): 15617-15626, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38850556

RESUMEN

Ferritin, a spherical protein shell assembled from 24 subunits, functions as an efficient iron storage and release system through its channels. Understanding how various chemicals affect the structural behavior of ferritin is crucial for unravelling the origins of iron-related diseases in living organisms including humans. In particular, the influence of chemicals on ferritin's dynamics and iron release is barely explored at the single-protein level. Here, by employing optical nanotweezers using double-nanohole (DNH) structures, we examined the effect of ascorbic acid (reducing reagent) and pH on individual ferritin's conformational dynamics. The dynamics of ferritin increased as the concentration of ascorbic acid approached saturation. At pH 2.0, ferritin exhibited significant structural fluctuations and eventually underwent a stepwise disassembly into fragments. This work demonstrated the disassembly pathway and kinetics of a single ferritin molecule in solution. We identified four critical fragments during its disassembly pathway, which are 22-mer, 12-mer, tetramer, and dimer subunits. Moreover, we present single-molecule evidence of the cooperative disassembly of ferritin. Interrogating ferritin's structural change in response to different chemicals holds importance for understanding their roles in iron metabolism, hence facilitating further development of medical treatments for its associated diseases.


Asunto(s)
Ácido Ascórbico , Ferritinas , Pinzas Ópticas , Ferritinas/química , Ferritinas/metabolismo , Cinética , Ácido Ascórbico/química , Concentración de Iones de Hidrógeno , Conformación Proteica , Hierro/química , Humanos
2.
Nano Lett ; 23(8): 3251-3258, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37053043

RESUMEN

Ferritin is a protein that stores and releases iron to prevent diseases associated with iron dysregulation in plants, animals, and bacteria. The conversion between iron-loaded holo-ferritin and empty apo-ferritin is an important process for iron regulation. To date, studies of ferritin have used either ensemble measurements to quantify the characteristics of a large number of proteins or single-molecule approaches to interrogate labeled or modified proteins. Here we demonstrate the first real-time study of the dynamics of iron ion loading and biomineralization within a single, unlabeled ferritin protein. Using optical nanotweezers, we trapped single apo- and holo-ferritins indefinitely, distinguished one from the other, and monitored their structural dynamics in real time. The study presented here deepens the understanding of the iron uptake mechanism of ferritin proteins, which may lead to new therapeutics for iron-related diseases.


Asunto(s)
Ferritinas , Hierro , Animales , Hierro/química , Ferritinas/química , Transporte Biológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...