Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
bioRxiv ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38854055

Rift Valley fever virus (RVFV) infection causes abortions in ruminant livestock and is associated with an increased likelihood of miscarriages in women. Using sheep and human placenta explant cultures, we sought to identify tissues at the maternal-fetal interface targeted by RVFV. Sheep villi and fetal membranes were highly permissive to RVFV infection resulting in markedly higher virus titers than human cultures. Sheep cultures were most permissive to wild-type RVFV and ΔNSm infection, while live attenuated RVFV vaccines (LAVs; MP-12, ΔNSs, and ΔNSs/ΔNSm) exhibited reduced replication. The human fetal membrane restricted wild-type and LAV replication, and when infection occurred, it was prominent in the maternal-facing side. Type-I and type-III interferons were induced in human villi exposed to LAVs lacking the NSs protein. This study supports the use of sheep and human placenta explants to understand vertical transmission of RVFV in mammals and whether LAVs are attenuated at the maternal-fetal interface.

2.
PLoS One ; 19(6): e0290909, 2024.
Article En | MEDLINE | ID: mdl-38900732

Since SARS-CoV-2 emerged in late 2019, it spread from China to the rest of the world. An initial concern was the potential for vaccine- or antibody-dependent enhancement (ADE) of disease as had been reported with other coronaviruses. To evaluate this, we first developed a ferret model by exposing ferrets to SARS-CoV-2 by either mucosal inoculation (intranasal/oral/ocular) or inhalation using a small particle aerosol. Mucosal inoculation caused a mild fever and weight loss that resolved quickly; inoculation via either route resulted in virus shedding detected in the nares, throat, and rectum for 7-10 days post-infection. To evaluate the potential for ADE, we then inoculated groups of ferrets intravenously with 0.1, 0.5, or 1 mg/kg doses of a human polyclonal anti-SARS-CoV-2 IgG from hyper-immunized transchromosomic bovines (SAB-185). Twelve hours later, ferrets were challenged by mucosal inoculation with SARS-CoV-2. We found no significant differences in fever, weight loss, or viral shedding after infection between the three antibody groups or the controls. Signs of pathology in the lungs were noted in infected ferrets but no differences were found between control and antibody groups. The results of this study indicate that healthy, young adult ferrets of both sexes are a suitable model of mild COVID-19 and that low doses of specific IgG in SAB-185 are unlikely to enhance the disease caused by SARS-CoV-2.


Antibodies, Viral , COVID-19 , Disease Models, Animal , Ferrets , SARS-CoV-2 , Virus Shedding , Animals , Ferrets/virology , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Humans , Female , Male , Immunoglobulin G/immunology , Antibody-Dependent Enhancement/immunology
3.
PLoS Pathog ; 20(6): e1012343, 2024 Jun 27.
Article En | MEDLINE | ID: mdl-38935789

Rift Valley fever virus (RVFV) is an encephalitic bunyavirus that can infect neurons in the brain. There are no approved therapeutics that can protect from RVFV encephalitis. Innate immunity, the first line of defense against infection, canonically antagonizes viruses through interferon signaling. We found that interferons did not efficiently protect primary cortical neurons from RVFV, unlike other cell types. To identify alternative neuronal antiviral pathways, we screened innate immune ligands and discovered that the TLR2 ligand Pam3CSK4 inhibited RVFV infection, and other bunyaviruses. Mechanistically, we found that Pam3CSK4 blocks viral fusion, independent of TLR2. In a mouse model of RVFV encephalitis, Pam3CSK4 treatment protected animals from infection and mortality. Overall, Pam3CSK4 is a bunyavirus fusion inhibitor active in primary neurons and the brain, representing a new approach toward the development of treatments for encephalitic bunyavirus infections.

4.
J Virol ; 98(5): e0176223, 2024 May 14.
Article En | MEDLINE | ID: mdl-38563762

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


COVID-19 Vaccines , COVID-19 , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Chlorocebus aethiops , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Measles virus/immunology , Measles virus/genetics , COVID-19 Vaccines/immunology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Genetic Vectors , Vero Cells , Pandemics/prevention & control , Female , Betacoronavirus/immunology , Betacoronavirus/genetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Disease Models, Animal
5.
J Gen Virol ; 105(3)2024 03.
Article En | MEDLINE | ID: mdl-38546100

Rift Valley fever virus (RVFV) is an emerging arboviral disease with pandemic potential. While infection is often self-limiting, a subset of individuals may develop late-onset encephalitis, accounting for up to 20 % of severe cases. Importantly, individuals displaying neurologic disease have up to a 53 % case fatality rate, yet the neuropathogenesis of RVFV infection remains understudied. In this study, we evaluated whether ex vivo postnatal rat brain slice cultures (BSCs) could be used to evaluate RVFV infection in the central nervous system. BSCs mounted an inflammatory response after slicing, which resolved over time, and they were viable in culture for at least 12 days. Infection of rat BSCs with pathogenic RVFV strain ZH501 induced tissue damage and apoptosis over 48 h. Viral replication in BSCs reached up to 1×107 p.f.u. equivalents/ml, depending on inoculation dose. Confocal immunofluorescent microscopy of cleared slices confirmed direct infection of neurons as well as activation of microglia and astrocytes. Further, RVFV-infected rat BSCs produced antiviral cytokines and chemokines, including MCP-1 and GRO/KC. This study demonstrates that rat BSCs support replication of RVFV for ex vivo studies of neuropathogenesis. This allows for continued and complementary investigation into RVFV infection in an ex vivo postnatal brain slice culture format.


Rift Valley Fever , Rift Valley fever virus , Rats , Animals , Rift Valley fever virus/physiology , Cytokines , Brain , Cell Death
7.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38168672

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Biomedical Research , Containment of Biohazards , Virology , Humans , COVID-19 , United States , Viruses , Biomedical Research/standards
8.
Adv Virus Res ; 117: 121-136, 2023.
Article En | MEDLINE | ID: mdl-37832991

Rift Valley Fever Virus (RVFV) is a negative sense segmented RNA virus that can cause severe hemorrhagic fever. The tri-segmented virus genome encodes for six (6) multifunctional proteins that engage host factors at a variety of different stages in the replication cycle. The S segment encodes nucleoprotein (N) and nonstructural protein S (NSs), the M segment encodes viral glycoproteins Gn and Gc as well as nonstructural protein M (NSm) and the L segment encodes the viral polymerase (L). Viral glycoproteins Gn and Gc are responsible for entry by binding to a number of host factors. Our recent studies identified a scavenger receptor, LDL receptor related protein 1 (Lrp1), as a potential pro-viral host factor for RVFV and related viruses, including Oropouche virus (OROV) infection. Coincidentally, several recent studies identified other LDL family proteins as viral entry factors and receptors for other viral families. Collectively, these observations suggest that highly conserved LDL family proteins may play a significant role in facilitating entry of viruses from several distinct families. Given the significant roles of viral and host factors during infection, characterization of these interactions is critical for therapeutic targeting with neutralizing antibodies and vaccines.


Rift Valley fever virus , Animals , Humans , Rift Valley fever virus/genetics , Antibodies, Neutralizing/genetics , Genome, Viral , Glycoproteins
9.
J Infect Dis ; 228(Suppl 6): S376-S389, 2023 10 18.
Article En | MEDLINE | ID: mdl-37849397

Research directed at select prototype pathogens is part of the approach put forth by the National Institute of Allergy and Infectious Disease (NIAID) to prepare for future pandemics caused by emerging viruses. We were tasked with identifying suitable prototypes for four virus families of the Bunyavirales order (Phenuiviridae, Peribunyaviridae, Nairoviridae, and Hantaviridae). This is a challenge due to the breadth and diversity of these viral groups. While there are many differences among the Bunyavirales, they generally have complex ecological life cycles, segmented genomes, and cause a range of human clinical outcomes from mild to severe and even death. Here, we delineate potential prototype species that encompass the breadth of clinical outcomes of a given family, have existing reverse genetics tools or animal disease models, and can be amenable to a platform approach to vaccine testing. Suggested prototype pathogens outlined here can serve as a starting point for further discussions.


RNA Viruses , Animals , Humans
10.
Sci Adv ; 9(28): eadh2264, 2023 07 14.
Article En | MEDLINE | ID: mdl-37450601

Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.


Rift Valley Fever , Rift Valley fever virus , Animals , Mice , Rift Valley Fever/genetics , Rift Valley fever virus/genetics , Africa , Hepatocytes , Low Density Lipoprotein Receptor-Related Protein-1/genetics
11.
Nat Commun ; 14(1): 4507, 2023 07 26.
Article En | MEDLINE | ID: mdl-37495594

Rift Valley fever virus (RVFV) is an emerging mosquito-transmitted virus that circulates in livestock and humans in Africa and the Middle East. Outbreaks lead to high rates of miscarriages in domesticated livestock. Women are also at risk of vertical virus transmission and late-term miscarriages. MAb RVFV-268 is a highly potent recombinant neutralizing human monoclonal antibody that targets RVFV. Here we show that mAb RVFV-268 reduces viral replication in rat placenta explant cultures and prevents vertical transmission in a rat model of congenital RVF. Passive transfer of mAb RVFV-268 from mother to fetus occurs as early as 6 h after administration and persists through 24 h. Administering mAb RVFV-268 2 h prior to RVFV challenge or 24 h post-challenge protects the dams and offspring from RVFV infection. These findings support mAb RVFV-268 as a pre- and post-infection treatment to subvert RVFV infection and vertical transmission, thus protecting the mother and offspring.


Abortion, Spontaneous , Rift Valley Fever , Rift Valley fever virus , Pregnancy , Animals , Humans , Rats , Female , Antibodies, Neutralizing , Rift Valley Fever/epidemiology , Antibodies, Viral , Livestock
12.
J Virol ; 96(20): e0111222, 2022 10 26.
Article En | MEDLINE | ID: mdl-36194021

People infected with the mosquito-borne Rift Valley fever virus (RVFV) can suffer from eye-related problems resulting in ongoing vision issues or even permanent blindness. Despite ocular disease being the most frequently reported severe outcome, it is vastly understudied compared to other disease outcomes caused by RVFV. Ocular manifestations of RVFV include blurred vision, uveitis, and retinitis. When an infected individual develops macular or paramacular lesions, there is a 50% chance of permanent vision loss in one or both eyes. The cause of blinding ocular pathology remains unknown in part due to the lack of a tractable animal model. Using 3 relevant exposure routes, both subcutaneous (SC) and aerosol inoculation of Sprague Dawley rats led to RVFV infection of the eye. Surprisingly, direct inoculation of the conjunctiva did not result in successful ocular infection. The posterior segment of the eye, including the optic nerve, choroid, ciliary body, and retina, were all positive for RVFV antigen in SC-infected rats, and live virus was isolated from the eyes. Proinflammatory cytokines and increased leukocyte counts were also found in the eyes of infected rats. Additionally, human ocular cell lines were permissive for Lrp1-dependent RVFV infection. This study experimentally defines viral tropism of RVFV in the posterior segment of the rat eye and characterizes virally-mediated ocular inflammation, providing a foundation for evaluation of vaccines and therapeutics to protect against adverse ocular outcomes. IMPORTANCE Rift Valley fever virus (RVFV) infection leads to eye damage in humans in up to 10% of reported cases. Permanent blindness occurs in 50% of individuals with significant retinal scarring. Despite the prevalence and severity of this outcome, very little is known about the mechanisms of pathogenesis. We addressed this gap by developing a rodent model of ocular disease. Subcutaneous infection of Sprague Dawley rats resulted in infection of the uvea, retina, and optic nerve along with the induction of inflammation within the posterior eye. Infection of human ocular cells induced inflammatory responses and required host entry factors for RVFV infection similar to rodents. This work provides evidence of how RVFV infects the eye, and this information can be applied to help mitigate the devastating outcomes of RVF ocular disease through vaccines or treatments.


Eye Diseases , Rift Valley Fever , Rift Valley fever virus , Rats , Humans , Animals , Rift Valley fever virus/physiology , Rats, Sprague-Dawley , Inflammation , Cytokines , Aerosols , Blindness
13.
PLoS Negl Trop Dis ; 16(10): e0010898, 2022 10.
Article En | MEDLINE | ID: mdl-36315601

Rift Valley fever (RVF) is a disease of animals and humans associated with abortions in ruminants and late-gestation miscarriages in women. Here, we use a rat model of congenital RVF to identify tropisms, pathologies, and immune responses in the placenta during vertical transmission. Infection of late-gestation pregnant rats resulted in vertical transmission to the placenta and widespread infection throughout the decidua, basal zone, and labyrinth zone. Some pups from infected dams appeared normal while others had gross signs of teratogenicity including death. Histopathological lesions were detected in placenta from pups regardless of teratogenicity, while teratogenic pups had widespread hemorrhage throughout multiple placenta layers. Teratogenic events were associated with significant increases in placental pro-inflammatory cytokines, type I interferons, and chemokines. RVFV displays a high degree of tropism for all placental tissue layers and the degree of hemorrhage and inflammatory mediator production is highest in placenta from pups with adverse outcomes. Given the potential for RVFV to emerge in new locations and the recent evidence of emerging viruses, like Zika and SARS-CoV-2, to undergo vertical transmission, this study provides essential understanding regarding the mechanisms by which RVFV crosses the placenta barrier.


COVID-19 , Rift Valley Fever , Rift Valley fever virus , Zika Virus Infection , Zika Virus , Humans , Female , Pregnancy , Rats , Animals , Rats, Sprague-Dawley , Placenta/pathology , SARS-CoV-2 , Ruminants
14.
Annu Rev Virol ; 9(1): 437-450, 2022 09 29.
Article En | MEDLINE | ID: mdl-36173701

Rift Valley fever virus (RVFV) is an emerging arboviral pathogen that causes disease in both livestock and humans. Severe disease manifestations of Rift Valley fever (RVF) in humans include hemorrhagic fever, ocular disease, and encephalitis. This review describes the current understanding of the pathogenesis of RVF encephalitis. While some data from human studies exist, the development of several animal models has accelerated studies of the neuropathogenesis of RVFV. We review current animal models and discuss what they have taught us about RVFV encephalitis. We briefly describe alternative models that have been used to study other neurotropic arboviruses and how these models may help contribute to our understanding RVFV encephalitis. We conclude with some unanswered questions and future directions.


Arboviruses , Encephalitis , Rift Valley Fever , Rift Valley fever virus , Animals , Humans , Rift Valley Fever/pathology
15.
Proc Natl Acad Sci U S A ; 119(33): e2204706119, 2022 08 16.
Article En | MEDLINE | ID: mdl-35939689

Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.


Bunyaviridae Infections , Low Density Lipoprotein Receptor-Related Protein-1 , Orthobunyavirus , Virus Internalization , Animals , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Gene Knockout Techniques , Humans , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice , Orthobunyavirus/physiology , South America
16.
PLoS Pathog ; 18(6): e1009946, 2022 06.
Article En | MEDLINE | ID: mdl-35696423

Venezuelan equine encephalitis virus (VEEV) is a positively-stranded RNA arbovirus of the genus Alphavirus that causes encephalitis in humans. Cynomolgus macaques are a relevant model of the human disease caused by VEEV and are useful in exploring pathogenic mechanisms and the host response to VEEV infection. Macaques were exposed to small-particle aerosols containing virus derived from an infectious clone of VEEV strain INH-9813, a subtype IC strain isolated from a human infection. VEEV-exposed macaques developed a biphasic fever after infection similar to that seen in humans. Maximum temperature deviation correlated with the inhaled dose, but fever duration did not. Neurological signs, suggestive of virus penetration into the central nervous system (CNS), were predominantly seen in the second febrile period. Electroencephalography data indicated a statistically significant decrease in all power bands and circadian index during the second febrile period that returned to normal after fever resolved. Intracranial pressure increased late in the second febrile period. On day 6 post-infection macaques had high levels of MCP-1 and IP-10 chemokines in the CNS, as well as a marked increase of T lymphocytes and activated microglia. More than four weeks after infection, VEEV genomic RNA was found in the brain, cerebrospinal fluid and cervical lymph nodes. Pro-inflammatory cytokines & chemokines, infiltrating leukocytes and pathological changes were seen in the CNS tissues of macaques euthanized at these times. These data are consistent with persistence of virus replication and/or genomic RNA and potentially, inflammatory sequelae in the central nervous system after resolution of acute VEEV disease.


Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Animals , Central Nervous System , Encephalitis Virus, Venezuelan Equine/genetics , Horses/genetics , Inflammation , Macaca fascicularis , RNA, Viral/genetics
17.
Trends Mol Med ; 28(2): 123-142, 2022 02.
Article En | MEDLINE | ID: mdl-34955425

Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies.


COVID-19 , SARS-CoV-2 , Animals , Humans , Lung/diagnostic imaging , Positron Emission Tomography Computed Tomography , Primates
18.
Viruses ; 15(1)2022 12 20.
Article En | MEDLINE | ID: mdl-36680046

The Department of Defense recently began an effort to improve and standardize virus challenge materials and efficacy determination strategies for testing therapeutics and vaccines. This includes stabilization of virus genome sequences in cDNA form where appropriate, use of human-derived virus isolates, and noninvasive strategies for determination of challenge virus replication. Eventually, it is desired that these approaches will satisfy the FDA "Animal Rule" for licensure, which substitutes animal efficacy data when human data are unlikely to be available. To this end, we created and examined the virulence phenotype of cDNA clones of prototypic human infection-derived strains of the alphaviruses, Venezuelan (VEEV INH9813), eastern (EEEV V105) and western (WEEV Fleming) equine encephalitis viruses, and created fluorescent and luminescent reporter expression vectors for evaluation of replication characteristics in vitro and in vivo. Sequences of minimally passaged isolates of each virus were used to synthesize full-length cDNA clones along with a T7 transcription promoter-based bacterial propagation vector. Viruses generated from the cDNA clones were compared with other "wild type" strains derived from cDNA clones and GenBank sequences to identify and eliminate putative tissue culture artifacts accumulated in the cell passaged biological stocks. This was followed by examination of aerosol and subcutaneous infection and disease in mouse models. A mutation that increased heparan sulfate binding was identified in the VEEV INH9813 biological isolate sequence and eliminated from the cDNA clone. Viruses derived from the new human isolate cDNA clones showed similar mouse virulence to existing clone-derived viruses after aerosol or subcutaneous inoculation.


Encephalitis Virus, Venezuelan Equine , Encephalitis Virus, Western Equine , United States , Humans , Animals , Horses , Mice , DNA, Complementary/genetics , Phenotype , Clone Cells
19.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Article En | MEDLINE | ID: mdl-34559985

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Host-Pathogen Interactions , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Rift Valley fever virus/physiology , Virus Internalization , Animals , Antibody Specificity/immunology , Base Sequence , Brain/pathology , Brain/virology , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Cells, Cultured , Glycoproteins/metabolism , Glycosaminoglycans/metabolism , Glycosylation , Humans , LDL-Receptor Related Protein-Associated Protein/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-1/deficiency , Membrane Glycoproteins/metabolism , Mice , Protein Binding , Protein Denaturation , Rift Valley Fever/pathology , Rift Valley Fever/prevention & control , Rift Valley Fever/virology , Rift Valley fever virus/immunology
20.
PLoS Pathog ; 17(2): e1009308, 2021 02.
Article En | MEDLINE | ID: mdl-33534855

Aerosol exposure to eastern equine encephalitis virus (EEEV) can trigger a lethal viral encephalitis in cynomolgus macaques which resembles severe human disease. Biomarkers indicative of central nervous system (CNS) infection by the virus and lethal outcome of disease would be useful in evaluating potential medical countermeasures, especially for therapeutic compounds. To meet requirements of the Animal Rule, a better understanding of the pathophysiology of EEEV-mediated disease in cynomolgus macaques is needed. In this study, macaques given a lethal dose of clone-derived EEEV strain V105 developed a fever between 2-3 days post infection (dpi) and succumbed to the disease by 6 dpi. At the peak of the febrile phase, there was a significant increase in the delta electroencephalography (EEG) power band associated with deep sleep as well as a sharp rise in intracranial pressure (ICP). Viremia peaked early after infection and was largely absent by the onset of fever. Granulocytosis and elevated plasma levels of IP-10 were found early after infection. At necropsy, there was a one hundred- to one thousand-fold increase in expression of traumatic brain injury genes (LIF, MMP-9) as well as inflammatory cytokines and chemokines (IFN-γ, IP-10, MCP-1, IL-8, IL-6) in the brain tissues. Phenotypic analysis of leukocytes entering the brain identified cells as primarily lymphoid (T, B, NK cells) with lower levels of infiltrating macrophages and activated microglia. Massive amounts of infectious virus were found in the brains of lethally-infected macaques. While no infectious virus was found in surviving macaques, quantitative PCR did find evidence of viral genomes in the brains of several survivors. These data are consistent with an overwhelming viral infection in the CNS coupled with a tremendous inflammatory response to the infection that may contribute to the disease outcome. Physiological monitoring of EEG and ICP represent novel methods for assessing efficacy of vaccines or therapeutics in the cynomolgus macaque model of EEEV encephalitis.


Aerosols/adverse effects , Biomarkers/analysis , Brain/immunology , Brain/pathology , Encephalitis Virus, Eastern Equine/pathogenicity , Encephalitis, Viral/immunology , Fever/immunology , Animals , Brain/virology , Cytokines/metabolism , Disease Models, Animal , Encephalitis, Viral/pathology , Encephalitis, Viral/virology , Female , Fever/pathology , Fever/virology , Macaca fascicularis , Male
...