Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
1.
Nature ; 631(8022): 857-866, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987586

RESUMEN

Systemic lupus erythematosus (SLE) is prototypical autoimmune disease driven by pathological T cell-B cell interactions1,2. Expansion of T follicular helper (TFH) and T peripheral helper (TPH) cells, two T cell populations that provide help to B cells, is a prominent feature of SLE3,4. Human TFH and TPH cells characteristically produce high levels of the B cell chemoattractant CXCL13 (refs. 5,6), yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4+ T cell phenotypes in patients with SLE, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4+ T cells. Transcriptomic, epigenetic and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ TPH/TFH cell differentiation and promote an IL-22+ phenotype. Type I interferon, a pathogenic driver of SLE7, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ TPH/TFH cells on a polarization axis opposite from T helper 22 (TH22) cells and reveal AHR, JUN and interferon as key regulators of these divergent T cell states.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Linfocitos T CD4-Positivos , Quimiocina CXCL13 , Interferón Tipo I , Lupus Eritematoso Sistémico , Proteínas Proto-Oncogénicas c-jun , Receptores de Hidrocarburo de Aril , Femenino , Humanos , Masculino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular , Quimiocina CXCL13/metabolismo , Epigenómica , Perfilación de la Expresión Génica , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Interleucina-22/inmunología , Interleucina-22/metabolismo , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo
2.
Phys Chem Chem Phys ; 26(28): 19228-19235, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38957898

RESUMEN

Uranium is considered as a very important nuclear energy material because of the huge amount of energy it releases. As the main product of the spontaneous decay of uranium, it is difficult for helium to react with uranium because of its chemical inertness. Therefore, bubbles will be formed inside uranium, which could greatly reduce the performance of uranium or cause safety problems. Additionally, nuclear materials are usually operated in an environment of high-temperature and high-pressure, so it is necessary to figure out the exact state of helium inside uranium under extreme conditions. Here, we explored the structural stability of the U-He system under high pressure and high temperature by using density functional theory calculations. Two metastable phases are found between 50 and 400 GPa: U4He with space group Fmmm and U6He with space group P1̄. Both are metallic and adopt layered structures. Electron localization function calculation combined with charge density difference analysis indicates that there are covalent bonds between U and U atoms in both Fmmm-U4He and P1̄-U6He. Regarding the elastic modulus of α-U, the addition of helium has certain influence on the mechanical properties of uranium. Besides, first-principles molecular dynamics simulations were carried out to study the dynamical behavior of Fmmm-U4He and P1̄-U6He at high-temperature. It was found that Fmmm-U4He and P1̄-U6He undergo one-dimensional superionic phase transitions at 150 GPa. Our study revealed the exotic structure of U-He compounds beyond the formation of bubbles under high-pressure and high-temperature, which might be relevant to the performance and safety issues of nuclear materials under extreme conditions.

3.
Mol Metab ; 87: 101991, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019116

RESUMEN

OBJECTIVE: Dietary medium-chain fatty acids (MCFAs), characterized by chain lengths of 8-12 carbon atoms, have been proposed to have beneficial effects on glucose and lipid metabolism, yet the underlying mechanisms remain elusive. We hypothesized that MCFA intake benefits metabolic health by inducing the release of hormone-like factors. METHODS: The effects of chow diet, high-fat diet rich in long-chain fatty acids (LCFA HFD) fed ad libitum or pair-fed to a high-fat diet rich in MCFA (MCFA HFD) on glycemia, hepatic gene expression, circulating fibroblast growth factor 21 (FGF21), and liver fat content in both wildtype and Fgf21 knockout mice were investigated. The impact of a single oral dose of an MCFA-rich oil on circulating FGF21 and hepatic Fgf21 mRNA expression was assessed. In flag-tagged Crebh knockin mice and liver-specific Crebh knockout mice, fed LCFA HFD or MCFA HFD, active hepatic CREBH and hepatic Fgf21 mRNA abundance were determined, respectively. RESULTS: MCFA HFD improves glucose tolerance, enhances glucose clearance into brown adipose tissue, and prevents high-fat diet-induced hepatic steatosis in wildtype mice. These benefits are associated with increased liver expression of CREBH target genes (Apoa4 and Apoc2), including Fgf21. Both acute and chronic intake of dietary MCFAs elevate circulating FGF21. Augmented hepatic Fgf21 mRNA following MCFA HFD intake is accompanied by higher levels of active hepatic CREBH; and MCFA-induced hepatic Fgf21 expression is blocked in mice lacking Crebh. Notably, while feeding male and female Fgf21 wildtype mice MCFA HFD results in reduced liver triacylglycerol (TG) levels, this liver TG-lowering effect is blunted in Fgf21 knockout mice fed MCFA HFD. The reduction in liver TG levels observed with MCFA HFD was independent of weight loss. CONCLUSIONS: Dietary MCFAs reduce liver fat accumulation via activation of a CREBH-FGF21 signaling axis.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Dieta Alta en Grasa , Ácidos Grasos , Factores de Crecimiento de Fibroblastos , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones , Hígado/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ácidos Grasos/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Grasas de la Dieta/metabolismo
5.
ISA Trans ; 151: 33-40, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876951

RESUMEN

This paper is concerned with the secure output consensus problem for the heterogeneous multi-agent systems under the event-triggered scheme in the presence of the denial-of-service attack. Without detecting the attack, the hold-input controller update strategy is adopted when some transmission data may be lost due to the effect of the attack. Based on the tolerable duration of the attack, a novel edge-based event-triggered scheme is developed. The scheme can avoid continuous communication and exclude Zeno behavior. With the aid of the switched system theory, output consensus is preserved. An example shows the effectiveness.

6.
Stem Cell Rev Rep ; 20(6): 1656-1666, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837115

RESUMEN

Cell surface marker expression is one of the criteria for defining human mesenchymal stem or stromal cells (MSC) in vitro. However, it is unclear if expression of markers including CD73 and CD90 reflects the in vivo origin of cultured cells. We evaluated expression of 15 putative MSC markers in primary cultured cells from periosteum and cartilage to determine whether expression of these markers reflects either the differentiation state of cultured cells or the self-renewal of in vivo populations. Cultured cells had universal and consistent expression of various putative stem cell markers including > 95% expression CD73, CD90 and PDPN in both periosteal and cartilage cultures. Altering the culture surface with extracellular matrix coatings had minimal effect on cell surface marker expression. Osteogenic differentiation led to loss of CD106 and CD146 expression, however CD73 and CD90 were retained in > 90% of cells. We sorted freshly isolated periosteal populations capable of CFU-F formation on the basis of CD90 expression in combination with CD34, CD73 and CD26. All primary cultures universally expressed CD73 and CD90 and lacked CD34, irrespective of the expression of these markers ex vivo indicating phenotypic convergence in vitro. We conclude that markers including CD73 and CD90 are acquired in vitro in most 'mesenchymal' cells capable of expansion. Overall, we demonstrate that in vitro expression of many cell surface markers in plastic-adherent cultures is unrelated to their expression prior to culture.


Asunto(s)
5'-Nucleotidasa , Biomarcadores , Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Fenotipo , Antígenos Thy-1 , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Biomarcadores/metabolismo , Células Cultivadas , Antígenos Thy-1/metabolismo , 5'-Nucleotidasa/metabolismo , Periostio/citología , Periostio/metabolismo , Cartílago/metabolismo , Cartílago/citología , Proteínas Ligadas a GPI
7.
Sci China Life Sci ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38902450

RESUMEN

Energy status is linked to the production of reactive oxygen species (ROS) in macrophages, which is elevated in obesity. However, it is unclear how ROS production is upregulated in macrophages in response to energy overload for mediating the development of obesity. Here, we show that the Rab-GTPase activating protein (RabGAP) TBC1D1, a substrate of the energy sensor AMP-activated protein kinase (AMPK), is a critical regulator of macrophage ROS production and consequent adipose inflammation for obesity development. TBC1D1 deletion decreases, whereas an energy overload-mimetic non-phosphorylatable TBC1D1S231A mutation increases, ROS production and M1-like polarization in macrophages. Mechanistically, TBC1D1 and its downstream target Rab8a form an energy-responsive complex with NOX2 for ROS generation. Transplantation of TBC1D1S231A bone marrow aggravates diet-induced obesity whereas treatment with an ultra-stable TtSOD for removal of ROS selectively in macrophages alleviates both TBC1D1S231A mutation- and diet-induced obesity. Our findings therefore have implications for drug discovery to combat obesity.

8.
J Nanobiotechnology ; 22(1): 361, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910236

RESUMEN

Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.


Asunto(s)
Autofagia , Frío , Exosomas , Ratones Endogámicos C57BL , MicroARNs , Osteogénesis , Animales , Autofagia/efectos de los fármacos , Ratones , Exosomas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/patología , Diferenciación Celular/efectos de los fármacos , Huesos/metabolismo , Femenino , Densidad Ósea , Sirolimus/farmacología
9.
ACS Nano ; 18(24): 15991-16001, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829730

RESUMEN

Phase heterogeneity of bromine-iodine (Br-I) mixed wide-bandgap (WBG) perovskites has detrimental effects on solar cell performance and stability. Here, we report a heterointerface anchoring strategy to homogenize the Br-I distribution and mitigate the segregation of Br-rich WBG-perovskite phases. We find that methoxy-substituted phenyl ethylammonium (x-MeOPEA+) ligands not only contribute to the crystal growth with vertical orientation but also promote halide homogenization and defect passivation near the buried perovskite/hole transport layer (HTL) interface as well as reduce trap-mediated recombination. Based on improvements in WBG-perovskite homogeneity and heterointerface contacts, NiOx-based opaque WBG-perovskite solar cells (WBG-PSCs) achieved impressive open-circuit voltage (Voc) and fill factor (FF) values of 1.22 V and 83%, respectively. Moreover, semitransparent WBG-PSCs exhibit a PCE of 18.5% (15.4% for the IZO front side) and a high FF of 80.7% (79.4% for the IZO front side) for a designated illumination area (da) of 0.12 cm2. Such a strategy further enables 24.3%-efficient two-terminal perovskite/silicon (double-polished) tandem solar cells (da of 1.159 cm2) with a high Voc of over 1.90 V. The tandem devices also show high operational stability over 1000 h during T90 lifetime measurements.

10.
ACR Open Rheumatol ; 6(7): 429-439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38698736

RESUMEN

OBJECTIVE: T cells contribute to tissue injury in systemic sclerosis (SSc), yet the specific T cell subsets expanded in patients with SSc remain incompletely defined. Here we evaluated specific phenotypes and functions of peripheral helper T (Tph) and follicular helper T (Tfh) cells, which have been implicated in autoantibody production, and assessed their associations with clinical features in a well-characterized cohort of patients with SSc. METHODS: Mass cytometry of T cells from peripheral blood mononuclear cells of patients with SSc and controls were evaluated using t-distributed stochastic neighbor embedding visualization, biaxial gating, and marker expression levels. Findings were validated with flow cytometry and in vitro assays. RESULTS: The frequencies of PD-1highCXCR5+ Tfh cells and PD-1highCXCR5- Tph cells were similar in patients with SSc and controls. t-distributed stochastic neighbor embedding visualization (tSNE) revealed distinct populations within the PD-1highCXCR5- cells distinguished by expression of HLA-DR and inducible costimulator (ICOS). Among PD-1highCXCR5- cells, only the HLA-DR+ICOS- cell population was expanded in patients with SSc. Cytometric and RNA sequencing analyses indicated that these cells expressed cytotoxic rather than B cell helper features. HLA-DR+ICOS- PD-1highCXCR5- cells were less potent in inducing B cell plasmablast differentiation and antibody production than comparator T helper cell populations. HLA-DR+ICOS-PD-1highCXCR5- cells were significantly associated with the presence and severity of interstitial lung disease among patients with SSc. CONCLUSION: Among PD-1highCXCR5- T cells, a subset of HLA-DR+ICOS- cells with cytotoxic features is specifically expanded in patients with SSc and is significantly associated with interstitial lung disease severity. This potential cytotoxicity appearing in the CD4 T cell population can be evaluated as a prognostic disease biomarker in patients with SSc.

11.
Oral Dis ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696515

RESUMEN

OBJECTIVE: This study aimed to assess the effects of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs) in chronic periodontitis and explore the underlying mechanism involved. METHODS: In vitro, Pg-OMVs were incubated with Ea.hy926 (vessel endothelial cells, ECs) to evaluate their effects on endothelial functions and to investigate the underlying mechanism. The effects of endothelial dysfunction on MG63 osteoblast-like cells were verified using an indirect co-culture method. For in vivo studies, micro-CT was conducted to identify alveolar bone mass. Immunofluorescence staining was conducted to confirm the levels of stimulator of interferon genes (STING) in the blood vessel and the number of Runx2+ cells around the alveolar bone. RESULTS: Pg-OMVs were endocytosed by ECs, leading to endothelial dysfunction. The cGAS-STING-TBK1 pathway was activated in ECs, which subsequently inhibited MG63 migration and early osteogenesis differentiation. In vivo, Pg-OMVs promoted alveolar bone resorption, increased STING levels in the blood vessel, and decreased Runx2+ cells around the alveolar bone. CONCLUSIONS: Pg-OMVs caused endothelial dysfunction and activated the cGAS-STING-TBK1 signal cascade in ECs, thereby impairing ECs-mediated osteogenesis. Furthermore, Pg-OMVs aggregated alveolar bone loss and altered the blood vessel-mediated osteogenesis with elevated STING.

12.
Heliyon ; 10(10): e31071, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803891

RESUMEN

Objective: The Obturator Functioning Scale (OFS) is a scale without formal measures of validity in any language. This study aimed to translate and adapt the OFS from English to Chinese and check its reliability and validity in Chinese-speaking patients with obturator prostheses after cancer-related maxillectomy. Methods: The 15-item Chinese preversion of the OFS was completed by 133 patients in three tertiary stomatological hospitals. Of these, 41 completed it again one week after the first measurement. The patients also completed the Chinese version of the University of Washington quality of life scale (UW-QOL, Version 4). Results: Item 12 ("upper lip feels numb") was deleted to achieve a better statistical fit. The 14-item Chinese version of the OFS (OFS-Ch) demonstrated high internal consistency (Cronbach's alpha = 0.908). The test-retest reliability coefficients for most items exceeded 0.90, indicating substantial reproducibility. Confirmatory factor analysis found that the scale consisted of three correlated factors: 1) eating (four items), 2) speech (five items), and 3) other problems (five items). This explained 70.2 % of the total variance using exploratory factor analysis. The scale was significantly convergent and discriminant and could validly discriminate between patients with Brown I and IId maxillary defects. Conclusions: Our results showed that the OFS-Ch scale is a valid tool for evaluating oral dysfunction and satisfaction with appearance for patients with the obturator prosthesis and identifying those at risk of poor obturator function in clinical settings.

13.
BMC Med Genomics ; 17(1): 134, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764052

RESUMEN

BACKGROUND: Acute myocardial infarction (AMI) and diabetic nephropathy (DN) are common clinical co-morbidities, but they are challenging to manage and have poor prognoses. There is no research on the bioinformatics mechanisms of comorbidity, and this study aims to investigate such mechanisms. METHODS: We downloaded the AMI data (GSE66360) and DN datasets (GSE30528 and GSE30529) from the Gene Expression Omnibus (GEO) platform. The GSE66360 dataset was divided into two parts: the training set and the validation set, and GSE30529 was used as the training set and GSE30528 as the validation set. After identifying the common differentially expressed genes (DEGs) in AMI and DN in the training set, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and protein-protein interaction (PPI) network construction were performed. A sub-network graph was constructed by MCODE, and 15 hub genes were screened by the Cytohubba plugin. The screened hub genes were validated, and the 15 screened hub genes were subjected to GO, KEGG, Gene MANIA analysis, and transcription factor (TF) prediction. Finally, we performed TF differential analysis, enrichment analysis, and TF and gene regulatory network construction. RESULTS: A total of 46 genes (43 up-regulated and 3 down-regulated) were identified for subsequent analysis. GO functional analysis emphasized the presence of genes mainly in the vesicle membrane and secretory granule membrane involved in antigen processing and presentation, lipopeptide binding, NAD + nucleosidase activity, and Toll-like receptor binding. The KEGG pathways analyzed were mainly in the phagosome, neutrophil extracellular trap formation, natural killer cell-mediated cytotoxicity, apoptosis, Fc gamma R-mediated phagocytosis, and Toll-like receptor signaling pathways. Eight co-expressed hub genes were identified and validated, namely TLR2, FCER1G, CD163, CTSS, CLEC4A, IGSF6, NCF2, and MS4A6A. Three transcription factors were identified and validated in AMI, namely NFKB1, HIF1A, and SPI1. CONCLUSIONS: Our study reveals the common pathogenesis of AMI and DN. These common pathways and hub genes may provide new ideas for further mechanistic studies.


Asunto(s)
Nefropatías Diabéticas , Infarto del Miocardio , Factores de Transcripción , Infarto del Miocardio/genética , Humanos , Nefropatías Diabéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mapas de Interacción de Proteínas , Biología Computacional/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ontología de Genes , Regulación de la Expresión Génica , Bases de Datos Genéticas
14.
J Colloid Interface Sci ; 671: 553-563, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38820840

RESUMEN

Recently, the solar-driven interfacial evaporation desalination has attracted more and more attentions due to the advantages of low cost, zero energy consumption, and high water purification rate, etc. One of the bottlenecks of this emerging technique lies in a lack of simple and low-cost ways to construct three-dimensional (3D) hierarchical microstructures for photothermal membranes. To this end, a two-step strategy is carried out by combining surface functionalization with substrate engineering. Firstly, a silane coupling agent 3-aminopropyltriethoxysilane (APTES) is grafted onto an ideal photothermal material of Ti3C2Tx MXene, to improve the nanochannel sizes and hydrophilicity, which are attributed to enlarged interspaces of MXene and introduced hydrophilic group e.g., -NH2 and -OH, respectively. Secondly, a low-cost and robust nonwoven fiber (NWF) substrate, which has a 3D micron-sized mesh structure with interlaced fiber stacks, is employed as the skeleton to load enough APTES-grafted MXene by a simple soaking method. Benefited from above design, the Ti3C2Tx-APTES/NWF composite membrane with a 3D hierarchical structure shows enhanced light scattering and utilization, water transport and vapor escape. A remarkable evaporation rate of 1.457 kg m-2 h-1 and an evaporation efficiency of 91.48 % are attained for a large-area (5 × 5 cm2) evaporator, and the evaporation rate is further increased to 1.672 kg m-2 h-1 for a small-area (2 × 2 cm2) device. The rejection rates of salt ions and heavy metal ions are higher than 99 % and 99.99 %, respectively, and the removal rates of organic dye molecules are nearly to 100 %. Besides, the composite photothermal membrane exhibits great stabilities in harsh conditions such as high salinities, long cycling, large light intensities, strong acid/alkali environments, and mechanical bending. Most importantly, the photothermal membrane shows a considerable cost-effectiveness of 89.4 g h-1/$. Hence, this study might promote the commercialization of solar-driven interfacial evaporation desalination by collaboratively considering surface modification and substrate engineering for MXene.

15.
Front Endocrinol (Lausanne) ; 15: 1359502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800471

RESUMEN

Introduction: The retina is a highly metabolically active tissue, and there is a lack of clarity about the relationship between metabolites and diabetic retinopathy (DR). This study used two-sample bidirectional Mendelian randomization (MR) analyses to identify causal relationships between metabolites and DR. Methods: Genetic variants were selected from the open-access Genome-Wide Association Studies (GWAS) summary database as proxies for the 1400 most recently published metabolites. MR analysis was performed to examine associations between these metabolite traits and DR. Single nucleotide polymorphism (SNP) data that were significantly associated with exposure were screened through association analysis. Validated instrumental variables (IVs) were obtained by removing SNPs with linkage disequilibrium (LD) and F-statistic values below 10. MR analyses were performed using the inverse variance weighted (IVW) method as the primary approach. The robustness of the results was verified by sensitivity analyses, including assessments of heterogeneity, horizontal pleiotropy, and the leave-one-out method. Results: In the IVW approach and in the primary analysis of several sensitivity analyses, genetically determined glycolithocholate sulfate levels, androstenediol (3 beta, 17 beta) monosulfate (1) levels, 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) levels, 1-oleoyl-2-arachidonoyl-GPE (18:1/20:4) levels, 1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels, X-26109 levels, N6-methyllysine levels, (N6,N6-dimethyllysine levels), and (N2-acetyl,N6,N6-dimethyllysine levels) were negatively associated with the risk of DR. 5-hydroxymethyl-2-furoylcarnitine levels and the glutamate-to-alanine ratio were positively associated with the risk of DR. No reverse causal association was found between DR and metabolites. Discussion: This MR study suggests that nine metabolites may have a protective effect in DR, while two metabolites may be associated with an increased risk of DR. However, further research is needed to confirm these findings. Supplementation with beneficial metabolites may reduce DR risk and could potentially be a novel therapeutic approach to DR treatment.


Asunto(s)
Retinopatía Diabética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Humanos , Retinopatía Diabética/genética , Retinopatía Diabética/sangre
16.
BMC Oral Health ; 24(1): 623, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807164

RESUMEN

BACKGROUND: Patients with cleft lip and palate (CLP) have an oronasal communication differed from the closed state in healthy individuals, leading to a unique oral microbiome. This study aimed to determine if variances in the oral microbiota persist among CLP patients who have received treatments for the closure of these fistulas compared to the microbiota of healthy individuals. METHODS: Saliva samples were collected from a cohort comprising 28 CLP patients (CLP group) and 30 healthy controls (HC group). Utilizing 16S rRNA sequencing on the Illumina NovaSeq platform, we conducted a comprehensive analysis of the diversity and composition of the oral microbiota. RESULTS: The analysis of the microbiota in the saliva samples revealed a total of 23 microbial phyla, 38 classes, 111 orders, 184 families, 327 genera and 612 species. The alpha diversity with microbial abundance and evenness indicated the significant difference between the CLP and HC groups. Principal coordinate analysis (PCoA) and the ADONIS test further supported the presence of distinct microorganisms between the two groups. The CLP group displayed elevated abundances of Neisseria, Haemophilus, Porphyromonas, and Granulicatella, as indicated by LefSe analysis. Conversely, Rothia, Veillonella, and Pauljensenia exhibited significant reductions in abundance in the CLP group. The results of the PICRUSt analysis indicated significant differences in the relative abundance of 25 KEGG pathways within the CLP group. Through Spearman correlation analysis, strong associations between Rothia, Veillonella, and Pauljensenia and 25 functional pathways linked to CLP were identified. CONCLUSION: Findings of this study offer a thorough comprehension of the microbiome profiles of CLP patients after the restoration of oronasal structure and are anticipated to present innovative concepts for the treatment of CLP.


Asunto(s)
Labio Leporino , Fisura del Paladar , Microbiota , ARN Ribosómico 16S , Saliva , Humanos , Fisura del Paladar/microbiología , Labio Leporino/microbiología , Masculino , Femenino , Saliva/microbiología , Estudios de Casos y Controles , ARN Ribosómico 16S/análisis , Adolescente , Adulto , Boca/microbiología , Niño , Adulto Joven
17.
Viruses ; 16(4)2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38675838

RESUMEN

Rabbit hemorrhagic disease (RHD) is an acute fatal disease caused by the rabbit hemorrhagic disease virus (RHDV). Since the first outbreaks of type 2 RHDV (RHDV2) in April 2020 in China, the persistence of this virus in the rabbit population has caused substantial economic losses in rabbit husbandry. Previous failures in preventing RHDV2 prompted us to further investigate the immune mechanisms underlying the virus's pathogenicity, particularly concerning the spleen, a vital component of the mononuclear phagocyte system (MPS). For this, a previous RHDV2 isolate, CHN/SC2020, was utilized to challenge naive adult rabbits. Then, the splenic transcriptome was determined by RNA-Seq. This study showed that the infected adult rabbits had 3148 differentially expressed genes (DEGs), which were associated with disease, signal transduction, cellular processes, and cytokine signaling categories. Of these, 100 upregulated DEGs were involved in inflammatory factors such as IL1α, IL-6, and IL-8. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were significantly enriched in the cytokine-cytokine receptor interaction signaling pathway, which may play a vital role in CHN/SC2020 infection. At the same time, proinflammatory cytokines and chemokines were significantly increased in the spleen at the late stages of infection. These findings suggested that RHDV2 (CHN/SC2020) might induce dysregulation of the cytokine network and compromise splenic immunity against viral infection, which expanded our understanding of RHDV2 pathogenicity.


Asunto(s)
Infecciones por Caliciviridae , Citocinas , Virus de la Enfermedad Hemorrágica del Conejo , Bazo , Transcriptoma , Animales , Virus de la Enfermedad Hemorrágica del Conejo/genética , Virus de la Enfermedad Hemorrágica del Conejo/inmunología , Bazo/virología , Bazo/inmunología , Conejos , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/genética , Citocinas/metabolismo , Citocinas/genética , Perfilación de la Expresión Génica , Inflamación/virología , Inflamación/genética
18.
PLoS One ; 19(4): e0301823, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578766

RESUMEN

BACKGROUND: According to epidemiological studies, particulate matter 2.5 (PM2.5) is a significant contributor to cardiovascular disease (CVD). However, making causal inferences is difficult due to the methodological constraints of observational studies. In this study, we used two-sample Mendelian randomization (MR) to examine the causal relationship between PM 2.5 and the risk of CVD. METHODS: Genome-wide association study (GWAS) statistics for PM2.5 and CVD were collected from the FinnGen and UK Biobanks. Mendelian randomization analyses were applied to explore the causal effects of PM2.5 on CVD by selecting single-nucleotide polymorphisms(SNP) as instrumental variables. RESULTS: The results revealed that a causal effect was observed between PM2.5 and coronary artery disease(IVW: OR 2.06, 95% CI 1.35, 3.14), and hypertension(IVW: OR 1.07, 95% CI 1.03, 1.12). On the contrary, no causal effect was observed between PM2.5 and myocardial infarction(IVW: OR 0.73, 95% CI 0.44, 1.22), heart failure(IVW: OR 1.54, 95% CI 0.96, 2.47), atrial fibrillation(IVW: OR 1.03, 95% CI 0.71, 1.48), and ischemic stroke (IS)(IVW: OR 0.98, 95% CI 0.54, 1.77). CONCLUSION: We discovered that there is a causal link between PM2.5 and coronary artery disease and hypertension in the European population, using MR methods. Our discovery may have the significance of public hygiene to improve the understanding of air quality and CVD risk.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Hipertensión , Humanos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/genética , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Material Particulado/efectos adversos
19.
J Bone Miner Res ; 39(7): 942-955, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38624186

RESUMEN

The correlation between socio-economic status (SES) and bone-related diseases garners increasing attention, prompting a bidirectional Mendelian randomization (MR) analysis in this study. Genetic data on SES indicators (average total household income before tax, years of schooling completed, and Townsend Deprivation Index at recruitment), femoral neck bone mineral density (FN-BMD), heel bone mineral density (eBMD), osteoporosis, and five different sites of fractures (spine, femur, lower leg-ankle, foot, and wrist-hand fractures) were derived from genome-wide association summary statistics of European ancestry. The inverse variance weighted method was employed to obtain the causal estimates, complemented by alternative MR techniques, including MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Furthermore, sensitivity analyses and multivariable MR were performed to enhance the robustness of our findings. Higher educational attainment exhibited associations with increased eBMD (ß: .06, 95% confidence interval [CI]: 0.01-0.10, P = 7.24 × 10-3), and reduced risks of osteoporosis (OR: 0.78, 95% CI: 0.65-0.94, P = 8.49 × 10-3), spine fracture (OR: 0.76, 95% CI: 0.66-0.88, P = 2.94 × 10-4), femur fracture (OR: 0.78, 95% CI: 0.67-0.91, P = 1.33 × 10-3), lower leg-ankle fracture (OR: 0.79, 95% CI: 0.70-0.88, P = 2.05 × 10-5), foot fracture (OR: 0.78, 95% CI: 0.66-0.93, P = 5.92 × 10-3), and wrist-hand fracture (OR: 0.83, 95% CI: 0.73-0.95, P = 7.15 × 10-3). Material deprivation appeared to increase the risk of spine fracture (OR: 2.63, 95% CI: 1.43-4.85, P = 1.91 × 10-3). A higher FN-BMD level positively affected increased household income (ß: .03, 95% CI: 0.01-0.04, P = 6.78 × 10-3). All these estimates were adjusted for body mass index, type 2 diabetes, smoking initiation, and frequency of alcohol intake. The MR analyses show that higher educational levels is associated with higher eBMD, reduced risk of osteoporosis and fractures, while material deprivation is positively related to spine fracture. Enhanced FN-BMD correlates with increased household income. These findings provide valuable insights for health guideline formulation and policy development.


We conducted stratified analyses to explore the causal links between socio-economic status and osteoporosis and various fractures and observed that education significantly reduced the risk of osteoporosis and lower eBMD. It also lowered the risks of fractures of spine, femur, lower leg-ankle, foot, and wrist-hand, while material deprivation exhibited positive associations with spine fracture risk. Bidirectional MR analysis showed that an elevated score of FN-BMD was associated with a higher income level. Our study shows the importance of conducting routine BMD estimations and osteoporosis screening, to enhance knowledge and awareness among individuals to promote bone health and prevent fractures.


Asunto(s)
Fracturas Óseas , Análisis de la Aleatorización Mendeliana , Osteoporosis , Clase Social , Humanos , Osteoporosis/genética , Osteoporosis/epidemiología , Femenino , Masculino , Fracturas Óseas/genética , Fracturas Óseas/epidemiología , Población Blanca/genética , Densidad Ósea/genética , Persona de Mediana Edad , Europa (Continente)/epidemiología , Estudio de Asociación del Genoma Completo
20.
Diabetes Metab Syndr Obes ; 17: 1511-1521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586542

RESUMEN

Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA