Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Biomech ; 167: 112071, 2024 Apr.
Article En | MEDLINE | ID: mdl-38593721

Ligaments and tendons undergo nonuniform deformation during movement. While deformations can be imaged, it remains challenging to use such information to infer regional tissue loading. Shear wave tensiometry is a promising noninvasive technique to gauge axial stress and is premised on a tensioned beam model. However, it is unknown whether tensiometry can predict regional stress in a nonuniformly loaded structure. The objectives of this study were to (1) determine whether regional shear wave speed tracks regional axial stress in nonuniformly loaded fibrous soft tissues, and (2) determine the sensitivity of regional axial stress and shear wave speed to nonuniform load distribution and fiber alignment. We created a representative set of 12,000 dynamic finite element models of a fibrous soft tissue with probabilistic variations in fiber alignment, stiffness, and aspect ratio. In each model, we applied a randomly selected nonuniform load distribution, and then excited a shear wave and tracked its regional propagation. We found that regional shear wave speed was an excellent predictor of the regional axial stress (RMSE = 0.57 MPa) and that the nature of the regional shear wave speed-stress relationship was consistent with a tensioned beam model (R2 = 0.99). Variations in nonuniform load distribution and fiber alignment did not substantially alter the wave speed-stress relationship, particularly at higher loads. Thus, these findings suggests that shear wave tensiometry could provide a quantitative estimate of regional tissue stress in ligaments and tendons.


Elasticity Imaging Techniques , Tendons , Movement , Ligaments , Stress, Mechanical , Carmustine , Etoposide
2.
J Biomech Eng ; 146(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38183226

Soft tissues such as tendon and ligament undergo a combination of shear and tensile loading in vivo due to their boundary conditions at muscle and/or bone. Current experimental protocols are limited to pure tensile loading, biaxial loading, or simple shear, and thus may not fully characterize the mechanics of these tissues under physiological loading scenarios. Our objective was to create an experimental protocol to determine the shear modulus of fibrous tissues at different tensile loads. We assembled a four-actuator experimental system that facilitated shear deformation to be superimposed on a tissue subjected to an axial preload. We measured shear modulus in axially loaded electrospun nanofiber scaffolds with either randomly oriented or aligned fibers. We found that shear modulus in the nanofiber phantoms was shear-strain stiffening and dependent on both the axial load (p < 0.001) and fiber alignment (p < 0.001) of the scaffold. The proposed system can enhance our understanding of microstructure and functional mechanics in soft tissues, while also providing a platform to investigate the behavior of electrospun scaffolds for tissue regeneration. Our experimental protocol for determining loaded shear modulus would be further useful as a method to gauge tissue mechanics under loading conditions that are more representative of physiological loads applied to tendon and ligament.


Nanofibers , Tendons , Bone and Bones , Ligaments , Nanofibers/chemistry
3.
J Mech Behav Biomed Mater ; 147: 106138, 2023 11.
Article En | MEDLINE | ID: mdl-37782988

Shear wave tensiometry is a noninvasive approach for gauging tendon loads based on shear wave speed. Transient shear waves are induced and tracked via sensors secured to the skin overlying a superficial tendon. Wave speeds measured in vivo via tensiometry modulate with tendon load but are lower than that predicted by a tensioned beam model of an isolated tendon, which may be due to the added inertia of adjacent tissues. The objective of this study was to investigate the effects of adjacent fat tissue on shear wave propagation measurements in axially loaded tendons. We created a layered, dynamic finite element model of an elliptical tendon surrounded by subcutaneous fat. Transient shear waves were generated via an impulsive excitation delivered across the tendon or through the subcutaneous fat. The layered models demonstrated dispersive behavior with phase velocity increasing with frequency. Group shear wave speed could be ascertained via dispersion analysis or time-to-peak measures at sequential spatial locations. Simulated wave speeds in the tendon and adjacent fat were similar and modulated with tendon loading. However, wave speed magnitudes were consistently lower in the layered models than in an isolated tendon. For all models, the wave speed-stress relationship was well described by a tensioned beam model after accounting for the added inertia of the adjacent tissues. These results support the premise that externally excited shear waves are measurable in subcutaneous fat and modulate with axial loading in the underlying tendon. The model suggests that adjacent tissues add inertia to the system, which in turn lowers shear wave speeds. This information must be considered when using tensiometry as a clinical or research tool to infer absolute tendon loading.


Elasticity Imaging Techniques , Tendons , Weight-Bearing , Adipose Tissue , Carmustine , Etoposide , Elasticity Imaging Techniques/methods
4.
J Orthop Res ; 41(3): 524-533, 2023 03.
Article En | MEDLINE | ID: mdl-35716160

Surgeons routinely perform incremental releases on overly tight ligaments during total knee arthroplasty (TKA) to reduce ligament tension and achieve their desired implant alignment. However, current methods to assess whether the surgeon achieved their desired reduction in the tension of a released ligament are subjective and/or do not provide a quantitative metric of tension in an individual ligament. Accordingly, the purpose of this study was to determine whether shear wave tensiometry, a novel method to assess tension in individual ligaments based on the speed of shear wave propagation, can detect changes in ligament tension following incremental releases. In seven medial and eight lateral collateral porcine ligaments (MCL and LCL, respectively), we measured shear wave speeds and ligament tensions before and after incremental releases consisting of punctures with an 18-gauge needle. We found that shear wave speed squared decreased linearly with decreasing tension in both the MCL (average coefficient of determination (R2 avg ) = 0.76) and LCL (R2 avg = 0.94). We determined that errors in predicting tension following incremental releases were 26.2 and 14.2 N in the MCL and LCL, respectively, using ligament-specific calibrations. These results suggest shear wave tensiometry is a promising method to objectively measure the tension reduction in released structures. Clinical Significance: Direct, objective measurements of the tension changes in individual ligaments following release could enhance surgical precision during soft tissue balancing in total knee arthroplasty. Thus, shear wave tensiometry could help surgeons reduce the risk of poor outcomes associated with overly tight ligaments, including residual knee pain and stiffness.


Arthroplasty, Replacement, Knee , Collateral Ligaments , Knee Prosthesis , Humans , Animals , Swine , Knee Joint/surgery , Arthroplasty, Replacement, Knee/methods , Knee/surgery , Range of Motion, Articular , Biomechanical Phenomena
5.
J Mech Behav Biomed Mater ; 125: 104964, 2022 01.
Article En | MEDLINE | ID: mdl-34800889

The use of shear wave propagation to noninvasively measure material properties and loading in tendons and ligaments is a growing area of interest in biomechanics. Prior models and experiments suggest that shear wave speed primarily depends on the apparent shear modulus (i.e., shear modulus accounting for contributions from all constituents) at low loads, and then increases with axial stress when axially loaded. However, differences in the magnitudes of shear wave speeds between ligaments and tendons, which have different substructures, suggest that the tissue's composition and fiber alignment may also affect shear wave propagation. Accordingly, the objectives of this study were to (1) characterize changes in the apparent shear modulus induced by variations in constitutive properties and fiber alignment, and (2) determine the sensitivity of the shear wave speed-stress relationship to variations in constitutive properties and fiber alignment. To enable systematic variations of both constitutive properties and fiber alignment, we developed a finite element model that represented an isotropic ground matrix with an embedded fiber distribution. Using this model, we performed dynamic simulations of shear wave propagation at axial strains from 0% to 10%. We characterized the shear wave speed-stress relationship using a simple linear regression between shear wave speed squared and axial stress, which is based on an analytical relationship derived from a tensioned beam model. We found that predicted shear wave speeds were both in-range with shear wave speeds in previous in vivo and ex vivo studies, and strongly correlated with the axial stress (R2 = 0.99). The slope of the squared shear wave speed-axial stress relationship was highly sensitive to changes in tissue density. Both the intercept of this relationship and the apparent shear modulus were sensitive to both the shear modulus of the ground matrix and the stiffness of the fibers' toe-region when the fibers were less well-aligned to the loading direction. We also determined that the tensioned beam model overpredicted the axial tissue stress with increasing load when the model had less well-aligned fibers. This indicates that the shear wave speed increases likely in response to a load-dependent increase in the apparent shear modulus. Our findings suggest that researchers may need to consider both the material and structural properties (i.e., fiber alignment) of tendon and ligament when measuring shear wave speeds in pathological tissues or tissues with less well-aligned fibers.


Stress, Mechanical , Biomechanical Phenomena , Biophysics
6.
J Mech Behav Biomed Mater ; 105: 103704, 2020 05.
Article En | MEDLINE | ID: mdl-32279848

Ligament tension is an important factor that can affect the success of total knee arthroplasty (TKA) procedures. However, surgeons currently lack objective approaches for assessing tension in a particular ligament intraoperatively. The purpose of this study was to investigate the use of noninvasive shear wave tensiometry to characterize stress in medial and lateral collateral ligaments (MCLs and LCLs) ex vivo and evaluate the capacity of shear wave speed to predict axial load. Nine porcine MCL and LCL specimens were subjected to cyclic axial loading while shear wave speeds were measured using laser vibrometry. We found that squared shear wave speed increased linearly with stress in both the MCL (r2avg = 0.94) and LCL (r2avg = 0.98). Shear wave speeds were slightly lower in the MCL than the LCL when subjected to a comparable axial stress (p < 0.001). Specimen-specific calibrations predicted tension within 13.0 N, or 5.2% of the maximum load. A leave-one-out analysis was also performed and showed that calibrated relationships based on ligament type could predict axial tension within 15% of the maximum load. These observations suggest it may be feasible to use noninvasive shear wave speed measures as a proxy of ligament loading, which in the future might enhance decision making during orthopedic procedures such as TKA.


Arthroplasty, Replacement, Knee , Collateral Ligaments , Animals , Calibration , Knee Joint/surgery , Ligaments , Swine , Weight-Bearing
...