Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 233
1.
Harmful Algae ; 135: 102631, 2024 May.
Article En | MEDLINE | ID: mdl-38830709

Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L-1. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL-1, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.


Environmental Monitoring , Harmful Algal Bloom , Microcystins , Microcystis , Satellite Imagery , Microcystins/metabolism , Microcystins/analysis , Microcystis/physiology , Microcystis/growth & development , Environmental Monitoring/methods , Cyanobacteria/physiology , Cyanobacteria/growth & development , Indonesia , Synechococcus/physiology , Lakes/microbiology
2.
Mar Genomics ; 75: 101111, 2024 Jun.
Article En | MEDLINE | ID: mdl-38735674

Hortaea werneckii M-3, a black yeast isolated from the marine sediment of the West Pacific, can utilize polyester polyurethane (PU, Impranil DLN) as a sole carbon source. Here, we present the complete genome of Hortaea werneckii M-3 with the focus on PU degradation enzymes. The total genome size is 38,167,921 bp, consisting of 186 contigs with a N50 length of 651,266 bp and a GC content of 53.06%. Genome annotation analysis predicts a total of 13,462 coding genes, which include 99 tRNAs and 105 rRNAs. Some genes encoding PU degrading enzymes including cutinase and urease are identified in this genome. The genome analysis of Hortaea werneckii M-3 will be helpful for further understanding the degradation mechanism of polyester PU by marine yeasts.


Genome, Fungal , Polyurethanes , Whole Genome Sequencing , Saccharomycetales/genetics , Polyesters/metabolism , Geologic Sediments/microbiology
3.
Mol Phylogenet Evol ; 197: 108103, 2024 May 14.
Article En | MEDLINE | ID: mdl-38754710

Parasitism is the most common lifestyle on Earth and has emerged many times independently across the eukaryotic tree of life. It is frequently found among chytrids (Chytridiomycota), which are early-branching unicellular fungi that feed osmotrophically via rhizoids as saprotrophs or parasites. Chytrids are abundant in most aquatic and terrestrial environments and fulfil important ecosystem functions. As parasites, they can have significant impacts on host populations. They cause global amphibian declines and influence the Earth's carbon cycle by terminating algal blooms. To date, the evolution of parasitism within the chytrid phylum remains unclear due to the low phylogenetic resolution of rRNA genes for the early diversification of fungi, and because few parasitic lineages have been cultured and genomic data for parasites is scarce. Here, we combine transcriptomics, culture-independent single-cell genomics and a phylogenomic approach to overcome these limitations. We newly sequenced 29 parasitic taxa and combined these with existing data to provide a robust backbone topology for the diversification of Chytridiomycota. Our analyses reveal multiple independent lifestyle transitions between parasitism and saprotrophy among chytrids and multiple host shifts by parasites. Based on these results and the parasitic lifestyle of other early-branching holomycotan lineages, we hypothesise that the chytrid last common ancestor was a parasite of phytoplankton.

4.
NanoImpact ; 35: 100514, 2024 May 29.
Article En | MEDLINE | ID: mdl-38821169

Nanoplastics are anticipated to be ubiquitous in various environmental compartments. However, challenges in analytical methods hinder our understanding of risks related to specific nanplastics characteristics such as size and chemical compositions, and interactions between nanoplastics and microorganisms. In this study, we applied fit-for-purpose analytical methods and techniques to understand how nanoplastic chemical composition influences their interaction with bacteria collected from activated sludge. When exposed to polystyrene (PS) and polyvinyl chloride (PVC) nanoplastics for 5 days, the nanoplastics attached to the bacteria. Specifically, on day 1, there was a significant predominance of PS nanoplastics over PVC ones of similar size and shape, possibly due to differences in their chemical composition. After 5 days, there is a substantial decrease in nanoplastics attached to bacteria, suggesting bacterial defence mechanisms may reduce particles attachment over time. The overall bacterial community structure demonstrated a high degree of resilience. This resilience highlights the ability of microbial communities to maintain their structure despite nanoplastic stressors, as evidenced by consistent alpha diversity, PCoA, and PERMANOVA results. Understanding these mechanisms is crucial for assessing nanoplastic fate and thus environmental impacts.

5.
Sci Total Environ ; 934: 173188, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38740197

Plastic polymers are present in most aspects of routine daily life. Their increasing leakage into the environment poses a threat to environmental, animal, and human health. These polymers are often resistant to microbial degradation and are predicted to remain in the environment for tens to hundreds of years. Fungi have been shown to degrade complex polymers and are considered good candidates for bioremediation (biological pollutant reduction) of plastics. Therefore, we screened 18 selected fungal strains for their ability to degrade polyurethane (PU), polyethylene (PE), and tire rubber. As a proxy for plastic polymer mineralization, we quantified O2 consumption and CO2 production in an enclosed biodegradation system providing plastic as the sole carbon source. In contrast to most studies we demonstrated that the tested fungi attach to, and colonize the different plastic polymers without any pretreatment of the plastics and in the absence of sugars, which were suggested essential for priming the degradation process. Functional polymer groups identified by Fourier-transform infrared spectroscopy (FTIR), and changes in fungal morphology as seen in light and scanning electron microscopy (SEM) were used as indicators of fungal adaptation to growth on PU as a substrate. Thereby, SEM analysis revealed new morphological structures and deformation of the cell wall of several fungal strains when colonizing PU and utilizing this plastic polymer for cell growth. Strains of Fusarium, Penicillium, Botryotinia cinerea EN41, and Trichoderma demonstrated a high potential to degrade PU, rubber, and PE. Growing on PU, over 90 % of the O2 was consumed in <14 days with 300-500 ppm of CO2 generated in parallel. Our study highlights a high bioremediation potential of some fungal strains to efficiently degrade plastic polymers, largely dependent on plastic type.


Biodegradation, Environmental , Fungi , Plastics , Rubber , Plastics/metabolism , Fungi/metabolism , Rubber/metabolism , Polyurethanes
6.
J Hazard Mater ; 472: 134574, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38739959

The pervasive and steadily increasing presence of microplastics/nanoplastics (MPs/NPs) in aquatic environments has raised significant concerns regarding their potential adverse effects on aquatic organisms and their integration into trophic dynamics. This emerging issue has garnered the attention of (eco)toxicologists, promoting the utilization of toxicotranscriptomics to unravel the responses of aquatic organisms not only to MPs/NPs but also to a wide spectrum of environmental pollutants. This review aims to systematically explore the broad repertoire of predicted molecular responses by aquatic organisms, providing valuable intuitions into complex interactions between plastic pollutants and aquatic biota. By synthesizing the latest literature, present analysis sheds light on transcriptomic signatures like gene expression, interconnected pathways and overall molecular mechanisms influenced by various plasticizers. Harmful effects of these contaminants on key genes/protein transcripts associated with crucial pathways lead to abnormal immune response, metabolic response, neural response, apoptosis and DNA damage, growth, development, reproductive abnormalities, detoxification, and oxidative stress in aquatic organisms. However, unique challenge lies in enhancing the fingerprint of MPs/NPs, presenting complicated enigma that requires decoding their specific impact at molecular levels. The exploration endeavors, not only to consolidate existing knowledge, but also to identify critical gaps in understanding, push forward the frontiers of knowledge about transcriptomic signatures of plastic contaminants. Moreover, this appraisal emphasizes the imperative to monitor and mitigate the contamination of commercially important aquatic species by MPs/NPs, highlighting the pivotal role that regulatory frameworks must play in protecting all aquatic ecosystems. This commitment aligns with the broader goal of ensuring the sustainability of aquatic resources and the resilience of ecosystems facing the growing threat of plastic pollutants.


Aquatic Organisms , Microplastics , Transcriptome , Water Pollutants, Chemical , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , Aquatic Organisms/genetics , Animals , Transcriptome/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry
7.
ISME Commun ; 4(1): ycae056, 2024 Jan.
Article En | MEDLINE | ID: mdl-38711932

Succession is a fundamental aspect of ecological theory, but studies on temporal succession trajectories and ecological driving mechanisms of plastisphere microbial communities across diverse colonization environments remain scarce and poorly understood. To fill this knowledge gap, we assessed the primary colonizers, succession trajectories, assembly, and turnover mechanisms of plastisphere prokaryotes and eukaryotes from four freshwater lakes. Our results show that differences in microbial composition similarity, temporal turnover rate, and assembly processes in the plastisphere do not exclusively occur at the kingdom level (prokaryotes and eukaryotes), but also depend on environmental conditions and colonization time. Thereby, the time of plastisphere colonization has a stronger impact on community composition and assembly of prokaryotes than eukaryotes, whereas for environmental conditions, the opposite pattern holds true. Across all lakes, deterministic processes shaped the assembly of the prokaryotes, but stochastic processes influenced that of the eukaryotes. Yet, they share similar assembly processes throughout the temporal succession: species turnover over time causes the loss of any priority effect, which leads to a convergent succession of plastisphere microbial communities. The increase and loss of microbial diversity in different kingdoms during succession in the plastisphere potentially impact the stability of entire microbial communities and related biogeochemical cycles. Therefore, research needs to integrate temporal dynamics along with spatial turnovers of the plastisphere microbiome. Taking the heterogeneity of global lakes and the diversity of global climate patterns into account, we highlight the urgency to investigate the spatiotemporal succession mechanism of plastisphere prokaryotes and eukaryotes in more lakes around the world.

8.
Environ Res ; 252(Pt 4): 119126, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38734293

In estuaries, phytoplankton are faced with strong environmental forcing (e.g. high turbidity, salinity gradients). Taxa that appear under such conditions may play a critical role in maintaining food webs and biological carbon pumping, but knowledge about estuarine biota remains limited. This is also the case in the Elbe estuary where the lower 70 km of the water body are largely unexplored. In the present study, we investigated the phytoplankton composition in the Elbe estuary via metabarcoding. Our aim was to identify key taxa in the unmonitored reaches of this ecosystem and compare our results from the monitored area with available microscopy data. Phytoplankton communities followed distinct seasonal and spatial patterns. Community composition was similar across methods. Contributions of key classes and genera were correlated to each other (p < 0.05) when obtained from reads and biovolume (R2 = 0.59 and 0.33, respectively). Centric diatoms (e.g. Stephanodiscus) were the dominant group - comprising on average 55 % of the reads and 66-69 % of the biovolume. However, results from metabarcoding imply that microscopy underestimates the prevalence of picophytoplankton and flagellates with a potential for mixotrophy (e.g. cryptophytes). This might be due to their small size and sensitivity to fixation agents. We argue that mixotrophic flagellates are ecologically relevant in the mid to lower estuary, where, e.g., high turbidity render living conditions rather unfavorable, and skills such as phagotrophy provide fundamental advantages. Nevertheless, further findings - e.g. important taxa missing from the metabarcoding dataset - emphasize potential limitations of this method and quantitative biases can result from varying numbers of gene copies in different taxa. Further research should address these methodological issues but also shed light on the causal relationship of taxa with the environmental conditions, also with respect to active mixotrophic behavior.


DNA Barcoding, Taxonomic , Estuaries , Phytoplankton , Phytoplankton/genetics , Phytoplankton/classification , Environmental Monitoring/methods
9.
iScience ; 27(4): 109520, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38591008

Spatio-temporal variability of sediment-mediated methane (CH4) production in freshwater lakes causes large uncertainties in predicting global lake CH4 emissions under different climate change and eutrophication scenarios. We conducted extensive sediment incubation experiments to investigate CH4 fluxes in Lake Stechlin, a deep, stratified temperate lake. Our results show contrasting spatial patterns in CH4 fluxes between littoral and profundal sites. The littoral sediments, ∼33% of the total sediment surface area, contributed ∼86.9% of the annual CH4 flux at the sediment-water interface. Together with sediment organic carbon quality, seasonal stratification is responsible for the striking spatial difference in sediment CH4 production between littoral and profundal zones owing to more sensitive CH4 production than oxidation to warming. While profundal sediments produce a relatively small amount of CH4, its production increases markedly as anoxia spreads in late summer. Our measurements indicate that future lake CH4 emissions will increase due to climate warming and concomitant hypoxia/anoxia.

10.
Microbiome ; 12(1): 65, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38539229

BACKGROUND: Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic bacteria that supply their metabolism with light energy harvested by bacteriochlorophyll-a-containing reaction centers. Despite their substantial contribution to bacterial biomass, microbial food webs, and carbon cycle, their phenology in freshwater lakes remains unknown. Hence, we investigated seasonal variations of AAP abundance and community composition biweekly across 3 years in a temperate, meso-oligotrophic freshwater lake. RESULTS: AAP bacteria displayed a clear seasonal trend with a spring maximum following the bloom of phytoplankton and a secondary maximum in autumn. As the AAP bacteria represent a highly diverse assemblage of species, we followed their seasonal succession using the amplicon sequencing of the pufM marker gene. To enhance the accuracy of the taxonomic assignment, we developed new pufM primers that generate longer amplicons and compiled the currently largest database of pufM genes, comprising 3633 reference sequences spanning all phyla known to contain AAP species. With this novel resource, we demonstrated that the majority of the species appeared during specific phases of the seasonal cycle, with less than 2% of AAP species detected during the whole year. AAP community presented an indigenous freshwater nature characterized by high resilience and heterogenic adaptations to varying conditions of the freshwater environment. CONCLUSIONS: Our findings highlight the substantial contribution of AAP bacteria to the carbon flow and ecological dynamics of lakes and unveil a recurrent and dynamic seasonal succession of the AAP community. By integrating this information with the indicator of primary production (Chlorophyll-a) and existing ecological models, we show that AAP bacteria play a pivotal role in the recycling of dissolved organic matter released during spring phytoplankton bloom. We suggest a potential role of AAP bacteria within the context of the PEG model and their consideration in further ecological models.


Lakes , Phototrophic Processes , Lakes/microbiology , Bacteria/genetics , Biomass , Bacteria, Aerobic/genetics , Bacteria, Aerobic/metabolism , Phytoplankton/genetics
11.
Sci Total Environ ; 926: 171962, 2024 May 20.
Article En | MEDLINE | ID: mdl-38537819

Estuaries are important components of the global carbon cycle; exchanging carbon between aquatic, atmospheric, and terrestrial environments, representing important loci for blue carbon storage and greenhouse gas emissions. However, how estuarine gradients affect sinking/suspended particles, and dissolved organic matter dynamic interactions remains unexplored. We fractionated suspended/sinking particles to assess and characterise carbon fate differences. We investigated bacterial colonisation (SYBR Green I) and exopolymer concentrations (TEP/CSP) with microscopy staining techniques. C/H/N and dry weight analysis identified particle composition differences. Meanwhile, nutrient and carbon analysis, and excitation and emission matrix evaluations with a subsequent parallel factor (PARAFAC) analysis characterised dissolved organic matter. The lack of clear salinity driven patterns in our study are presumably due to strong mixing forces and high particle heterogeneity along the estuary, with only density differences between suspended and sinking particles. Elbe estuary particles' organic portion is made up of marine-like (sinking) and terrestrial-like (suspended) signatures. Salinity did not have a significant role in microbial degradation and carbon composition, although brackish estuary portions were more biologically active. Indicative of increased degradation rates, leading to decreased greenhouse gas emissions, which are especially relevant for estuaries, with their disproportionate greenhouse gas emissions. Bacterial colonisation decreased seawards, indicative of decreased degradation, and shifts in microbial community composition and functions. Our findings span diverse strands of research, concerning steady carbon contributions from both marine and terrestrial sources, carbon aromaticity, humification index, and bioavailability. Their integration highlights the importance of the Elbe estuary as a model system, providing robust information for future policy decisions affecting dissolved and particulate matter dynamics within the Elbe Estuary.


Carbon , Greenhouse Gases , Carbon/analysis , Dissolved Organic Matter , Greenhouse Gases/analysis , Estuaries , Particulate Matter/analysis , Rivers
12.
Water Res ; 255: 121497, 2024 May 15.
Article En | MEDLINE | ID: mdl-38555787

Microcystins (MCs) constitute a significant threat to human and environmental health, urging the development of effective removal methods for these toxins. In this review, we explore the potential of MC-degrading bacteria as a solution for the removal of MCs from water. The review insights into the mechanisms of action employed by these bacteria, elucidating their ability to degrade and thus remove MCs. After, the review points out the influence of the structural conformation of MCs on their removal, particularly their stability at different water depths within different water bodies. Then, we review the crucial role played by the production of MCs in ensuring the survival and safeguarding of the enzymatic activities of Microcystis cells. This justifies the need for developing effective and sustainable methods for removing MCs from aquatic ecosystems, given their critical ecological function and potential toxicity to humans and animals. Thereafter, challenges and limitations associated with using MC-degrading bacteria in water treatment are discussed, emphasizing the need for further research to optimize the selection of bacterial strains used for MCs biodegradation. The interaction of MCs-degrading bacteria with sediment particles is also crucial for their toxin removal potential and its efficiency. By presenting critical information, this review is a valuable resource for researchers, policymakers, and stakeholders involved in developing sustainable and practical approaches to remove MCs. Our review highlights the potential of various applications of MC-degrading bacteria, including multi-soil-layering (MSL) technologies. It emphasizes the need for ongoing research to optimize the utilization of MC-degrading bacteria in water treatment, ultimately ensuring the safety and quality of water sources. Moreover, this review highlights the value of bibliometric analyses in revealing research gaps and trends, providing detailed insights for further investigations. Specifically, we discuss the importance of employing advanced genomics, especially combining various OMICS approaches to identify and optimize the potential of MCs-degrading bacteria.

13.
Environ Pollut ; 348: 123878, 2024 May 01.
Article En | MEDLINE | ID: mdl-38548158

Addressing notorious and worldwide Microcystis blooms, mechanical algae harvesting is an effective emergency technology for bloom mitigation and removal of nutrient loads in waterbodies. However, the absence of effective methods for removal of cyanobacterial toxins, e.g., microcystins (MCs), poses a challenge to recycle the harvested Microcystis biomass. In this study, we therefore introduced a novel approach, the "captured biomass-MlrA enzymatic MC degradation", by enriching microcystinase A (MlrA) via fermentation and spraying it onto salvaged Microcystis slurry to degrade all MCs. After storing the harvested Microcystis slurry, a rapid release of extracellular MCs occurred within the initial 8 h, reaching a peak concentration of 5.33 µg/mL at 48 h during the composting process. Upon spraying the recombinant MlrA crude extract (about 3.36 U) onto the Microcystis slurry in a ratio of 0.1% (v/v), over 95% of total MCs were degraded within a 24-h period. Importantly, we evaluated the reliability and safety of using MlrA extracts to degrade MCs. Results showed that organic matter/nutrient contents, e.g. soluble proteins, polysaccharides, phycocyanin and carotenoids, were not significantly altered. Furthermore, the addition of MlrA extracts did not significantly change the bacterial community composition and diversity in the Microcystis slurry, indicating that the MlrA extracts did not increase the risk of pathogenic bacteria. Our study provides an effective and promising method for the pre-treatment of harvested Microcystis biomass, highlighting an ecologically sustainable framework for addressing Microcystis blooms.


Cyanobacteria , Microcystis , Microcystins/metabolism , Reproducibility of Results , Cyanobacteria/metabolism , Microcystis/metabolism , Biomass
14.
Water Res ; 254: 121344, 2024 May 01.
Article En | MEDLINE | ID: mdl-38430754

Changes in salinity have a profound influence on ecological services and functions of inland freshwater ecosystems, as well as on the shaping of microbial communities. Bacterioplankton, generally classified into free-living (FL) and particle-attached (PA) forms, are main components of freshwater ecosystems and play key functional roles for biogeochemical cycling and ecological stability. However, there is limited knowledge about the responses of community stability of both FL and PA bacteria to salinity fluctuations. Here, we systematically explored changes in community stability of both forms of bacteria based on high-frequency sampling in a shallow urban reservoir (Xinglinwan Reservoir) in subtropical China for 3 years. Our results indicated that (1) salinity was the strongest environmental factor determining FL and PA bacterial community compositions - rising salinity increased the compositional stability of both bacterial communities but decreased their α-diversity. (2) The community stability of PA bacteria was significantly higher than that of FL at high salinity level with low salinity variance scenarios, while the opposite was found for FL bacteria, i.e., their stability was higher than PA bacteria at low salinity level with high variance scenarios. (3) Both bacterial traits (e.g., bacterial genome size and interaction strength of rare taxa) and precipitation-induced factors (e.g., changes in salinity and particle) likely contributed collectively to differences in community stability of FL and PA bacteria under different salinity scenarios. Our study provides additional scientific basis for ecological management, protection and restoration of urban reservoirs under changing climatic and environmental conditions.


Ecosystem , Microbiota , Salinity , Lakes/microbiology , Bacteria/genetics , Microbiota/physiology , Aquatic Organisms , RNA, Ribosomal, 16S/genetics
15.
Harmful Algae ; 133: 102599, 2024 Mar.
Article En | MEDLINE | ID: mdl-38485445

Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera-specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.


Cyanobacteria , Harmful Algal Bloom , Cyanobacteria/physiology
16.
Environ Sci Ecotechnol ; 21: 100388, 2024 Sep.
Article En | MEDLINE | ID: mdl-38351955

Antibiotic resistance is an escalating global health concern, exacerbated by the pervasive presence of antibiotic resistance genes (ARGs) in natural environments. The Yangtze River, the world's third-longest river, traversing areas with intense human activities, presents a unique ecosystem for studying the impact of these genes on human health. Here, we explored ARGs in the Yangtze River, examining 204 samples from six distinct habitats of approximately 6000 km of the river, including free-living and particle-associated settings, surface and bottom sediments, and surface and bottom bank soils. Employing shotgun sequencing, we generated an average of 13.69 Gb reads per sample. Our findings revealed a significantly higher abundance and diversity of ARGs in water-borne bacteria compared to other habitats. A notable pattern of resistome coalescence was observed within similar habitat types. In addition, we developed a framework for ranking the risk of ARG and a corresponding method for calculating the risk index. Applying them, we identified water-borne bacteria as the highest contributors to health risks, and noted an increase in ARG risks in particle-associated bacteria correlating with heightened anthropogenic activities. Further analysis using a weighted ARG risk index pinpointed the Chengdu-Chongqing and Yangtze River Delta urban agglomerations as regions of elevated health risk. These insights provide a critical new perspective on ARG health risk assessment, highlighting the urgent need for strategies to mitigate the impact of ARGs on human health and to preserve the ecological and economic sustainability of the Yangtze River for future human use.

17.
Glob Chang Biol ; 30(1): e17046, 2024 Jan.
Article En | MEDLINE | ID: mdl-38273535

Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep-water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1-126,909 ha), maximum depth (6-370 m), and morphometry, with a median time-series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656-lake dataset. Likewise, we found further support for these relationships by analyzing time-series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake-specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high-phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.


Environmental Monitoring , Lakes , Humans , Chlorophyll A/analysis , Environmental Monitoring/methods , Feedback , Hypoxia , Phosphorus/analysis , Oxygen , Eutrophication
18.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Article En | MEDLINE | ID: mdl-37994377

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Cyanobacteria , Phytoplankton , Lakes/microbiology , Humic Substances , Eutrophication , Nutrients , Phosphorus/analysis , China
19.
Nat Protoc ; 18(11): 3534-3564, 2023 Nov.
Article En | MEDLINE | ID: mdl-37816903

Despite the increasing concern about the harmful effects of micro- and nanoplastics (MNPs), there are no harmonized guidelines or protocols yet available for MNP ecotoxicity testing. Current ecotoxicity studies often use commercial spherical particles as models for MNPs, but in nature, MNPs occur in variable shapes, sizes and chemical compositions. Moreover, protocols developed for chemicals that dissolve or form stable dispersions are currently used for assessing the ecotoxicity of MNPs. Plastic particles, however, do not dissolve and also show dynamic behavior in the exposure medium, depending on, for example, MNP physicochemical properties and the medium's conditions such as pH and ionic strength. Here we describe an exposure protocol that considers the particle-specific properties of MNPs and their dynamic behavior in exposure systems. Procedure 1 describes the top-down production of more realistic MNPs as representative of MNPs in nature and particle characterization (e.g., using thermal extraction desorption-gas chromatography/mass spectrometry). Then, we describe exposure system development for short- and long-term toxicity tests for soil (Procedure 2) and aquatic (Procedure 3) organisms. Procedures 2 and 3 explain how to modify existing ecotoxicity guidelines for chemicals to target testing MNPs in selected exposure systems. We show some examples that were used to develop the protocol to test, for example, MNP toxicity in marine rotifers, freshwater mussels, daphnids and earthworms. The present protocol takes between 24 h and 2 months, depending on the test of interest and can be applied by students, academics, environmental risk assessors and industries.


Microplastics , Water Pollutants, Chemical , Humans , Microplastics/analysis , Microplastics/toxicity , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
20.
Water Res ; 246: 120739, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37844340

Hydrogen peroxide (H2O2), which accumulates in water and triggers oxidative stress for aquatic microbes, has been shown to have profound impacts on planktonic microbial community dynamics including cyanobacterial bloom formation. Yet, potential effects of H2O2 on interspecific relationships of phytoplankton-microbe symbiotic interactions remain unclear. Here, we investigated effects of environmentally relevant H2O2 concentrations on interspecific microbial relationships in algae-microbe symbiosis. Microbes play a crucial role in the competition between M. aeruginosa and Chlorella vulgaris at low H2O2 concentrations (∼400 nM), in which fungi and bacteria protect Microcystis aeruginosa from oxidative stress. Moreover, H2O2 stimulated the synthesis and release of extracellular microcystin-LR from Microcystis aeruginosa, while intracellular microcystin-LR concentrations remained at a relatively constant level. In the presence of H2O2, loss of organoheterocyclic compounds, organic acids and ketones contributed to the growth of M. aeruginosa, but the reduction of vitamins inhibited it. Regulation of interspecific relationships by H2O2 is achieved by its action on fungal species and bacterial secretory metabolites. This study explored the response of phytoplankton interspecific relationships in symbiotic phytoplankton-microbe interactions to environmentally relevant H2O2 concentrations stress, providing a theoretical basis for understanding the formation of harmful-algae blooming and impact of photochemical properties of water on aquatic ecological safety and stability.


Chlorella vulgaris , Cyanobacteria , Microcystis , Phytoplankton , Hydrogen Peroxide/pharmacology , Symbiosis , Microcystis/metabolism , Water , Fungi , Microcystins/metabolism
...