Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prostate ; 84(10): 909-921, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38619005

RESUMEN

INTRODUCTION: Lysine-specific demethylase 1 (LSD1) is emerging as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Neuroendocrine prostate cancer (NEPC) is increasingly recognized as an adaptive mechanism of resistance in mCRPC patients failing androgen receptor axis-targeted therapies. Safe and effective LSD1 inhibitors are necessary to determine antitumor response in prostate cancer models. For this reason, we characterize the LSD1 inhibitor bomedemstat to assess its clinical potential in NEPC as well as other mCRPC pathological subtypes. METHODS: Bomedemstat was characterized via crystallization, flavine adenine dinucleotide spectrophotometry, and enzyme kinetics. On-target effects were assessed in relevant prostate cancer cell models by measuring proliferation and H3K4 methylation using western blot analysis. In vivo, pharmacokinetic (PK) and pharmacodynamic (PD) profiles of bomedemstat are also described. RESULTS: Structural, biochemical, and PK/PD properties of bomedemstat, an irreversible, orally-bioavailable inhibitor of LSD1 are reported. Our data demonstrate bomedemstat has >2500-fold greater specificity for LSD1 over monoamine oxidase (MAO)-A and -B. Bomedemstat also demonstrates activity against several models of advanced CRPC, including NEPC patient-derived xenografts. Significant intra-tumoral accumulation of orally-administered bomedemstat is measured with micromolar levels achieved in vivo (1.2 ± 0.45 µM at the 7.5 mg/kg dose and 3.76 ± 0.43 µM at the 15 mg/kg dose). Daily oral dosing of bomedemstat at 40 mg/kg/day is well-tolerated, with on-target thrombocytopenia observed that is rapidly reversible following treatment cessation. CONCLUSIONS: Bomedemstat provides enhanced specificity against LSD1, as revealed by structural and biochemical data. PK/PD data display an overall safety profile with manageable side effects resulting from LSD1 inhibition using bomedemstat in preclinical models. Altogether, our results support clinical testing of bomedemstat in the setting of mCRPC.


Asunto(s)
Histona Demetilasas , Neoplasias de la Próstata Resistentes a la Castración , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Masculino , Humanos , Animales , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/farmacocinética , Benzamidas , Piperazinas , Triazoles
2.
Wellcome Open Res ; 8: 146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520936

RESUMEN

Background: Schistosoma mansoni, a parasitic worm species responsible for the neglected tropical disease schistosomiasis, undergoes strict developmental regulation of gene expression that is carefully controlled by both genetic and epigenetic processes. As inhibition of S. mansoni epigenetic machinery components impairs key transitions throughout the parasite's digenetic lifecycle, a greater understanding of how epi-drugs affect molecular processes in schistosomes could lead to the development of new anthelmintics. Methods:   In vitro whole organism assays were used to assess the anti-schistosomal activity of 39 Homo sapiens Lysine Specific Demethylase 1 (HsLSD1) inhibitors on different parasite life cycle stages. Moreover, tissue-specific stains and genomic analysis shed light on the effect of these small molecules on the parasite biology. Results: Amongst this collection of small molecules, compound 33 was the most potent in reducing ex vivo viabilities of schistosomula, juveniles, miracidia and adults. At its sub-lethal concentration to adults (3.13 µM), compound 33 also significantly impacted oviposition, ovarian as well as vitellarian architecture and gonadal/neoblast stem cell proliferation. ATAC-seq analysis of adults demonstrated that compound 33 significantly affected chromatin structure (intragenic regions > intergenic regions), especially in genes differentially expressed in cell populations (e.g., germinal stem cells, hes2 + stem cell progeny, S1 cells and late female germinal cells) associated with these ex vivo phenotypes. KEGG analyses further highlighted that chromatin structure of genes associated with sugar metabolism as well as TGF-beta and Wnt signalling were also significantly perturbed by compound 33 treatment. Conclusions: This work confirms the importance of histone methylation in S. mansoni lifecycle transitions, suggesting that evaluation of LSD1 - targeting epi-drugs may facilitate the search for next-generation anti-schistosomal drugs. The ability of compound 33 to modulate chromatin structure as well as inhibit parasite survival, oviposition and stem cell proliferation warrants further investigations of this compound and its epigenetic target SmLSD1.

3.
ACS Med Chem Lett ; 2(9): 708-13, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900364

RESUMEN

Inhibition of dihydroorotate dehydrogenase (DHODH) for P. falciparum potentially represents a new treatment option for malaria, since DHODH catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and P. falciparum is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. We report herein the synthesis and structure-activity relationship of a series of 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2-carboxamides that are potent inhibitors against PfDHODH but do not inhibit the human enzyme. On the basis of efficacy observed in three mouse models of malaria, acceptable safety pharmacology risk assessment and safety toxicology profile in rodents, lack of potential drug-drug interactions, acceptable ADME/pharmacokinetic profile, and projected human dose, 5-(4-cyano-2-methyl-1H-benzo[d]imidazol-1-yl)-N-cyclopropylthiophene-2-carboxamide 2q was identified as a potential drug development candidate.

4.
Bioorg Med Chem Lett ; 20(1): 228-31, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19914064

RESUMEN

Two sets of diaminopyrimidines, totalling 45 compounds, were synthesized and assayed against Plasmodium falciparum. The SAR was relatively shallow, with only the presence of a 2-(pyrrolidin-1-yl)ethyl group at R(2) significantly affecting activity. A subsequent series addressed high LogD values by introducing more polar side groups, with the most active compounds possessing diazepine and N-benzyl-4-aminopiperidyl groups at R(1)/R(2). A final series attempted to address high in vitro microsomal clearance by replacing the C6-Me group with CF(3), however antiplasmodial activity decreased without any improvement in clearance. The C6-CF(3) group decreased hERG inhibition, probably as a result of decreased amine basicity at C2/C4.


Asunto(s)
Antimaláricos/síntesis química , Pirimidinas/química , Animales , Antimaláricos/química , Antimaláricos/farmacología , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Pirimidinas/síntesis química , Pirimidinas/farmacología , Ratas , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 19(11): 2916-9, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19419862

RESUMEN

Modification of the structure of trypanosomal AdoMetDC inhibitor 1 (MDL73811) resulted in the identification of a new inhibitor 7a, which features a methyl substituent at the 8-position. Compound 7a exhibits improved potencies against both the trypanosomal AdoMetDC enzyme and parasites, and better blood brain barrier penetration than 1.


Asunto(s)
Adenosina/análogos & derivados , Adenosina/síntesis química , Adenosilmetionina Descarboxilasa/antagonistas & inhibidores , Tripanocidas/síntesis química , Tripanosomiasis Africana/tratamiento farmacológico , Adenosina/química , Adenosina/farmacología , Adenosilmetionina Descarboxilasa/metabolismo , Animales , Barrera Hematoencefálica , Descubrimiento de Drogas , Humanos , Ratones , Tripanocidas/química , Tripanocidas/farmacocinética , Trypanosoma brucei brucei/enzimología
6.
Antimicrob Agents Chemother ; 53(5): 2052-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19289530

RESUMEN

Trypanosomiasis remains a significant disease across the sub-Saharan African continent, with 50,000 to 70,000 individuals infected. The utility of current therapies is limited by issues of toxicity and the need to administer compounds intravenously. We have begun a program to pursue lead optimization around MDL 73811, an irreversible inhibitor of S-adenosylmethionine decarboxylase (AdoMetDC). This compound is potent but in previous studies cleared rapidly from the blood of rats (T. L. Byers, T. L. Bush, P. P. McCann, and A. J. Bitonti, Biochem. J. 274:527-533). One of the analogs synthesized (Genz-644131) was shown to be highly active against Trypanosoma brucei rhodesiense in vitro (50% inhibitory concentration, 400 pg/ml). Enzyme kinetic studies showed Genz-644131 to be approximately fivefold more potent than MDL 73811 against the T. brucei brucei AdoMetDC-prozyme complex. This compound was stable in vitro in rat and human liver microsomal and hepatocyte assays, was stable in rat whole-blood assays, did not significantly inhibit human cytochrome P450 enzymes, had no measurable efflux in CaCo-2 cells, and was only 41% bound by serum proteins. Pharmacokinetic studies of mice following intraperitoneal dosing showed that the half-life of Genz-644131 was threefold greater than that of MDL 73811 (7.4 h versus 2.5 h). Furthermore, brain penetration of Genz-644131 was 4.3-fold higher than that of MDL 73811. Finally, in vivo efficacy studies of T. b. brucei strain STIB 795-infected mice showed that Genz-644131 significantly extended survival (from 6.75 days for controls to >30 days for treated animals) and cured animals infected with T. b. brucei strain LAB 110 EATRO. Taken together, the data strengthen validation of AdoMetDC as an important parasite target, and these studies have shown that analogs of MDL 73811 can be synthesized with improved potency and brain penetration.


Asunto(s)
Adenosilmetionina Descarboxilasa/antagonistas & inhibidores , Desoxiadenosinas/química , Tripanocidas/química , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Células CACO-2 , Desoxiadenosinas/síntesis química , Desoxiadenosinas/farmacocinética , Desoxiadenosinas/farmacología , Humanos , Cinética , Ratones , Pruebas de Sensibilidad Parasitaria , Ratas , Resultado del Tratamiento , Tripanocidas/síntesis química , Tripanocidas/farmacocinética , Tripanocidas/farmacología , Trypanosoma brucei brucei/patogenicidad , Trypanosoma brucei rhodesiense/patogenicidad , Tripanosomiasis Africana/mortalidad , Tripanosomiasis Africana/parasitología
7.
J Biol Chem ; 283(50): 35078-85, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18842591

RESUMEN

Plasmodium falciparum causes the most deadly form of malaria and accounts for over one million deaths annually. The malaria parasite is unable to salvage pyrimidines and relies on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHOD), a mitochondrially localized flavoenzyme, catalyzes the rate-limiting step of this pathway and is therefore an attractive antimalarial chemotherapeutic target. Using a target-based high throughput screen, we have identified a series of potent, species-specific inhibitors of P. falciparum DHOD (pfDHOD) that are also efficacious against three cultured strains (3D7, HB3, and Dd2) of P. falciparum. The primary antimalarial mechanism of action of these compounds was confirmed to be inhibition of pfDHOD through a secondary assay with transgenic malaria parasites, and the structural basis for enzyme inhibition was explored through in silico structure-based docking and site-directed mutagenesis. Compound-mediated cytotoxicity was not observed with human dermal fibroblasts or renal epithelial cells. These data validate pfDHOD as an antimalarial drug target and provide chemical scaffolds with which to begin medicinal chemistry efforts.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Plasmodium falciparum/enzimología , Animales , Antimaláricos/farmacología , Química Farmacéutica/métodos , Dihidroorotato Deshidrogenasa , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/metabolismo , Fibroblastos/metabolismo , Humanos , Concentración 50 Inhibidora , Malaria/tratamiento farmacológico , Modelos Químicos , Mutagénesis Sitio-Dirigida
8.
J Med Chem ; 49(26): 7781-91, 2006 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17181160

RESUMEN

Human coagulation factor XIa (FXIa), a serine protease activated by site-specific cleavage of factor XI by thrombin, FXIIa, or autoactivation, is a critical enzyme in the amplification phase of the coagulation cascade. To investigate the potential of FXIa inhibitors as safe anticoagulants, a series of potent, selective peptidomimetic inhibitors of FXIa were designed and synthesized. Some of these inhibitors showed low nanomolar FXIa inhibitory activity with >1000-fold FXa selectivity and >100-fold thrombin selectivity. The X-ray structure of one of these inhibitors, 36, demonstrates its unique binding interactions with FXIa. Compound 32 caused a doubling of the activated partial thromboplastin time in human plasma at 2.4 microM and was efficacious in a rat model of venous thrombosis. These data suggest that factor XIa plays a significant role in venous thrombosis and may be a suitable target for the development of antithrombotic therapy.


Asunto(s)
Anticoagulantes/farmacología , Diseño de Fármacos , Factor XIa/antagonistas & inhibidores , Inhibidores del Factor Xa , Fragmentos de Péptidos/síntesis química , Inhibidores de Serina Proteinasa/farmacología , Animales , Anticoagulantes/síntesis química , Anticoagulantes/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Concentración 50 Inhibidora , Masculino , Estructura Molecular , Tiempo de Tromboplastina Parcial , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Unión Proteica , Conformación Proteica , Ratas , Ratas Sprague-Dawley , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , Relación Estructura-Actividad , Trombina/antagonistas & inhibidores , Trombosis de la Vena/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...