Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Care ; 27(1): 307, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537654

RESUMEN

BACKGROUND: Positive end-expiratory pressure (PEEP) individualized to a maximal respiratory system compliance directly implies minimal driving pressures with potential outcome benefits, yet, raises concerns on static and dynamic overinflation, strain and cyclic recruitment. Detailed accurate assessment and understanding of these has been hampered by methodological limitations. We aimed to investigate the effects of a maximal compliance-guided PEEP strategy on dynamic lung aeration, strain and tidal recruitment using current four-dimensional computed tomography (CT) techniques and analytical methods of tissue deformation in a surfactant depletion experimental model of acute respiratory distress syndrome (ARDS). METHODS: ARDS was induced by saline lung lavage in anesthetized and mechanically ventilated healthy sheep (n = 6). Animals were ventilated in a random sequence with: (1) ARDSNet low-stretch protocol; (2) maximal compliance PEEP strategy. Lung aeration, strain and tidal recruitment were acquired with whole-lung respiratory-gated high-resolution CT and quantified using registration-based techniques. RESULTS: Relative to the ARDSNet low-stretch protocol, the maximal compliance PEEP strategy resulted in: (1) improved dynamic whole-lung aeration at end-expiration (0.456 ± 0.064 vs. 0.377 ± 0.101, P = 0.019) and end-inspiration (0.514 ± 0.079 vs. 0.446 ± 0.083, P = 0.012) with reduced non-aerated and increased normally-aerated lung mass without associated hyperinflation; (2) decreased aeration heterogeneity at end-expiration (coefficient of variation: 0.498 ± 0.078 vs. 0.711 ± 0.207, P = 0.025) and end-inspiration (0.419 ± 0.135 vs. 0.580 ± 0.108, P = 0.014) with higher aeration in dorsal regions; (3) tidal aeration with larger inspiratory increases in normally-aerated and decreases in poorly-aerated areas, and negligible in hyperinflated lung (Aeration × Strategy: P = 0.026); (4) reduced tidal strains in lung regions with normal-aeration (Aeration × Strategy: P = 0.047) and improved regional distributions with lower tidal strains in middle and ventral lung (Region-of-interest [ROI] × Strategy: P < 0.001); and (5) less tidal recruitment in middle and dorsal lung (ROI × Strategy: P = 0.044) directly related to whole-lung tidal strain (r = 0.751, P = 0.007). CONCLUSIONS: In well-recruitable ARDS models, a maximal compliance PEEP strategy improved end-expiratory/inspiratory whole-lung aeration and its homogeneity without overinflation. It further reduced dynamic strain in middle-ventral regions and tidal recruitment in middle-dorsal areas. These findings suggest the maximal compliance strategy minimizing whole-lung dynamically quantified mechanisms of ventilator-induced lung injury with less cyclic recruitment and no additional overinflation in large heterogeneously expanded and recruitable lungs.


Asunto(s)
Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Tomografía Computarizada Cuatridimensional , Lipoproteínas , Pulmón , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Ovinos , Tensoactivos , Volumen de Ventilación Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control
2.
Anesthesiology ; 133(5): 1060-1076, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32796202

RESUMEN

BACKGROUND: Pulmonary atelectasis is frequent in clinical settings. Yet there is limited mechanistic understanding and substantial clinical and biologic controversy on its consequences. The authors hypothesize that atelectasis produces local transcriptomic changes related to immunity and alveolar-capillary barrier function conducive to lung injury and further exacerbated by systemic inflammation. METHODS: Female sheep underwent unilateral lung atelectasis using a left bronchial blocker and thoracotomy while the right lung was ventilated, with (n = 6) or without (n = 6) systemic lipopolysaccharide infusion. Computed tomography guided samples were harvested for NextGen RNA sequencing from atelectatic and aerated lung regions. The Wald test was used to detect differential gene expression as an absolute fold change greater than 1.5 and adjusted P value (Benjamini-Hochberg) less than 0.05. Functional analysis was performed by gene set enrichment analysis. RESULTS: Lipopolysaccharide-unexposed atelectatic versus aerated regions presented 2,363 differentially expressed genes. Lipopolysaccharide exposure induced 3,767 differentially expressed genes in atelectatic lungs but only 1,197 genes in aerated lungs relative to the corresponding lipopolysaccharide-unexposed tissues. Gene set enrichment for immune response in atelectasis versus aerated tissues yielded negative normalized enrichment scores without lipopolysaccharide (less than -1.23, adjusted P value less than 0.05) but positive scores with lipopolysaccharide (greater than 1.33, adjusted P value less than 0.05). Leukocyte-related processes (e.g., leukocyte migration, activation, and mediated immunity) were enhanced in lipopolysaccharide-exposed atelectasis partly through interferon-stimulated genes. Furthermore, atelectasis was associated with negatively enriched gene sets involving alveolar-capillary barrier function irrespective of lipopolysaccharide (normalized enrichment scores less than -1.35, adjusted P value less than 0.05). Yes-associated protein signaling was dysregulated with lower nuclear distribution in atelectatic versus aerated lung (lipopolysaccharide-unexposed: 10.0 ± 4.2 versus 13.4 ± 4.2 arbitrary units, lipopolysaccharide-exposed: 8.1 ± 2.0 versus 11.3 ± 2.4 arbitrary units, effect of lung aeration, P = 0.003). CONCLUSIONS: Atelectasis dysregulates the local pulmonary transcriptome with negatively enriched immune response and alveolar-capillary barrier function. Systemic lipopolysaccharide converts the transcriptomic immune response into positive enrichment but does not affect local barrier function transcriptomics. Interferon-stimulated genes and Yes-associated protein might be novel candidate targets for atelectasis-associated injury.


Asunto(s)
Inmunidad Celular/genética , Inmunidad Celular/inmunología , Atelectasia Pulmonar/genética , Atelectasia Pulmonar/inmunología , Transcriptoma/genética , Animales , Femenino , Mediciones del Volumen Pulmonar/métodos , Atelectasia Pulmonar/diagnóstico por imagen , Ovinos
3.
Acad Radiol ; 27(12): 1679-1690, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32173290

RESUMEN

RATIONALE AND OBJECTIVES: Pulmonary atelectasis presumably promotes and facilitates lung injury. However, data are limited on its direct and remote relation to inflammation. We aimed to assess regional 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) kinetics representative of inflammation in atelectatic and normally aerated regions in models of early lung injury. MATERIALS AND METHODS: We studied supine sheep in four groups: Permissive Atelectasis (n = 6)-16 hours protective tidal volume (VT) and zero positive end-expiratory pressure; Mild (n = 5) and Moderate Endotoxemia (n = 6)- 20-24 hours protective ventilation and intravenous lipopolysaccharide (Mild = 2.5 and Moderate = 10.0 ng/kg/min), and Surfactant Depletion (n = 6)-saline lung lavage and 4 hours high VT. Measurements performed immediately after anesthesia induction served as controls (n = 8). Atelectasis was defined as regions of gas fraction <0.1 in transmission or computed tomography scans. 18F-FDG kinetics measured with positron emission tomography were analyzed with a three-compartment model. RESULTS: 18F-FDG net uptake rate in atelectatic tissue was larger during Moderate Endotoxemia (0.0092 ± 0.0019/min) than controls (0.0051 ± 0.0014/min, p = 0.01). 18F-FDG phosphorylation rate in atelectatic tissue was larger in both endotoxemia groups (0.0287 ± 0.0075/min) than controls (0.0198 ± 0.0039/min, p = 0.05) while the 18F-FDG volume of distribution was not significantly different among groups. Additionally, normally aerated regions showed larger 18F-FDG uptake during Permissive Atelectasis (0.0031 ± 0.0005/min, p < 0.01), Mild (0.0028 ± 0.0006/min, p = 0.04), and Moderate Endotoxemia (0.0039 ± 0.0005/min, p < 0.01) than controls (0.0020 ± 0.0003/min). CONCLUSION: Atelectatic regions present increased metabolic activation during moderate endotoxemia mostly due to increased 18F-FDG phosphorylation, indicative of increased cellular metabolic activation. Increased 18F-FDG uptake in normally aerated regions during permissive atelectasis suggests an injurious remote effect of atelectasis even with protective tidal volumes.


Asunto(s)
Lesión Pulmonar Aguda , Respiración Artificial , Lesión Pulmonar Aguda/diagnóstico por imagen , Animales , Fluorodesoxiglucosa F18 , Pulmón , Tomografía de Emisión de Positrones , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA