Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell Rep ; 43(7): 114454, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38990721

RESUMEN

Memory B cells (MBCs) are essential for humoral immunological memory and can emerge during both the pre-germinal center (GC) and GC phases. However, the transcription regulators governing MBC development remain poorly understood. Here, we report that the transcription regulator Notch2 is highly expressed in MBCs and their precursors at the pre-GC stage and required for MBC development without influencing the fate of GC and plasma cells. Mechanistically, Notch2 signaling promotes the expression of complement receptor CD21 and augments B cell receptor (BCR) signaling. Reciprocally, BCR activation up-regulates Notch2 surface expression in activated B cells via a translation-dependent mechanism. Intriguingly, Notch2 is dispensable for GC-derived MBC formation. In summary, our findings establish Notch2 as a pivotal transcription regulator orchestrating MBC development through the reciprocal enforcement of BCR signaling during the pre-GC phase and suggest that the generation of GC-independent and -dependent MBCs is governed by distinct transcriptional mechanisms.

2.
Proc Natl Acad Sci U S A ; 121(22): e2314619121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38776375

RESUMEN

Humoral immunity depends on the germinal center (GC) reaction where B cells are tightly controlled for class-switch recombination and somatic hypermutation and finally generated into plasma and memory B cells. However, how protein SUMOylation regulates the process of the GC reaction remains largely unknown. Here, we show that the expression of SUMO-specific protease 1 (SENP1) is up-regulated in GC B cells. Selective ablation of SENP1 in GC B cells results in impaired GC dark and light zone organization and reduced IgG1-switched GC B cells, leading to diminished production of class-switched antibodies with high-affinity in response to a TD antigen challenge. Mechanistically, SENP1 directly binds to Paired box protein 5 (PAX5) to mediate PAX5 deSUMOylation, sustaining PAX5 protein stability to promote the transcription of activation-induced cytidine deaminase. In summary, our study uncovers SUMOylation as an important posttranslational mechanism regulating GC B cell response.


Asunto(s)
Linfocitos B , Cisteína Endopeptidasas , Centro Germinal , Factor de Transcripción PAX5 , Sumoilación , Centro Germinal/inmunología , Centro Germinal/metabolismo , Factor de Transcripción PAX5/metabolismo , Factor de Transcripción PAX5/genética , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Ratones , Cambio de Clase de Inmunoglobulina , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Inmunidad Humoral , Ratones Endogámicos C57BL
3.
J Invest Dermatol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537929

RESUMEN

Bullous pemphigoid (BP) is a subepidermal blistering skin disease with a complex pathogenesis involving various immune cells. However, the transcriptional features of these cells remain poorly defined. In this study, we constructed a comprehensive and single-cell resolution atlas of various immune cells within BP skin lesions through integrative single-cell analysis, flow cytometry, and multiplex immunohistochemistry. We observed prominent expansion and transcriptional changes in mast cells, macrophages, basophils, and neutrophils within BP lesions. Mast cells within the lesions adopted an active state and exhibited an elevated capacity for producing proinflammatory mediators. We observed an imbalance of macrophages/dendritic cells within BP lesions. Two macrophage subpopulations (NLRP3+ and C1q+) with distinct transcriptional profiles were identified and upregulated effector programs. T-peripheral helper-like T helper 2 cells were expanded in skin lesions and peripheral blood of patients with BP and were capable of promoting B-cell responses. In addition, we observed clonally expanded granzyme B-positive CD8+ T cells within BP lesions. Chemokine receptor mapping revealed the potential roles of macrophages and mast cells in recruiting pathogenic immune cells and underlying mechanisms within BP lesions. Thus, this study reveals key immune pathogenic features of BP lesions, thereby providing valuable insights for potential therapeutic interventions in this disease.

5.
Science ; 383(6681): 413-421, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271512

RESUMEN

Age-associated B cells (ABCs) accumulate during infection, aging, and autoimmunity, contributing to lupus pathogenesis. In this study, we screened for transcription factors driving ABC formation and found that zinc finger E-box binding homeobox 2 (ZEB2) is required for human and mouse ABC differentiation in vitro. ABCs are reduced in ZEB2 haploinsufficient individuals and in mice lacking Zeb2 in B cells. In mice with toll-like receptor 7 (TLR7)-driven lupus, ZEB2 is essential for ABC formation and autoimmune pathology. ZEB2 binds to +20-kb myocyte enhancer factor 2b (Mef2b)'s intronic enhancer, repressing MEF2B-mediated germinal center B cell differentiation and promoting ABC formation. ZEB2 also targets genes important for ABC specification and function, including Itgax. ZEB2-driven ABC differentiation requires JAK-STAT (Janus kinase-signal transducer and activator of transcription), and treatment with JAK1/3 inhibitor reduces ABC accumulation in autoimmune mice and patients. Thus, ZEB2 emerges as a driver of B cell autoimmunity.


Asunto(s)
Autoinmunidad , Linfocitos B , Diferenciación Celular , Regulación de la Expresión Génica , Lupus Eritematoso Sistémico , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Animales , Humanos , Ratones , Autoinmunidad/genética , Linfocitos B/citología , Linfocitos B/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Haploinsuficiencia , Envejecimiento/inmunología , Modelos Animales de Enfermedad , Femenino
6.
J Autoimmun ; 142: 103128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939532

RESUMEN

Pemphigus, an autoimmune bullous disease affecting the skin and mucosal membranes, is primarily driven by anti-desmoglein (Dsg) autoantibodies. However, the underlying immune mechanisms of this disease remain largely elusive. Here, we compile an unbiased atlas of immune cells in pemphigus cutaneous lesions at single-cell resolution. We reveal clonally expanded antibody-secreting cells (ASCs) that exhibit variable hypermutation and accumulation of IgG4 class-switching in their immunoglobulin genes. Importantly, pathogenic Dsg-specific ASCs are localized within pemphigus lesions and can evolve from both Dsg-autoreactive and non-binding precursors. We observe an altered distribution of CD4+ T cell subsets within pemphigus lesions, including an imbalance of Th17/Th2 cells. Significantly, we identify a distinct subpopulation of Th17 cells expressing CXCL13 and IL-21 within pemphigus lesions, implying its pivotal role in B cell recruitment and local production of autoantibodies. Furthermore, we characterize multiple clonally expanded CD8+ subpopulations, including effector GMZB+ and GMZK+ subsets with augmented cytotoxic activities, within pemphigus lesions. Chemokine-receptor mapping uncovers cell-type-specific signaling programs involved in the recruitment of T/B cells within pemphigus lesions. Our findings significantly contribute to advancing the understanding of the heterogeneous immune microenvironment and the pathogenesis of pemphigus cutaneous lesions, thereby providing valuable insights for potential therapeutic interventions in this disease.


Asunto(s)
Enfermedades Autoinmunes , Pénfigo , Humanos , Desmogleína 3 , Autoanticuerpos , Piel/patología
7.
Immunity ; 56(10): 2342-2357.e10, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625409

RESUMEN

The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.

10.
Sci Rep ; 13(1): 6066, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055580

RESUMEN

A 2 at.% Dy3+: CaYAlO4 single crystal was grown successfully. The electronic structures of Ca2+/Y3+ mixed sites in CaYAlO4 were investigated using first-principles based on density functional theory. The effects of Dy3+ doping on the structural parameters of host crystal were studied using XRD pattern. The optical properties including absorption spectrum, excitation spectrum, emission spectra and fluorescence decay curves were thoroughly investigated. The results show that the Dy3+: CaYAlO4 crystal could be pumped by the blue InGaN and AlGaAs or 1281 nm laser diodes. Furthermore, an intense 578 nm yellow emission was obtained directly under excitation at 453 nm, meanwhile, evident mid-infrared light emitting was observed by 808 or 1281 nm laser excitation. The fitted fluorescence lifetimes of 4F9/2 and 6H13/2 levels were about 0.316 ms and 0.038 ms, respectively. It can be concluded that this Dy3+: CaYAlO4 crystal could simultaneously act as a promising medium for both solid-state yellow and mid-infrared laser outputs.

11.
Sci Immunol ; 8(81): eade1167, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36961908

RESUMEN

Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.


Asunto(s)
Genes de Inmunoglobulinas , Mutación INDEL , Animales , Ratones , Mutación , Reparación del ADN/genética , ADN/genética
12.
Cell Rep ; 40(1): 111035, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793628

RESUMEN

During the early phase of primary humoral responses, activated B cells can differentiate into different types of effector cells, dependent on B cell receptor affinity for antigen. However, the pivotal transcription factors governing these processes remain to be elucidated. Here, we show that transcription factor Bach2 protein in activated B cells is transiently induced by affinity-related signals and mechanistic target of rapamycin complex 1 (mTORC1)-dependent translation to restrain their expansion and differentiation into plasma cells while promoting memory and germinal center (GC) B cell fates. Affinity-related signals also downregulate Bach2 mRNA expression in activated B cells and their descendant memory B cells. Sustained and higher concentrations of Bach2 antagonize the GC fate. Repression of Bach2 in memory B cells predisposes their cell-fate choices upon memory recall. Our study reveals that differential dynamics of Bach2 protein and transcripts in activated B cells control their cell-fate outcomes and imprint the fates of their descendant effector cells.


Asunto(s)
Linfocitos B , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular/genética , Centro Germinal , ARN/metabolismo , Factores de Transcripción/metabolismo
13.
Biochem Biophys Res Commun ; 618: 86-92, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35716600

RESUMEN

The transcription factor Bach2 serves as a crucial regulator of the germinal center (GC) reaction, which is required for production of high-affinity antibodies and establishment of long-lived B cell memory. However, the stage at which Bach2 controls the GC programs and the precise mechanism underlying these processes remain poorly understood. In this study, we show that genetic ablation of Bach2 in GC B cells of mice impairs their survival and maintenance, and memory B cell formation. These defects can be rescued by enforced expression of anti-apoptotic gene Bcl2. As expected, Bach2-deficient GC B cells are defective in antibody affinity maturation, but have normal somatic hyper mutation and class switch recombination of immunoglobulin genes. Mechanistically, Bach2 controls the GC programs by directly repressing pro-apoptotic gene Bim and a set of genes involved in cell stress response and metabolic processes. Thus, our work reveals the precise roles of Bach2 in the GC biology, and demonstrates that Bach2 acts as a crucial survival regulator of GC B cells, providing a key mechanism underlying GC B maintenance and B cell memory formation.


Asunto(s)
Linfocitos B , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Centro Germinal , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Supervivencia Celular/fisiología , Centro Germinal/citología , Centro Germinal/inmunología , Memoria Inmunológica , Ratones , Factores de Transcripción/metabolismo
14.
Nat Commun ; 13(1): 2762, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589797

RESUMEN

Beyond a function in hemostasis and thrombosis, platelets can regulate innate and adaptive immune responses. Hyperactive platelets are frequently associated with multiple human autoimmune diseases, yet their pathogenic functions in these diseases have not been fully established. Emerging studies show an essential function of the phosphatase and tensin homolog (PTEN) in maintenance of immune homeostasis. Here, we show that mice with platelet-specific deletion of Pten, develop age-related lymphoproliferative diseases and humoral autoimmunity not seen in wildtype animals. Platelet-specific Pten-deficient mice have aberrant T cell activation, excessive T follicular helper (Tfh) cell responses and accumulation of platelet aggregates in lymph nodes. Transferred Pten-deficient platelets are able to infiltrate into the peripheral lymphoid tissues and form more aggregates. Moreover, Pten-deficient platelets are hyperactive and overproduce multiple Tfh-promoting cytokines via activation of the PDK1/mTORC2-AKT-SNAP23 pathway. Pten-deficient platelets show enhanced interaction with CD4+ T cells and promote conversion of CD4+ T cells into Tfh cells. Our results implicate PTEN in platelet-mediated immune homeostasis, and provide evidence that hyperactive platelets function as an important mediator in autoimmune diseases using mouse models.


Asunto(s)
Enfermedades Autoinmunes , Células T Auxiliares Foliculares , Animales , Autoinmunidad , Plaquetas , Activación de Linfocitos , Ratones , Linfocitos T Colaboradores-Inductores
15.
Signal Transduct Target Ther ; 7(1): 80, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35301282

RESUMEN

MicroRNAs (miRNAs) are involved in lymphoma progression by regulating the tumor microenvironment. Serum miR130b is overexpressed in diffuse large B-cell lymphoma (DLBCL), inducing Th17 cell alterations. To further illustrate its biological significance and therapeutic rationale, miR130b was detected by quantitative real-time PCR in the serum samples of 532 newly diagnosed DLBCL patients. The mechanism of miR130b on lymphoma progression and the tumor microenvironment was investigated both in vitro and in vivo. Therapeutic targeting miR130b was also evaluated, including OX40 agonistic antibody and lipid nanoparticles (LNPs)-miR130b antagomir. The results showed that serum miR130b significantly correlated with tumor miR130b and serum interleukin-17, indicating lymphoma relapse and inferior survival of DLBCL patients. MiR130b overexpression altered tumor microenvironment signaling pathways and increased Th17 cell activity. As mechanism of action, miR130b downregulated tumor OX40L expression by directly targeting IFNAR1/p-STAT1 axis, recruiting Th17 cells via OX40/OX40L interaction, thereby promoting immunosuppressive function of Th17 cells. In co-culture systems of B-lymphoma cells with immune cells, miR130b inhibited lymphoma cell autophagy, which could be counteracted by OX40 agonistic antibody and LNPs-miR130b antagomir. In murine xenograft model established with subcutaneous injection of A20 cells, both OX40 agonistic antibody and LNPs-miR130b antagomir remarkably inhibited Th17 cells and retarded miR130b-overexpressing tumor growth. In conclusion, as an oncogenic biomarker of DLBCL, miR130b was related to lymphoma progression through modulating OX40/OX40L-mediated lymphoma cell interaction with Th17 cells, attributing to B-cell lymphoma sensitivity towards OX40 agonistic antibody. Targeting miR130b using LNPs-miR130b antagomir could also be a potential immunotherapeutic strategy in treating OX40-altered lymphoid malignancies.


Asunto(s)
Linfoma de Células B Grandes Difuso , MicroARNs , Animales , Humanos , Liposomas , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Nanopartículas , Células Th17/metabolismo , Células Th17/patología , Microambiente Tumoral/genética
16.
Acta Pharmacol Sin ; 43(2): 457-469, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33850273

RESUMEN

Mantle cell lymphoma (MCL) is a lymphoproliferative disorder lacking reliable therapies. PI3K pathway contributes to the pathogenesis of MCL, serving as a potential target. However, idelalisib, an FDA-approved drug targeting PI3Kδ, has shown intrinsic resistance in MCL treatment. Here we report that a p300/CBP inhibitor, A-485, could overcome resistance to idelalisib in MCL cells in vitro and in vivo. A-485 was discovered in a combinational drug screening from an epigenetic compound library containing 45 small molecule modulators. We found that A-485, the highly selective catalytic inhibitor of p300 and CBP, was the most potent compound that enhanced the sensitivity of MCL cell line Z-138 to idelalisib. Combination of A-485 and idelalisib remarkably decreased the viability of three MCL cell lines tested. Co-treatment with A-485 and idelalisib in Maver-1 and Z-138 MCL cell xenograft mice for 3 weeks dramatically suppressed the tumor growth by reversing the unsustained inhibition in PI3K downstream signaling. We further demonstrated that p300/CBP inhibition decreased histone acetylation at RTKs gene promoters and reduced transcriptional upregulation of RTKs, thereby inhibiting the downstream persistent activation of MAPK/ERK signaling, which also contributed to the pathogenesis of MCL. Therefore, additional inhibition of p300/CBP blocked MAPK/ERK signaling, which rendered maintaining activation to PI3K-mTOR downstream signals p-S6 and p-4E-BP1, thus leading to suppression of cell growth and tumor progression and eliminating the intrinsic resistance to idelalisib ultimately. Our results provide a promising combination therapy for MCL and highlight the potential use of epigenetic inhibitors targeting p300/CBP to reverse drug resistance in tumor.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/efectos de los fármacos , Linfoma de Células del Manto/tratamiento farmacológico , Purinas/uso terapéutico , Quinazolinonas/uso terapéutico , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Sinergismo Farmacológico , Femenino , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Ratones , Trasplante de Neoplasias
17.
Cell Rep ; 35(6): 109096, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979619

RESUMEN

Differentiation and homeostasis of Foxp3+ regulatory T cells (Tregs) are tightly controlled by the interleukin-2 receptor (IL-2R) signaling, yet the mechanisms governing these processes are incompletely understood. Here, we report that transcription factor Bach2 attenuates IL-2R signaling to coordinate Treg differentiation and homeostasis. Bach2 is required for the quiescence, survival, and maintenance of resting Treg cells (rTregs). Unexpectedly, Bach2 directly represses CD25 (IL-2Rα) and subsequently attenuates IL-2R signaling in Tregs. Upregulated CD25/IL-2R signaling in Bach2-deficient rTregs acts as a parallel pathway to partially counteract their poor survival and maintenance. Furthermore, Bach2 suppresses CD25/IL-2R signaling in T follicular regulatory (Tfr) cells. Bach2 deficiency in Tregs prevents the formation of highly differentiated Tfr cells, associated with aberrant GC response. Finally, a mild and late onset of autoimmune disease is observed in mice with Bach2-deficient Tregs. Thus, Bach2 balances IL-2R signaling to orchestrate development and homeostasis of various Treg subsets.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Interleucina-2/metabolismo , Receptores de Transferrina/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Diferenciación Celular , Homeostasis , Ratones , Transducción de Señal
18.
Signal Transduct Target Ther ; 6(1): 10, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431788

RESUMEN

Epigenetic alterations play an important role in tumor progression of diffuse large B-cell lymphoma (DLBCL). However, the biological relevance of epigenetic gene mutations on tumor microenvironment remains to be determined. The core set of genes relating to histone methylation (KMT2D, KMT2C, EZH2), histone acetylation (CREBBP, EP300), DNA methylation (TET2), and chromatin remodeling (ARID1A) were detected in the training cohort of 316 patients by whole-genome/exome sequencing (WGS/WES) and in the validation cohort of 303 patients with newly diagnosed DLBCL by targeted sequencing. Their correlation with peripheral blood immune cells and clinical outcomes were assessed. Underlying mechanisms on tumor microenvironment were investigated both in vitro and in vivo. Among all 619 DLBCL patients, somatic mutations in KMT2D (19.5%) were most frequently observed, followed by mutations in ARID1A (8.7%), CREBBP (8.4%), KMT2C (8.2%), TET2 (7.8%), EP300 (6.8%), and EZH2 (2.9%). Among them, CREBBP/EP300 mutations were significantly associated with decreased peripheral blood absolute lymphocyte-to-monocyte ratios, as well as inferior progression-free and overall survival. In B-lymphoma cells, the mutation or knockdown of CREBBP or EP300 inhibited H3K27 acetylation, downregulated FBXW7 expression, activated the NOTCH pathway, and downstream CCL2/CSF1 expression, resulting in tumor-associated macrophage polarization to M2 phenotype and tumor cell proliferation. In B-lymphoma murine models, xenografted tumors bearing CREBBP/EP300 mutation presented lower H3K27 acetylation, higher M2 macrophage recruitment, and more rapid tumor growth than those with CREBBP/EP300 wild-type control via FBXW7-NOTCH-CCL2/CSF1 axis. Our work thus contributed to the understanding of aberrant histone acetylation regulation on tumor microenvironment as an alternative mechanism of tumor progression in DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso/inmunología , Proteínas de Neoplasias/inmunología , Transducción de Señal/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/inmunología , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/inmunología , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/inmunología , Femenino , Humanos , Linfoma de Células B Grandes Difuso/genética , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/genética , Receptores Notch/genética , Receptores Notch/inmunología , Transducción de Señal/genética , Células THP-1
19.
Front Immunol ; 11: 1025, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587588

RESUMEN

Germinal center (GC) B cell differentiation is critical for the production of affinity-matured pathogen-specific antibodies, the dysregulation of which may lead to humoral immunodeficiency or autoimmunity. The development of an in vivo screening system for factors regulating GC B cell differentiation has been a challenge. Here we describe a small-scale in vivo screening system with NP-specific B1-8hi cells and a retroviral shRNA library targeting 78 candidate genes to search for B cell-intrinsic factors that specifically regulate GC B cell differentiation. Zdhhc2, a gene encoding palmitoyltransferase ZDHHC2 and highly expressed in GC B cells, is identified as a strong positive regulator of GC B cell differentiation. B1-8hi cells transduced with Zdhhc2-shRNA are severely compromised in differentiating into GC B cells. A further analysis of in vitro differentiated B cells transduced with Zdhhc2-shRNA shows that Zdhhc2 is critical for the proliferation and the survival of B cells stimulated by CD40L, BAFF, and IL-21 and consequently impacts on their differentiation into GC B cells and post-GC B cells. These studies not only identify Zdhhc2 as a novel regulator of GC B cell differentiation but also represent a proof of concept of in vivo screen for regulators of GC B cell differentiation.


Asunto(s)
Aciltransferasas/metabolismo , Linfocitos B/inmunología , Centro Germinal/inmunología , Tamizaje Masivo/métodos , ARN Interferente Pequeño/genética , Aciltransferasas/genética , Animales , Factor Activador de Células B/metabolismo , Ligando de CD40/metabolismo , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Clonales , Interleucinas/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
Adv Exp Med Biol ; 1254: 47-53, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32323268

RESUMEN

Germinal centers (GCs) are transient microstructures formed within the follicles of secondary lymphoid tissues in response to certain types of immunization and foreign pathogens. A mature GC comprises two functionally distinct compartments, a dark zone (DZ) and a light zone (LZ). DZ B cells undergo rapid clonal expansion during which their antibody genes are modified by activation-induced cytidine deaminase (AID)-mediated immunoglobulin variable region (IgV) gene hypermutation to generate a repertoire of antibody mutants with varying affinities to the immunizing antigen. With the help of other immune cells including T follicular helper (Tfh) cells and follicular dendritic cells (FDCs), GC B cells with improved affinity to the antigen are selectively expanded and finally differentiate into memory B cell (MBC) and antibody-producing plasma cell (PC). In the LZ, GC B cells may also undergo AID-mediated class switch recombination. The germinal center reaction involves multiple immune cells and is tightly controlled by lineage-specific transcription factors. In this chapter, I will discuss the cellular and molecular signals, such as key transcription factors, that govern the formation and maintenance and GCs and the selection of GC B cells.


Asunto(s)
Linfocitos B , Centro Germinal , Animales , Antígenos , Linfocitos B/inmunología , Centro Germinal/inmunología , Humanos , Cambio de Clase de Inmunoglobulina , Linfocitos T Colaboradores-Inductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...