Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 135978, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322143

RESUMEN

Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a multifaceted clinical syndrome characterized by mineral imbalances, abnormalities in bone metabolism, chronic inflammation and vascular calcification. Etelcalcetide, a second-generation intravenous calcimimetic agent, has been approved for treating high-turnover renal osteodystrophy, effectively targeting the pathophysiological mechanisms underlying this condition. We investigate the impacts of etelcalcetide on osteoclast (OC) differentiation and functionality in CKD-MBD via three critical mechanisms: inflammation initiated by interferon regulatory factor 7 (IRF7), receptor-interacting protein (RIP)-mediated necroptosis and apoptosis-induced cell death. The low-dose (CKD + L) or high-dose (CKD + H) of etelcalcetide groups significantly improved biochemical markers compared to the CKD control mice. Additionally, etelcalcetide-treated CKD mice significantly improved cortical and trabecular bone parameters. In an in vitro study, etelcalcetide was observed to bolster the IRF7-mediated IFNß response in OC differentiation. Furthermore, it stimulated RIP-mediated necroptosis via RIP and MLKL activation, inhibiting bone resorption. Moreover, the drug increased levels of caspases 3 and 9, inducing cell death in OCs. These findings suggest that etelcalcetide regulates bone metabolism and reduces skeletal issues in CKD-MBD. Etelcalcetide likely enhances bone parameters in CKD-MBD mice by regulating IRF7 pathways and inhibiting OC differentiation. It also improves bone health and promotes RIP-mediated necroptosis and apoptosis pathways within OCs.

2.
Postgrad Med ; : 1-11, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189768

RESUMEN

OBJECTIVES: The association between diuretic use and cardiorenal outcomes remains limited in patients with stage 3-5 chronic kidney disease (CKD) and hypertension. To address this gap, we aim to investigate the long-term clinical impact of diuretic use with its pharmacological classification in Taiwanese patients with stage 3-5 CKD and hypertension who were concurrently received angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs). METHODS: Using data from the National Health Insurance Research Database (January 2008 to December 2019), we focused on individuals with stage 3-5 CKD receiving ACEIs/ARBs between 2010 and 2018. We categorized the cohort into non-diuretic, loop diuretic (furosemide), thiazide diuretic, and combination diuretic groups. We used a Cox proportional hazards regression model with propensity score matching to analyze the influence of diuretics on all-cause mortality, cardiovascular (CV) death, and cardiorenal adverse outcomes. RESULTS: The study included 59,719 patients, with 17,585 in the non-diuretic group and 42,134 in the diuretic group. Diuretics including furosemide use was significantly associated the risks of hospitalization for decompensated congestive heart failure (CHF), acute renal failure (ARF), end-stage renal disease (ESRD) requiring dialysis, CV mortality, and all-cause mortality (p-value <0.001). Thiazide diuretics showed no such adverse outcomes associations. The group receiving both thiazide and furosemide was more associated with all-cause mortality than the nondiuretic, thiazide, and furosemide monotherapy groups (all p-value <0.001). CONCLUSION: Among stage 3-5 CKD patients on ACEIs/ARBs, loop diuretics exposure was associated with increased mortality and hospitalization for cardiorenal events, while thiazide diuretics exposure in isolation had no such associations. In the present data, we cannot evaluate the relationship between furosemide-associated adverse outcomes and worse renal function. These findings highlight the need for randomized controlled trials to assess the safety of loop diuretics in this population, urging caution in their prescription without a clear clinical indication.


Fluid overload is common in patients with advanced chronic kidney disease (CKD) due to their decreased ability to excrete water. Diuretic therapy is often used to manage this condition. However, prolonged use of diuretics may activate harmful bodily systems, including the renin-angiotensin-aldosterone system and the sympathetic nervous system. Our study, focusing on Taiwanese patients with stage 3­5 CKD and hypertension, found that loop diuretics, such as furosemide, were linked to higher risks of hospitalization, mortality, and serious heart and kidney complications. Thiazide diuretics did not show these adverse effects, suggesting they may be safer for these patients. More research is needed to clarify the long-term impact of diuretics on this population.

3.
Sci Rep ; 14(1): 15770, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982230

RESUMEN

The evidence for the impact of renal dysfunction in patients with diabetes mellitus (DM) and first cardiovascular diseases on mid-term adverse outcomes remain scarce. This study included the data of patients with DM having first atherosclerotic cardiovascular disease (ASCVD) or congestive heart failure (CHF) from the Taipei Medical University Clinical Research Database. A Cox proportional hazards regression model was used to assess the impact of chronic kidney disease (CKD) or end-stage renal disease (ESRD) on the 1-year mortality and recurrent ASCVD/CHF outcomes. We enrolled 21,320 patients with DM hospitalized for ASCVD or CHF; of them, 18,185, 2639, and 496 were assigned to the non-CKD, CKD, and ESRD groups, respectively. After propensity score matching, compared with the non-CKD group, the CKD and ESRD groups had higher mid-term all-cause mortality (adjusted hazard ratio 1.72 [95% confidence interval 1.48-1.99] and 2.77 [2.05-3.73], respectively), cardiovascular death (1.84 [1.44-2.35] and 1.87 [1.08-3.24], respectively), and recurrent hospitalization for ASCVD (1.44 [1.24-1.68] and 2.33 [1.69-3.23], respectively) and CHF (2.08 [1.75-2.47] and 1.50 [1.04-2.17], respectively). The advancing age was associated with mortality in CKD/ESRD groups. In CKD group, male sex was associated with all-cause mortality and recurrent ASCVD risk; the diuretics usage was associated with mortality and recurrent CHF risks. Our findings suggest that CKD and ESRD are significant risk factors for mid-term adverse outcomes in patients with DM and established cardiovascular diseases. Additionally, old age, male sex and diuretics usage requires attention. Further good quality studies are needed in the future.


Asunto(s)
Enfermedades Cardiovasculares , Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Anciano , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/mortalidad , Persona de Mediana Edad , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/complicaciones , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/complicaciones , Factores de Riesgo , Modelos de Riesgos Proporcionales , Diabetes Mellitus/epidemiología , Taiwán/epidemiología , Hospitalización
4.
Int J Biol Macromol ; 268(Pt 2): 131779, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679250

RESUMEN

Natto contains a potent fibrinolytic enzyme called nattokinase (NK), which has thrombolytic, antihypertensive, antiatherosclerotic and lipid-lowering effects. Although NK has been recognized for its beneficial effect on humans with atherosclerotic cardiovascular disease (ASCVD), the underlying mechanisms involved in vascular inflammation-atherosclerosis development remain largely unknown. The current study aimed to explore the effects of NK on gene regulation, autophagy, necroptosis and inflammasome in vascular inflammation. The transcriptional profiles of NK in endothelial cells (ECs) by RNA sequencing (RNA-seq) revealed that NK affected THBS1, SRF and SREBF1 mRNA expression. In Q-PCR analysis, SRF and THBS1 were upregulated but SREBF1 was unaffected in ECs treated with NK. NK treatment induced autophagy and inhibited NLRP3 inflammasome and necroptosis in ECs. Furthermore, the inhibition of SRF or THBS1 by siRNA suppressed autophagy and enhanced the NLRP3 inflammasome and necroptosis. In a mouse model, NK reduced vascular inflammation by activating autophagy and inhibiting NLRP3 inflammasome and necroptosis. Our findings provide the first evidence that NK upregulates SRF and THBS1 genes, subsequently increasing autophagy and decreasing necroptosis and NLRP3 inflammasome formation to reduce vascular inflammation. Therefore, NK could serve as nutraceuticals or adjuvant therapies to reduce vascular inflammation and possible atherosclerosis progression.


Asunto(s)
Inflamación , Subtilisinas , Trombospondina 1 , Animales , Masculino , Ratones , Autofagia/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamasomas/metabolismo , Inflamación/patología , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Subtilisinas/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Ratones Endogámicos C57BL
5.
Environ Pollut ; 346: 123617, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38395133

RESUMEN

Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Humanos , Estrés Oxidativo , Nanopartículas del Metal/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo
6.
Ecotoxicol Environ Saf ; 273: 116098, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368757

RESUMEN

Plastic waste accumulation and its degradation into microplastics (MPs) and nanoplastics (NPs) pose environmental concerns. Previous studies have indicated that polystyrene (PS)-MPs harm living animals. Extracellular vesicles (EVs) are associated with metabolic reprogramming and mitochondrial dysfunction in various kidney diseases. In this article, we evaluated how PS-MPs affected tubular cells and fibroblasts. The results demonstrated that PS-MPs increased EV production in human tubular cells and caused endoplasmic reticulum (ER) stress-related proteins without inducing inflammation-related proteins in human tubular cells. The uptake of PS-MPs and incubation with the conditioned medium of PS-MPs induced reactive oxygen species (ROS) production and ER stress-related proteins in fibroblast cells. The fibroblast cells treated with the conditioned medium of PS-MPs also increased the expression of fibrosis-related proteins. Our findings suggested that the expression of EV-related markers increased in tubular cells via Beclin 1 after PS-MP treatment. In addition, PS-MPs induced ROS production in vitro and in vivo. We found that PS-MPs also altered the expression of EV markers in urine, and CD63 expression was also increased in vitro and in vivo after PS-MP treatment. In conclusion, PS-MP-induced EVs lead to ER stress-related proteins, ROS production and fibrosis-related proteins in tubular cells and fibroblasts.


Asunto(s)
Vesículas Extracelulares , Microplásticos , Animales , Humanos , Microplásticos/toxicidad , Plásticos , Poliestirenos/toxicidad , Medios de Cultivo Condicionados , Especies Reactivas de Oxígeno , Riñón , Fibroblastos , Fibrosis
7.
J Transl Med ; 22(1): 13, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166970

RESUMEN

BACKGROUND: Radioresistance and lymph node metastasis are common phenotypes of refractory oral squamous cell carcinoma (OSCC). As a result, understanding the mechanism for radioresistance and metastatic progression is urgently needed for the precise management of refractory OSCC. Recently, immunotherapies, e.g. immune checkpoint inhibitors (ICIs), were employed to treat refractory OSCC; however, the lack of predictive biomarkers still limited their therapeutic effectiveness. METHODS: The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) databases and RT-PCR analysis were used to determine absent in melanoma 2 (AIM2) expression in OSCC samples. Colony-forming assay and trans-well cultivation was established for estimating AIM2 function in modulating the irradiation resistance and migration ability of OSCC cells, respectively. RT-PCR, Western blot and flow-cytometric analyses were performed to examine AIM2 effects on the expression of programmed death-ligand 1 (PD-L1) expression. Luciferase-based reporter assay and site-directed mutagenesis were employed to determine the transcriptional regulatory activity of Signal Transducer and Activator of Transcription 1 (STAT1) and NF-κB towards the AIM2-triggered PD-L1 expression. RESULTS: Here, we found that AIM2 is extensively upregulated in primary tumors compared to the normal adjacent tissues and acts as a poor prognostic marker in OSCC. AIM2 knockdown mitigated, but overexpression promoted, radioresistance, migration and PD-L1 expression via modulating the activity of STAT1/NF-κB in OSCC cell variants. AIM2 upregulation significantly predicted a favorable response in patients receiving ICI treatments. CONCLUSIONS: Our data unveil AIM2 as a critical factor for promoting radioresistance, metastasis and PD-L1 expression and as a potential biomarker for predicting ICI effectiveness on the refractory OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , FN-kappa B/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
8.
Clin Immunol ; 259: 109892, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38185269

RESUMEN

Radioresistance and metastasis are critical issues in managing oral squamous cell carcinoma (OSCC). Although immune checkpoint inhibitors (ICIs) has been recommended to treat OSCC, lacking useful biomarkers limited their anti-cancer effectiveness. We found that guanylate binding protein 5 (GBP5) is upregulated in primary tumors and associates with radioresistance in OSCC. GBP5 expression causally associated with cellular radioresistance and migration ability in the OSCC cell variants. GBP5 upregulation was examined to be correlated with NF-κB activation and programmed cell death-ligand 1 (PD-L1) elevation in OSCC samples. GBP5 knockdown was mitigated, but overexpression enhanced, NF-κB activity and PD-L1 expression in the OSCC cells. NF-κB inhibition by SN50 dramatically suppressed the GBP5-forested irradiation resistance, cellular migration ability and PD-L1 expression in OSCC cells. Importantly, GBP5 upregulation predicted a favorable outcome in cancer patients received ICI treatment. Our findings provide GBP5 as a useful biomarker to predict the anti-OSCC effectiveness of irradiation and ICIs.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Antígeno B7-H1 , Biomarcadores , Carcinoma de Células Escamosas/genética , Neoplasias de la Boca/genética , FN-kappa B , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
9.
Biomolecules ; 13(11)2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-38002263

RESUMEN

Kidney diseases with kidney failure or damage, such as chronic kidney disease (CKD) and acute kidney injury (AKI), are common clinical problems worldwide and have rapidly increased in prevalence, affecting millions of people in recent decades. A series of novel diagnostic or predictive biomarkers have been discovered over the past decade, enhancing the investigation of renal dysfunction in preclinical studies and clinical risk assessment for humans. Since multiple causes lead to renal failure, animal studies have been extensively used to identify specific disease biomarkers for understanding the potential targets and nephropathy events in therapeutic insights into disease progression. Mice are the most commonly used model to investigate the mechanism of human nephropathy, and the current alternative methods, including in vitro and in silico models, can offer quicker, cheaper, and more effective methods to avoid or reduce the unethical procedures of animal usage. This review provides modern approaches, including animal and nonanimal assays, that can be applied to study chronic nonclinical safety. These specific situations could be utilized in nonclinical or clinical drug development to provide information on kidney disease.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Riñón , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/diagnóstico , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/diagnóstico , Progresión de la Enfermedad , Biomarcadores
10.
Aging (Albany NY) ; 15(20): 11532-11545, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37878003

RESUMEN

OBJECTIVE: Sarcopenia or frailty is common among patients with chronic kidney disease (CKD). The protein-bound uremic toxin indoxyl sulfate (IS) is associated with frailty. IS induces apoptosis and disruption of mitochondrial activity in skeletal muscle. However, the association of IS with anabolic myokines such as irisin in patients with CKD or end-stage renal disease (ESRD) is unclear. This study aims to elucidate whether IS induces frailty by dysregulating irisin in patients with CKD. MATERIALS AND METHODS: The handgrip strength of 53 patients, including 28 patients with ESRD, was examined. Serum concentrations of IS and irisin were analyzed. CKD was established in BALB/c mice through 5/6 nephrectomy. Pathologic analysis of skeletal muscle was assessed through haematoxylin and eosin and Masson's trichrome staining. Expression of peroxisome proliferator-activated receptor-gamma coactivator PGC-1α and irisin were analyzed using real-time polymerase chain reaction and Western blotting. RESULTS: Handgrip strength was lower among patients with ESRD than among those without ESRD. In total, 64.3% and 24% of the patients in the ESRD and control groups had low handgrip strength, respectively (p < 0.05). Serum concentrations of IS were significantly higher in the ESRD group than in the control group (222.81 ± 90.67 µM and 23.19 ± 33.28 µM, respectively, p < 0.05). Concentrations of irisin were lower in the ESRD group than in the control group (64.62 ± 32.64 pg/mL vs. 99.77 ± 93.29 pg/mL, respectively, p < 0.05). ROC curves for low handgrip strength by irisin and IS were 0.298 (95% confidence interval (CI): 0.139-0.457, p < 0.05) and 0.733 (95% CI: 0.575-0.890, p < 0.05), respectively. The percentage of collagen was significantly higher in mice with 5/6 nephrectomy than in the control group. After resveratrol (RSV) treatment, the percentage of collagen significantly decreased. RSV modulates TGF-ß signaling. In vitro analysis revealed that IS treatment suppressed expression of PGC-1α and FNDC5 in a dose-dependent manner, whereas RSV treatment attenuated IS-induced phenomena in C2C12 cells. CONCLUSION: IS was positively correlated with frailty in patients with ESRD through the modulation of the PGC-1α-FNDC5 axis. RSV may be a potential drug for reversing IS-induced suppression of the PGC-1α-FNDC5 axis in skeletal muscle.


Asunto(s)
Fragilidad , Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Indicán , Fibronectinas , Fragilidad/metabolismo , Fuerza de la Mano , Factores de Transcripción/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Insuficiencia Renal Crónica/metabolismo , Colágeno/metabolismo
11.
Comput Struct Biotechnol J ; 21: 3490-3502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484490

RESUMEN

Renal inflammation and fibrosis are significantly correlated with the deterioration of kidney function and result in chronic kidney disease (CKD). However, current therapies only delay disease progression and have limited treatment effects. Hence, the development of innovative therapeutic approaches to mitigate the progression of CKD has become an attractive issue. To date, the incidence of CKD is still increasing, and the biomarkers of the pathophysiologic processes of CKD are not clear. Therefore, the identification of novel therapeutic targets associated with the progression of CKD is an attractive issue. It is a critical necessity to discover new therapeutics as nephroprotective strategies to stop CKD progression. In this research, we focus on targeting a prostaglandin E2 receptor (EP2) as a nephroprotective strategy for the development of additional anti-inflammatory or antifibrotic strategies for CKD. The in silico study identified that ritodrine, dofetilide, dobutamine, and citalopram are highly related to EP2 from the results of chemical database virtual screening. Furthermore, we found that the above four candidate drugs increased the activation of autophagy in human kidney cells, which also reduced the expression level of fibrosis and NLRP3 inflammasome activation. It is hoped that these findings of the four candidates with anti-NLRP3 inflammasome activation and antifibrotic effects will lead to the development of novel therapies for patients with CKD in the future.

13.
Cancer Cell Int ; 23(1): 41, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890567

RESUMEN

BACKGROUND: Radiotherapy is the first-line regimen for treating oral squamous cell carcinoma (OSCC) in current clinics. However, the development of therapeutic resistance impacts the anticancer efficacy of irradiation in a subpopulation of OSCC patients. As a result, discovering a valuable biomarker to predict radiotherapeutic effectiveness and uncovering the molecular mechanism for radioresistance are clinical issues in OSCC. METHODS: Three OSCC cohorts from The Cancer Genome Atlas (TCGA), GSE42743 dataset and Taipei Medical University Biobank were enrolled to examine the transcriptional levels and prognostic significance of neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8). Gene set enrichment analysis (GSEA) was utilized to predict the critical pathways underlying radioresistance in OSCC. The colony-forming assay was used to estimate the consequences of irradiation sensitivity after the inhibition or activation of the NEDD8-autophagy axis in OSCC cells. RESULTS: NEDD8 upregulation was extensively found in primary tumors compared to normal adjacent tissues and potentially served as a predictive marker for the therapeutic effectiveness of irradiation in OSCC patients. NEDD8 knockdown enhanced radiosensitivity but NEDD8 overexpression reduced it in OSCC cell lines. The inclusion of MLN4924, a pharmaceutical inhibitor for NEDD8-activating enzyme, dose-dependently restored the cellular sensitivity to irradiation treatment in irradiation-insensitive OSCC cells. Computational simulation by GSEA software and cell-based analyses revealed that NEDD8 upregulation suppresses Akt/mTOR activity to initiate autophagy formation and ultimately confers radioresistance to OSCC cells. CONCLUSION: These findings not only identify NEDD8 as a valuable biomarker to predict the efficacy of irradiation but also offer a novel strategy to overcome radioresistance via targeting NEDD8-mediated protein neddylation in OSCC.

14.
Theranostics ; 13(1): 40-58, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593951

RESUMEN

Immunotherapies are now emerging as an efficient anticancer therapeutic strategy. Cancer immunotherapy utilizes the host's immune system to fight against cancer cells and has gained increasing interest due to its durable efficacy and low toxicity compared to traditional antitumor treatments, such as chemotherapy and radiotherapy (RT). Although the combination of RT and immunotherapy has drawn extensive attention in the clinical setting, the overall response rates are still low. Therefore, strategies for further improvement are urgently needed. Nanotechnology has been used in cancer immunotherapy and RT to target not only cancer cells but also the tumor microenvironment (TME), thereby helping to generate a long-term immune response. Nanomaterials can be an effective delivery system and a strong autophagy inducer, with the ability to elevate autophagy to very high levels. Interestingly, autophagy could play a critical role in optimal immune function, mediating cell-extrinsic homeostatic effects through the regulation of danger signaling in neoplastic cells under immunogenic chemotherapy and/or RT. In this review, we summarize the preclinical and clinical development of the combination of immunotherapy and RT in cancer therapy and highlight the latest progress in nanotechnology for augmenting the anticancer effects of immunotherapy and RT. The underlying mechanisms of nanomaterial-triggered autophagy in tumor cells and the TME are discussed in depth. Finally, we suggest the implications of these three strategies combined together to achieve the goal of maximizing the therapeutic advantages of cancer therapy and show recent advances in biomarkers for tumor response in the evaluation of those therapies.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Inmunoterapia , Autofagia , Microambiente Tumoral
15.
Cancer Sci ; 114(1): 306-320, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36104978

RESUMEN

Cancer metastasis leading to the dysfunction of invaded organs is the main cause of the reduced survival rates in lung cancer patients. However, the molecular mechanism for lung cancer metastasis remains unclear. Recently, the increased activity of inflammasome appeared to correlate with the metastatic progression and immunosuppressive ability of various cancer types. Our results showed that the mRNA levels of absence in melanoma 2 (AIM2), one of the inflammasome members, are extensively upregulated in primary tumors compared with normal tissues derived from the TCGA lung adenocarcinoma (LUAD) database. Moreover, Kaplan-Meier analysis demonstrated that a higher mRNA level of AIM2 refers to a poor prognosis in LUAD patients. Particularly, AIM2 upregulation is closely correlated with smoking history and the absence of EGFR/KRAS/ALK mutations in LUAD. We further showed that the endogenous mRNA levels of AIM2 are causally associated with the metastatic potentials of the tested LUAD cell lines. AIM2 knockdown suppressed but overexpression promoted the migration ability and lung colony-forming ability of tested LUAD cells. In addition, we found that AIM2 upregulation is closely associated with an increased level of immune checkpoint gene set, as well as programmed cell death-ligand 1 (PD-L1) transcript, in TCGA LUAD samples. AIM2 knockdown predominantly repressed but overexpression enhanced PD-L1 expression via altering the activity of PD-L1 transcriptional regulators NF-κB/STAT1 in LUAD cells. Our results not only provide a possible mechanism underlying the AIM2-promoted metastatic progression and immune evasion of LUAD but also offer a new strategy for combating metastatic/immunosuppressive LUAD via targeting AIM2 activity.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Melanoma , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Regulación hacia Arriba , Inflamasomas/metabolismo , Pronóstico , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , ARN Mensajero/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
16.
Environ Pollut ; 318: 120871, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528199

RESUMEN

Several epidemiological studies regarding the adverse effect of air pollution have notably accelerated in recent years. Urban particulate matter (PM) gains access to the respiratory system and translocates into the circulation to affect several tissues, such as the liver and kidneys. Lactoferrin is a substance belonging to the non-heme iron-binding glycoprotein which is present in breast milk and other exocrine fluids. Lactoferrin is protective against many pathophysiological conditions. In the present study, we explored the potential influence of lactoferrin on PM-induced nephrotoxicity. We found that lactoferrin rescued PM-induced cell death but did not affect apoptosis in human kidney cells. Lactoferrin decreased necroptosis and fibrosis but increased autophagy in human kidney cells. Furthermore, the gene expression profiles of PM and lactoferrin were analyzed by RNA sequencing. The transcriptional profiles were uploaded and analyzed by ingenuity pathway analysis software and gene set enrichment analysis. The results showed that the crucial role of the CSF2/CENPE pathway was involved in human kidney cells treated with PM and lactoferrin. In a mouse model, lactoferrin ameliorates PM-induced nephrotoxicity by regulating necroptosis, fibrosis, autophagy and the CSF2/CENPE axis. In summary, these findings showed that lactoferrin could be a novel therapeutic or preventive agent for renal disorders caused by airborne PM pollution.


Asunto(s)
Lactoferrina , Material Particulado , Animales , Humanos , Ratones , Apoptosis , Fibrosis , Riñón , Lactoferrina/farmacología , Material Particulado/toxicidad
17.
Sci Rep ; 12(1): 17212, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241669

RESUMEN

The outcome of acute kidney injury (AKI) as a result of aminoglycosides (AGs) use remains uncertain in patients without prior chronic kidney disease (CKD). Therefore, we explored the outcomes of AGs use on AKI episodes associated with renal recovery and progress in patients without prior CKD in Taiwan. This was a retrospective cohort study by using the Taipei Medical University Research Database from January 2008 to December 2019. 43,259 individuals without CKD who had received parenteral AGs were enrolled. The exposed and unexposed groups underwent propensity score matching for age, gender, patients in intensive care unit/emergency admission, and covariates, except serum hemoglobin and albumin levels. We identified an exposed group of 40,547 patients who used AGs (median age, 54.4 years; 44.3% male) and an unexposed group of 40,547 patients without AG use (median age, 55.7 years; 45.5% male). There was the risk for AKI stage 1 (adjusted hazard ratio [HR] 1.34; 95% confidence interval [CI] 1.00-1.79; p = 0.05) in patients that used AGs in comparison with the control subjects. Moreover, patients using AGs were significantly associated neither with the progression to acute kidney disease (AKD) stages nor with the progression to end-stage renal disease (ESRD) on dialysis. Further analyzed, there was an increased risk of AKI episodes for serum albumin levels less than 3.0 g/dL and hemoglobin levels less than 11.6 g/dL. Among patients without prior CKD, AGs-used individuals were associated with AKI risks, especially those at relatively low albumin (< 3.0 g/dL) or low hemoglobin (< 11.6 g/dL). That could raise awareness of AGs prescription in those patients in clinical practice.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/epidemiología , Aminoglicósidos/efectos adversos , Antibacterianos/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Diálisis Renal , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/complicaciones , Estudios Retrospectivos , Albúmina Sérica
18.
Biomed Pharmacother ; 154: 113565, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007272

RESUMEN

Deposition of extracellular matrix (ECM), epithelial-mesenchymal transition (EMT) and inflammation are crucial processes in chronic kidney disease (CKD) progression. The matrix metalloproteinases (MMPs) belong to a major enzyme group of proteinases that are involved in ECM degradation. MMP controls multiple biological processes, such as cell proliferation, EMT and apoptosis. The present study identified the roles of MMP7 in CKD progression. We demonstrated the transcriptional profiles of MMPs in kidney tissues of CKD patients in the Gene Expression Omnibus (GEO) data repository. MMP7 mRNA level was markedly upregulated in kidney tissues of CKD patients. MMP7 overexpression activated the NLRP3 and NLRP6 inflammasomes and increased fibrosis-related proteins in kidney cells. MMP7 inhibited oxidative stress-induced apoptosis and rapamycin-induced autophagy. We found that MMP7 expression in the kidney was increased in various CKD animal models. Knockdown of MMP7 affected renal function and renal fibrosis in a folic acid-induced CKD model. The inhibition of MMP7 decreased fibrosis and NLRP3 and NLRP6 inflammasomes and induced autophagy in kidney tissues. Taken together, these results provide insight into targeting MMP7 as a therapeutic strategy for CKD.


Asunto(s)
Inflamasomas , Insuficiencia Renal Crónica , Animales , Autofagia , Transición Epitelial-Mesenquimal , Fibrosis , Inflamasomas/metabolismo , Riñón/metabolismo , Metaloproteinasa 7 de la Matriz/metabolismo , Metaloproteinasas de la Matriz , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Insuficiencia Renal Crónica/metabolismo
19.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36015101

RESUMEN

Renal osteodystrophy is common in patients with chronic kidney disease and end-stage renal disease and leads to the risks of fracture and extraosseous vascular calcification. Secondary hyperparathyroidism (SHPT) is characterized by a compensatory increase in parathyroid hormone (PTH) secretion in response to decreased renal phosphate excretion, resulting in potentiating bone resorption and decreased bone quantity and quality. Calcium-sensing receptors (CaSRs) are group C G-proteins and negatively regulate the parathyroid glands through (1) increasing CaSR insertion within the plasma membrane, (2) increasing 1,25-dihydroxy vitamin D3 within the kidney and parathyroid glands, (3) inhibiting fibroblast growth factor 23 (FGF23) in osteocytes, and (4) attenuating intestinal calcium absorption through Transient Receptor Potential Vanilloid subfamily member 6 (TRPV6). Calcimimetics (CaMs) decrease PTH concentrations without elevating the serum calcium levels or extraosseous calcification through direct interaction with cell membrane CaSRs. CaMs reduce osteoclast activity by reducing stress-induced oxidative autophagy and improving Wnt-10b release, which promotes the growth of osteoblasts and subsequent mineralization. CaMs also directly promote osteoblast proliferation and survival. Consequently, bone quality may improve due to decreased bone resorption and improved bone formation. CaMs modulate cardiovascular fibrosis, calcification, and renal fibrosis through different mechanisms. Therefore, CaMs assist in treating SHPT. This narrative review focuses on the role of CaMs in renal osteodystrophy, including their mechanisms and clinical efficacy.

20.
Comput Struct Biotechnol J ; 20: 1876-1884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35521549

RESUMEN

Drug-induced nephrotoxicity remains a common problem after exposure to medications and diagnostic agents, which may be heightened in the kidney microenvironment and deteriorate kidney function. In this study, the toxic effects of fourteen marked drugs with the individual chemical structure were evaluated in kidney cells. The quantitative structure-activity relationship (QSAR) approach was employed to investigate the potential structural descriptors of each drug-related to their toxic effects. The most reasonable equation of the QSAR model displayed that the estimated regression coefficients such as the number of ring assemblies, three-membered rings, and six-membered rings were strongly related to toxic effects on renal cells. Meanwhile, the chemical properties of the tested compounds including carbon atoms, bridge bonds, H-bond donors, negative atoms, and rotatable bonds were favored properties and promote the toxic effects on renal cells. Particularly, more numbers of rotatable bonds were positively correlated with strong toxic effects that displayed on the most toxic compound. The useful information discovered from our regression QSAR models may help to identify potential hazardous moiety to avoid nephrotoxicity in renal preventive medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA