Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38946422

RESUMEN

Type 2 diabetes (T2D) constitutes a major public health problem, and despite prevention efforts, this pandemic disease is 'one of the deadliest diseases in the world. In 2022, 6.7 million T2D patients died prematurely from vascular complications. Indeed, diabetes increases the risk of myocardial infarction or stroke eightfold. The identification of the molecular actors involved in the occurrence of cardiovascular complications and their prevention are therefore major axes. Our hypothesis is that factors brought into play during physiological aging appear prematurely with diabetes progression. Our study focused on the aging of the extracellular matrix (ECM), a major element in the maintenance of vascular homeostasis. We characterized the morphological and functional aspects of aorta, with a focus on the collagen and elastic fibers of diabetic mice aged from 6 months to non-diabetic mice aged 6 months and 20 months. The comparison with the two non-diabetic models (young and old) highlighted an exacerbated activity of proteases, which could explain a disturbance in the collagen accumulation and an excessive degradation of elastic fibers. Moreover, the generation of circulating elastin-derived peptides reflects premature aging of the ECM. These extracellular elements contribute to the appearance of vascular rigidity, often the origin of pathologies such as hypertension and atherosclerosis. In conclusion, we show that diabetic mice aged 6 months present the same characteristics of ECM wear as those observed in mice aged 20 months. This accelerated aortic wall remodeling could then explain the early onset of cardiovascular diseases and, therefore, the premature death of DT2 patients.

2.
Redox Biol ; 73: 103204, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810421

RESUMEN

The ELN gene encodes tropoelastin which is used to generate elastic fibers that insure proper tissue elasticity. Decreased amounts of elastic fibers and/or accumulation of bioactive products of their cleavage, named elastokines, are thought to contribute to aging. Cellular senescence, characterized by a stable proliferation arrest and by the senescence-associated secretory phenotype (SASP), increases with aging, fostering the onset and progression of age-related diseases and overall aging, and has so far never been linked with elastin. Here, we identified that decrease in ELN either by siRNA in normal human fibroblasts or by knockout in mouse embryonic fibroblasts results in premature senescence. Surprisingly this effect is independent of elastic fiber degradation or elastokines production, but it relies on the rapid increase in HMOX1 after ELN downregulation. Moreover, the induction of HMOX1 depends on p53 and NRF2 transcription factors, and leads to an increase in iron, further mediating ELN downregulation-induced senescence. Screening of iron-dependent DNA and histones demethylases revealed a role for histone PHF8 demethylase in mediating ELN downregulation-induced senescence. Collectively, these results unveil a role for ELN in protecting cells from cellular senescence through a non-canonical mechanism involving a ROS/HMOX1/iron accumulation/PHF8 histone demethylase pathway reprogramming gene expression towards a senescence program.


Asunto(s)
Senescencia Celular , Fibroblastos , Regulación de la Expresión Génica , Hemo-Oxigenasa 1 , Hierro , Tropoelastina , Animales , Humanos , Ratones , Fibroblastos/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Tropoelastina/metabolismo , Tropoelastina/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
4.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362244

RESUMEN

Elastic fibers, made of elastin (90%) and fibrillin-rich microfibrils (10%), are the key extracellular components, which endow the arteries with elasticity. The alteration of elastic fibers leads to cardiovascular dysfunctions, as observed in elastin haploinsufficiency in mice (Eln+/-) or humans (supravalvular aortic stenosis or Williams-Beuren syndrome). In Eln+/+ and Eln+/- mice, we evaluated (arteriography, histology, qPCR, Western blots and cell cultures) the beneficial impact of treatment with a synthetic elastic protein (SEP), mimicking several domains of tropoelastin, the precursor of elastin, including hydrophobic elasticity-related domains and binding sites for elastin receptors. In the aorta or cultured aortic smooth muscle cells from these animals, SEP treatment induced a synthesis of elastin and fibrillin-1, a thickening of the aortic elastic lamellae, a decrease in wall stiffness and/or a strong trend toward a reduction in the elastic lamella disruptions in Eln+/- mice. SEP also modified collagen conformation and transcript expressions, enhanced the aorta constrictive response to phenylephrine in several animal groups, and, in female Eln+/- mice, it restored the normal vasodilatory response to acetylcholine. SEP should now be considered as a biomimetic molecule with an interesting potential for future treatments of elastin-deficient patients with altered arterial structure/function.


Asunto(s)
Enfermedades Vasculares , Síndrome de Williams , Humanos , Ratones , Masculino , Femenino , Animales , Elastina/metabolismo , Tejido Elástico/metabolismo , Haploinsuficiencia , Aorta/metabolismo , Enfermedades Vasculares/patología
5.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806017

RESUMEN

Intermittent hypoxia (IH), the major feature of obstructive sleep apnea syndrome (OSAS), induces atherosclerosis and elastic fiber alterations. VE-cadherin cleavage is increased in OSAS patients and in an IH-cellular model. It is mediated by HIF-1 and Src-tyr-kinases pathways and results in endothelial hyperpermeability. Our aim was to determine whether blocking VE-cadherin cleavage in vivo could be an efficient strategy to inhibit deleterious IH-induced vascular remodeling, elastic fiber defects and atherogenesis. VE-cadherin regulation, aortic remodeling and atherosclerosis were studied in IH-exposed C57Bl/6J or ApoE-/-mice treated or not with Src-tyr-kinases inhibitors (Saracatinib/Pazopanib) or a HIF-1 inhibitor (Acriflavine). Human aortic endothelial cells were exposed to IH and treated with the same inhibitors. LDL and the monocytes transendothelium passage were measured. In vitro, IH increased transendothelium LDL and monocytes passage, and the tested inhibitors prevented these effects. In mice, IH decreased VE-cadherin expression and increased plasmatic sVE level, intima-media thickness, elastic fiber alterations and atherosclerosis, while the inhibitors prevented these in vivo effects. In vivo inhibition of HIF-1 and Src tyr kinase pathways were associated with the prevention of IH-induced elastic fiber/lamella degradation and atherogenesis, which suggests that VE-cadherin could be an important target to limit atherogenesis and progression of arterial stiffness in OSAS.


Asunto(s)
Aterosclerosis , Apnea Obstructiva del Sueño , Animales , Antígenos CD , Aorta/metabolismo , Aterosclerosis/metabolismo , Cadherinas , Grosor Intima-Media Carotídeo , Tejido Elástico/metabolismo , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Apnea Obstructiva del Sueño/metabolismo
6.
Eur Respir Rev ; 31(164)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35418489

RESUMEN

AIM: Intermittent hypoxia (IH) is considered to be a major contributor to obstructive sleep apnoea-related cardiovascular consequences. The present meta-analysis aimed to assess the effects of IH on cardiac remodelling, function and infarct size after myocardial ischaemia across different rodent species and IH severities. METHODS AND RESULTS: Relevant articles from PubMed, Embase and Web of Science were screened. We performed a random effect meta-analysis to assess the effect of IH on myocardium in rodents by using standardised mean difference (SMD). Studies using rodents exposed to IH and outcomes related to cardiac remodelling, contractile function and response to myocardial ischaemia-reperfusion were included. 5217 articles were screened and 92 were included, demonstrating that IH exposure induced cardiac remodelling, characterised by cardiomyocyte hypertrophy (cross-sectional area: SMD=2.90, CI (0.82-4.98), I2=94.2%), left ventricular (LV) dilation (LV diameter: SMD=0.64, CI (0.18-1.10), I2=88.04%), interstitial fibrosis (SMD=5.37, CI (3.22-7.53), I2=94.8) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labelling: SMD=6.70, CI (2.96-10.44), I2=95.9). These structural changes were accompanied by a decrease in LV ejection fraction (SMD=-1.82, CI (-2.52--1.12), I2=94.22%). Importantly, most of the utilised IH protocols mimicked extremely severe hypoxic disease. Concerning infarct size, meta-regression analyses highlighted an ambivalent role of IH, depending on its severity. Indeed, IH exposure with inspiratory oxygen fraction (F IO2 ) <7% was associated with an increase in infarct size, whereas a reduced infarct size was reported for F IO2 levels above 10%. Heterogeneity between studies, small study effect and poor reporting of methods in included articles limited the robustness of the meta-analysis findings. CONCLUSION: This meta-analysis demonstrated that severe IH systematically induces cardiac remodelling and contractile dysfunction in rodents, which might trigger or aggravate chronic heart failure. Interestingly, this meta-analysis showed that, depending on stimulus severity, IH exhibits both protective and aggravating effects on infarct size after experimental ischaemia-reperfusion procedures.


Asunto(s)
Roedores , Remodelación Ventricular , Animales , Humanos , Hipoxia , Infarto , Miocardio
7.
Eur Respir J ; 59(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34413154

RESUMEN

BACKGROUND: Obstructive sleep apnoea and the related intermittent hypoxia (IH) are widely recognised as risk factors for incident cardiovascular diseases. Numerous studies support the deleterious vascular impact of IH in rodents but an overall interpretation is challenging owing to heterogeneity in rodent species investigated and the severity and duration of IH exposure. To clarify this major issue, we conducted a systematic review and meta-analysis to quantify the impact of IH on systemic artery structure and function depending on the different IH exposure designs. METHODS: We searched PubMed, Embase and Web of Science, and included 125 articles in a meta-analysis, among them 112 using wild-type rodents and 13 using apolipoprotein E knockout (ApoE-/-) mice. We used the standardised mean difference (SMD) to compare results between studies. RESULTS: IH significantly increased mean arterial pressure (+13.90 (95% CI 11.88-15.92) mmHg), and systolic and diastolic blood pressure. Meta-regressions showed that mean arterial pressure change was associated with strain and year of publication. IH altered vasodilation in males but not in females and increased endothelin-1-induced but not phenylephrine-induced vasoconstriction. Intima-media thickness significantly increased upon IH exposure (SMD 1.10 (95% CI 0.58-1.62); absolute values +5.23 (2.81-7.84) µm). This increase was observed in mice but not in rats and was negatively associated with age. Finally, IH increased atherosclerotic plaque size in ApoE-/- mice (SMD 1.08 (95% CI 0.80-1.37)). CONCLUSIONS: Our meta-analysis established that IH, independently of other confounders, has a strong effect on vascular structure and physiology. Our findings support the interest of identifying and treating sleep apnoea in routine cardiology practice.


Asunto(s)
Grosor Intima-Media Carotídeo , Roedores , Animales , Presión Sanguínea , Modelos Animales de Enfermedad , Femenino , Humanos , Hipoxia , Masculino , Ratones , Ratas
9.
Eur Respir J ; 58(4)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33737411

RESUMEN

BACKGROUND: Obstructive sleep apnoea (OSA) causes intermittent hypoxia that in turn induces endothelial dysfunction and atherosclerosis progression. We hypothesised that VE-cadherin cleavage, detected by its released extracellular fragment solubilised in the blood (sVE), may be an early indicator of emergent abnormal endothelial permeability. Our aim was to assess VE-cadherin cleavage in OSA patients and in in vivo and in vitro intermittent hypoxia models to decipher the cellular mechanisms and consequences. METHODS: Sera from seven healthy volunteers exposed to 14 nights of intermittent hypoxia, 43 OSA patients and 31 healthy control subjects were analysed for their sVE content. Human aortic endothelial cells (HAECs) were exposed to 6 h of intermittent hypoxia in vitro, with or without an antioxidant or inhibitors of hypoxia-inducible factor (HIF)-1, tyrosine kinases or vascular endothelial growth factor (VEGF) pathways. VE-cadherin cleavage and phosphorylation were evaluated, and endothelial permeability was assessed by measuring transendothelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran flux. RESULTS: sVE was significantly elevated in sera from healthy volunteers submitted to intermittent hypoxia and OSA patients before treatment, but conversely decreased in OSA patients after 6 months of continuous positive airway pressure treatment. OSA was the main factor accounting for sVE variations in a multivariate analysis. In in vitro experiments, cleavage and expression of VE-cadherin increased upon HAEC exposure to intermittent hypoxia. TEER decreased and FITC-dextran flux increased. These effects were reversed by all of the pharmacological inhibitors tested. CONCLUSIONS: We suggest that in OSA, intermittent hypoxia increases endothelial permeability in OSA by inducing VE-cadherin cleavage through reactive oxygen species production, and activation of HIF-1, VEGF and tyrosine kinase pathways.


Asunto(s)
Células Endoteliales , Apnea Obstructiva del Sueño , Antígenos CD , Cadherinas/metabolismo , Permeabilidad Capilar , Células Endoteliales/metabolismo , Humanos , Hipoxia , Permeabilidad , Factor A de Crecimiento Endotelial Vascular
11.
Front Physiol ; 11: 126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153426

RESUMEN

Duchenne muscular dystrophy (DMD) is an irreversible muscle disease characterized by a progressive loss of muscle function, decreased ambulation, and ultimately death as a result of cardiac or respiratory failure. DMD is caused by the lack of dystrophin, a protein that is important for membrane stability and signaling in excitable cells. Although vascular smooth muscle cells (VSMCs) dysfunction occurs in many pathological conditions, little is known about vascular smooth muscle function in DMD. We have previously shown that striated muscle cells, as well as neurons isolated from dystrophic (mdx) mice have higher intracellular Ca2+ ([Ca2+]i) and Na+ ([Na+]i) concentrations and decreased cell viability in comparison with wild type (Wt). Experiments were carried out in isolated VSMCs from mdx (a murine model of DMD) and congenic C57BL/10SnJ Wt mice. We found elevated [Ca2+]i and [Na+]i in VSMCs from mdx mice compared to Wt. Exposure to 1-oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC3 and TRPC6 channel activator, induced a greater elevation of [Ca2+]i and [Na+]i in mdx than Wt VSMCs. The OAG induced increases in [Ca2+]i could be abolished by either removal of extracellular Ca2+ or by SAR7334, a blocker of TRPC3 and TRPC 6 channels in both genotypes. Mdx and Wt VSMCs were susceptible to muscle cell stretch-induced elevations of [Ca2+]i and [Na+]i which was completely inhibited by GsMTx-4, a mechanosensitive ion channel inhibitor. Western blots showed a significant upregulation of TRPC1 -3, -6 proteins in mdx VSMCs compare to age-matched Wt. The lack of dystrophin in mdx VSMCs produced a profound alteration of [Ca2+]i and [Na+]i homeostasis that appears to be mediated by TRPC channels. Moreover, we have been able to demonstrate pharmacologically that the enhanced stretch-induced elevation of intracellular [Ca2+] and concomitant cell damage in mdx VSMCs also appears to be mediated through TRPC1, -3 and -6 channel activation.

12.
Biomolecules ; 10(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979322

RESUMEN

Elastic fibers (90% elastin, 10% fibrillin-rich microfibrils) are synthesized only in early life and adolescence mainly by the vascular smooth muscle cells through the cross-linking of its soluble precursor, tropoelastin. Elastic fibers endow the large elastic arteries with resilience and elasticity. Normal vascular aging is associated with arterial remodeling and stiffening, especially due to the end of production and degradation of elastic fibers, leading to altered cardiovascular function. Several pharmacological treatments stimulate the production of elastin and elastic fibers. In particular, dill extract (DE) has been demonstrated to stimulate elastin production in vitro in dermal equivalent models and in skin fibroblasts to increase lysyl oxidase-like-1 (LOXL-1) gene expression, an enzyme contributing to tropoelastin crosslinking and elastin formation. Here, we have investigated the effects of a chronic treatment (three months) of aged male mice with DE (5% or 10% v/v, in drinking water) on the structure and function of the ascending aorta. DE treatment, especially at 10%, of aged mice protected pre-existing elastic lamellae, reactivated tropoelastin and LOXL-1 expressions, induced elastic fiber neo-synthesis, and decreased the stiffness of the aging aortic wall, probably explaining the reversal of the age-related cardiac hypertrophy also observed following the treatment. DE could thus be considered as an anti-aging product for the cardiovascular system.


Asunto(s)
Envejecimiento , Aminoácido Oxidorreductasas/metabolismo , Anethum graveolens/química , Aorta/efectos de los fármacos , Cardiomegalia/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Aorta/metabolismo , Fenómenos Biomecánicos , Presión Sanguínea , Peso Corporal , Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Extractos Vegetales/química , ARN/metabolismo , Piel/metabolismo , Tropoelastina/metabolismo
13.
Matrix Biol ; 84: 41-56, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31493460

RESUMEN

In the arteries of vertebrates, evolution has given rise to resilient macromolecular structures, elastin and elastic fibers, capable of sustaining an elevated blood pressure and smoothening the discontinuous blood flow and pressure generated by the heart. Elastic fibers are produced only during development and childhood, before being progressively degraded by mechanical stress and enzymatic activities during adulthood and aging. During this period, arterial elastic fiber calcification and loading of lipids also occur, all of these events conducting to arteriosclerosis. This leads to a progressive dysfunction of the large elastic arteries inducing elevated blood pressure as well as altered hemodynamics and organ perfusion, which induce more global malfunctions of the body during normal aging. Additionally, some arterial conditions occur more frequently with advancing age, such as atherosclerosis or aneurysms, which are called age-related diseases or pathological aging. The physiological or pathological degradation of elastic fibers and function of elastic arteries seemed to be rather inevitable over time. However, during the recent years, different molecules - including several ATP-dependent potassium channel openers, such as minoxidil - have been shown to re-induce elastin production and elastic fiber assembly, leading to improvements in the arterial structure and function or in organ perfusion. This review summarizes the changes in the arterial elastic fibers and structure from development until aging, and presents some of the potential pharmacotherapies leading to elastic fiber neosynthesis and arterial function improvement.


Asunto(s)
Envejecimiento/fisiología , Arterias/fisiología , Elastina/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Arterias/química , Arterias/efectos de los fármacos , Elastina/química , Elastina/efectos de los fármacos , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Minoxidil/farmacología , Estrés Mecánico
14.
Invest Ophthalmol Vis Sci ; 59(12): 5256-5265, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30383197

RESUMEN

Purpose: Obstructive sleep apnea recently has been associated with a higher frequency of ischemic optic neuropathies. Intermittent hypoxia (IH) has been proposed as a major component of obstructive sleep apnea cardiovascular consequences. However, there currently are no pathophysiologic data regarding the effect of IH on the ocular vascular system. Thus, we assessed the impact of chronic IH exposure on the morphology and vascular reactivity of the rat ophthalmic artery (OA). Methods: Rats were exposed to 14 days of IH or normoxia (NX). Ophthalmic artery reactivity was studied using wire myography in rats treated or not with tempol (1 mM/day). Expression of endothelin-1 (ET-1) and its receptors, and of the three nitric oxide synthase (NOS) isoform genes was quantified using quantitative polymerase chain reaction (qPCR) in the retina and optic nerve. Structural alterations (optical and electron microscopy) and superoxide anion production were studied in OA sections. Results: Superoxide ion expression in the OA wall was increased by 23% after IH exposure. Ophthalmic artery contractile response to 3.10-8 M ET-1 was increased by 18.6% and nitric oxide-mediated relaxation was significantly delayed in IH compared to NX rats. In the absence of nitric oxide, cytochrome P450 blockade increased relaxation to acetylcholine in IH rats and delayed it in NX rats. Tempol treatment abolished the IH-induced changes in OA reactivity. Conclusions: These results strongly suggest that chronic IH induces oxidative stress in the rat OA, associated with endothelial dysfunction through alterations of nitric oxide and endothelium-derived hyperpolarising factors (EDHF) pathways.


Asunto(s)
Endotelina-1/metabolismo , Hipoxia/fisiopatología , Arteria Oftálmica/fisiopatología , Estrés Oxidativo , Receptor de Endotelina A/metabolismo , Animales , Enfermedad Crónica , Óxidos N-Cíclicos/farmacología , Hipoxia/metabolismo , Masculino , Músculo Liso Vascular/fisiología , Miografía , Óxido Nítrico Sintasa/genética , Arteria Oftálmica/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Marcadores de Spin , Superóxidos/metabolismo
15.
J Am Heart Assoc ; 7(3)2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371201

RESUMEN

BACKGROUND: Obstructive sleep apnea is characterized by repetitive pharyngeal collapses during sleep, leading to intermittent hypoxia (IH), the main contributor of obstructive sleep apnea-related cardiovascular morbidity. In patients and rodents with obstructive sleep apnea exposed to IH, vascular inflammation and remodeling, endothelial dysfunction, and circulating inflammatory markers are linked with IH severity. The nonmuscle myosin light chain kinase (nmMLCK) isoform contributes to vascular inflammation and oxidative stress in different cardiovascular and inflammatory diseases. Thus, in the present study, we hypothesized that nmMLCK plays a key role in the IH-induced vascular dysfunctions and inflammatory remodeling. METHODS AND RESULTS: Twelve-week-old nmMLCK+/+ or nmMLCK-/- mice were exposed to 14-day IH or normoxia. IH was associated with functional alterations characterized by an elevation of arterial blood pressure and stiffness and perturbations of NO signaling. IH caused endothelial barrier dysfunction (ie, reduced transendothelial resistance in vitro) and induced vascular oxidative stress associated with an inflammatory remodeling, characterized by an increased intima-media thickness and an increased expression and activity of inflammatory markers, such as interferon-γ and nuclear factor-κB, in the vascular wall. Interestingly, nmMLCK deletion prevented all IH-induced functional and structural alterations, including the restoration of NO signaling, correction of endothelial barrier integrity, and reduction of both oxidative stress and associated inflammatory response. CONCLUSIONS: nmMLCK is a key mechanism in IH-induced vascular oxidative stress and inflammation and both functional and structural remodeling.


Asunto(s)
Arterias/enzimología , Hipoxia/complicaciones , Quinasa de Cadena Ligera de Miosina/metabolismo , Enfermedades Vasculares/etiología , Animales , Presión Arterial , Arterias/fisiopatología , Línea Celular , Modelos Animales de Enfermedad , Impedancia Eléctrica , Hipoxia/enzimología , Hipoxia/genética , Hipoxia/fisiopatología , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasa de Cadena Ligera de Miosina/deficiencia , Quinasa de Cadena Ligera de Miosina/genética , Óxido Nítrico/metabolismo , Estrés Oxidativo , Transducción de Señal , Enfermedades Vasculares/enzimología , Enfermedades Vasculares/genética , Enfermedades Vasculares/fisiopatología , Remodelación Vascular , Rigidez Vascular
16.
Eur J Med Chem ; 144: 774-796, 2018 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-29291445

RESUMEN

Two new series of ring-opened analogues of cromakalim bearing sulfonylurea moieties (series A: with N-unmethylated sulfonylureas, series B: with N-methylated sulfonylureas) were synthesized and tested as relaxants of vascular and respiratory smooth muscles (rat aorta and trachea, respectively). Ex vivo biological evaluations indicated that the most active compounds, belonging to series B, displayed a marked vasorelaxant activity on endothelium-intact aortic rings and the trachea. A majority of series B compounds exhibited a higher vasorelaxant activity (EC50 < 22 µM) than that of the reference compound diazoxide (EC50 = 24 µM). Interestingly, several tested compounds of series B also presented stronger relaxant effects on the trachea than the reference compound cromakalim (EC50 = 124 µM), in particular compounds B4, B7 and B16 (EC50 < 10 µM). By contrast, series A derivatives were poorly active on aortic rings (EC50 > 57 µM for all, and EC50 > 200 µM for a majority of them), but some of them showed an interesting relaxing effect on trachea (i.e. A15 and A33, EC50 = 30 µM). The most potent compounds of both series, i.e. A15, A33 and B16, tested on aortic rings in the presence of glibenclamide or 80 mM KCl, suggested that they acted as voltage-gated Ca2+ channel blockers, like verapamil, instead of being ATP-potassium channel activators, as is cromakalim, the parent molecule. Further investigations on cultured vascular smooth muscle cells showed a strong stimulating effect on elastin synthesis, especially compound B16, which was more active at 20 µM than diazoxide, a reference ATP-sensitive potassium channel activator. Taken together, our results show that the N-methylation of the sulfonylurea moieties of ring-opened cromakalim analogues led to new compounds blocking calcium-gated channels, which had a major impact on the arterial and tracheal activities as well as selectivity.


Asunto(s)
Cromakalim/farmacología , Diseño de Fármacos , Elastina/biosíntesis , Músculo Liso/efectos de los fármacos , Animales , Cromakalim/síntesis química , Cromakalim/química , Relación Dosis-Respuesta a Droga , Femenino , Estructura Molecular , Contracción Muscular/efectos de los fármacos , Ratas , Ratas Wistar , Relación Estructura-Actividad
17.
Rejuvenation Res ; 20(3): 218-230, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28056723

RESUMEN

Normal arterial aging processes involve vascular cell dysfunction associated with wall stiffening, the latter being due to progressive elastin and elastic fiber degradation, and elastin and collagen cross-linking by advanced glycation end products (AGEs). These processes progressively lead to cardiovascular dysfunction during aging. Elastin is only synthesized during late gestation and childhood, and further degradation occurring throughout adulthood cannot be physiologically compensated by replacement of altered material. However, the ATP-dependent K+ channel opener minoxidil has been shown to stimulate elastin expression in vitro and in vivo in the aorta of young adult rats. Therefore, we have studied the effect of a 10-week chronic oral treatment with minoxidil (120 mg/L in drinking water) on the aortic structure and function in aged 24-month-old mice. Minoxidil treatment increased tropoelastin, fibulin-5, and lysyl-oxidase messenger RNA levels, reinduced a moderate expression of elastin, and lowered the levels of AGE-related molecules. This was accompanied by the formation of newly synthesized elastic fibers, which had diverse orientations in the wall. A decrease in the glycation capacity of aortic elastin was also produced by minoxidil treatment. The ascending aorta also underwent a minoxidil-induced increase in diameter and decrease in wall thickness, which partly reversed the age-associated thickening and returned the wall thickness value and strain-stress relation closer to those of younger adult animals. In conclusion, our results suggest that minoxidil presents an interesting potential for arterial remodeling in an antiaging perspective, even when treating already aged animals.


Asunto(s)
Envejecimiento/fisiología , Aorta/fisiología , Tejido Elástico/fisiología , Minoxidil/farmacología , Envejecimiento/efectos de los fármacos , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/ultraestructura , Fenómenos Biomecánicos/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Colágeno/genética , Colágeno/metabolismo , Tejido Elástico/efectos de los fármacos , Elastina/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Eur J Med Chem ; 115: 352-60, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27031211

RESUMEN

A series of 1,3-benzothiazoles (series I) and 4,5,6,7-tetrahydro-1,3-benzothiazoles (series II) bearing an urea or a thiourea moiety at the 2-position were synthesized and tested as myorelaxants and inhibitors of insulin secretion. Several compounds (i.e. 13u and 13v) from series I showed a marked myorelaxant activity. Benzothiazoles bearing a strong electron withdrawing group (NO2, CN) at the 6-position and an alkyl group linked to the urea or the thiourea function at the 2-position were found to be the most potent compounds. The weak vasorelaxant activity of series II compounds evidenced the necessity of the presence of a complete aromatic heterocyclic system. The myorelaxant activity of some active compounds was reduced when measured on aorta rings precontracted by 80 mM KCl or by 30 mM KCl in the presence of 10 µM glibenclamide, suggesting the involvement of KATP channels in the vasorelaxant effect. Some compounds of series I tested on rat pancreatic islets provoked a marked inhibition of insulin secretion, among which 13a exhibited a clear tissue selectivity for pancreatic ß-cells.


Asunto(s)
Benzotiazoles/síntesis química , Benzotiazoles/farmacología , Insulina/metabolismo , Urea/química , Vasodilatadores/síntesis química , Vasodilatadores/farmacología , Animales , Benzotiazoles/química , Femenino , Secreción de Insulina , Ratas , Ratas Wistar , Vasodilatadores/química
19.
Bioorg Med Chem ; 23(8): 1735-46, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25773016

RESUMEN

Benzenesulfonylureas and benzenesulfonylthioureas, as well as benzenecarbonylureas and benzenecarbonylthioureas, were prepared and evaluated as myorelaxants on 30mMKCl-precontracted rat aortic rings. The most active compounds were further examined as stimulators of elastin synthesis by vascular smooth muscle cells and as inhibitors of insulin release from pancreaticß-cells. The drugs were also characterized for their effects on glycaemia in rats. Benzenesulfonylureas and benzenesulfonylthioureas did not display any myorelaxant activity on precontracted rat aortic rings. Such an effect could be attributed to their ionization at physiological pH. By contrast, almost all benzenecarbonylureas and benzenecarbonylthioureas displayed a myorelaxant activity, in particular the benzenecarbonylureas with an oxybenzyl group linked to the ortho position of the phenyl ring. The vasodilatory activity of the most active compounds was reduced when measured in the presence of 80mMKCl or in the presence of 30mM KCl and 10µM glibenclamide. Such results suggested the involvement, at least in part, of KATP channels. Preservation of a vasodilatory activity in rat aortic rings without endothelium indicated that the site of action of such molecules was located on the vascular smooth muscle cells and not on the endothelial cells. Some of the most active compounds also stimulated elastin synthesis by vascular smooth muscle cells. Lastly, most of the active vasorelaxant drugs, except 15k and 15t at high concentrations, did not exhibit marked inhibitory effects on the insulin releasing process and on glycaemia, suggesting a relative tissue selectivity of some of these compounds for the vascular smooth muscle.


Asunto(s)
Derivados del Benceno/farmacología , Diazóxido/farmacología , Elastina/metabolismo , Insulina/metabolismo , Canales de Potasio/agonistas , Tiourea/farmacología , Vasodilatadores/farmacología , Animales , Derivados del Benceno/química , Células Cultivadas , Diazóxido/química , Diseño de Fármacos , Antagonistas de Insulina/química , Antagonistas de Insulina/farmacología , Ratas Wistar , Tiourea/análogos & derivados , Vasodilatadores/química
20.
Exp Biol Med (Maywood) ; 238(2): 223-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23404941

RESUMEN

Chronic intermittent hypoxia (IH), a major component of obstructive sleep apnea (OSA), contributes to the high risk of cardiovascular morbidity. We have previously demonstrated that IH-induced oxidative stress is involved in the hypertension and in the hypersensitivity to myocardial infarction. However, the mechanisms underlying these cardiovascular alterations are still unclear, as well as the role of potential protective treatment. Atorvastatin has pleiotropic actions, including increasing nitric oxide (NO) bioavailability and reducing inflammation and oxidative damage. The aim of this study was to evaluate the beneficial effect of a two time course of this treatment against the deleterious cardiovascular consequences of IH. Rats were divided into two groups subjected to chronic IH or normoxic (N) exposure. IH consisted of repetitive one-minute cycles (with only 30 s of a 5% inspired O2 fraction) and was applied for eight hours during daytime, for 14 (simultaneous protocol) or 28 d (delayed protocol). Atorvastatin (10 mg/kg/ d) or its vehicle was administered during the 14 d simultaneous protocol or the last 14 d of the delayed protocol. For both protocols, systolic arterial pressure was significantly increased by 14 d IH exposure. Atorvastatin prevented this deleterious effect in the simultaneous protocol. Carotid artery compliance and endothelial function were significantly altered after 28 d but not after 14 d of IH exposure. Delayed atorvastatin administration preserved these vascular parameters. IH also increased hypersensitivity to myocardial infarction after 14 d exposure, and atorvastatin abolished this deleterious effect. IH also enhanced cardiac NADPH expression and decreased aortic superoxide dismutase activity after 14 d exposure. Atorvastatin significantly restored these activities. In conclusion, whereas IH rapidly increased blood pressure, myocardial infarction hypersensitivity and oxidative stress, compliance, endothelial function and the structural wall of the carotid artery were only altered after a longer IH exposure. Atorvastatin prevented all these deleterious cardiovascular effects, leading to a potentially novel pharmacological therapeutic strategy for OSA syndrome.


Asunto(s)
Anticolesterolemiantes/administración & dosificación , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Ácidos Heptanoicos/administración & dosificación , Hipoxia/complicaciones , Pirroles/administración & dosificación , Animales , Atorvastatina , Presión Sanguínea , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Estrés Oxidativo , Ratas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...