Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.530
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409409, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008227

RESUMEN

Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast-charging capability and low-temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial Li-ion transport. Here we report a wide-temperature-range ester-based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film-forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three-electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of -80°C to 80°C and outstanding fast-charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2% capacity retention after 1200 cycles (2 C) and 10-min charge to 89% (5 C) at 25°C and provides reliable power even at -80°C.

2.
Phys Chem Chem Phys ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982847

RESUMEN

Electronegativity and ionicity are important but difficult concepts. In this work, we present the universal scale of electronegativity by utilizing electron scattering factors. A mapping of our proposed "scattering electronegativity" with Pauling electronegativity and other electronegativity scales is given. Two new ionicity scales based on electron scattering factors are also proposed and compared with Philips's ionicity and Pauling's ionicity. Although electron scattering factors are based on neutral, free, atomic features, scattering electronegativity and ionicity are able to provide rich charge or bonding information of materials in molecules or solid states. Our newly proposed electronegativity scale satisfies the metalloid band criterion (or Si rule). A new Mg rule and a new concept of critical ionicity gap are proposed, successfully distinguishing between the four-fold and six-fold coordinates in the ANB8-N crystals.

3.
Nat Commun ; 15(1): 5751, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982071

RESUMEN

Oxygen vacancy (Ov) is an anionic defect widely existed in metal oxide lattice, as exemplified by CeO2, TiO2, and ZnO. As Ov can modify the band structure of solid, it improves the physicochemical properties such as the semiconducting performance and catalytic behaviours. We report here a new type of Ov as an intrinsic part of a perfect crystalline surface. Such non-defect Ov stems from the irregular hexagonal sawtooth-shaped structure in the (111) plane of trivalent rare earth oxides (RE2O3). The materials with such intrinsic Ov structure exhibit excellent performance in ammonia decomposition reaction with surface Ru active sites. Extremely high H2 formation rate has been achieved at ~1 wt% of Ru loading over Sm2O3, Y2O3 and Gd2O3 surface, which is 1.5-20 times higher than reported values in the literature. The discovery of intrinsic Ov suggests great potentials of applying RE oxides in heterogeneous catalysis and surface chemistry.

4.
ACS Nano ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981052

RESUMEN

High-entropy alloys (HEAs) have aroused extensive attention in the field of catalysis. However, due to the integration of multiple active sites in HEA, it exhibits excessive adsorption behavior resulting in difficult desorption of active species from the catalyst surfaces, which hinders the catalytic efficiency. Therefore, adjusting the adsorption strength of the active site in HEA to enhance the catalytic activity is of great importance. By introducing rare-earth (RE) elements into the high-entropy alloy, the delocalization of 4f electrons can be achieved through the interaction between the multimetal active site and RE, which benefits to regulate the adsorption strength of the HEA surface. Herein, the RE Ce-modified hexagonal-close-packed PtRuFeCoNiZn-Ce/C HEAs are synthesized and showed an excellent electrocatalytic activity for hydrogen evolution reaction and oxygen evolution reaction with ultralow overpotentials of 4, 7 and 156, 132 mV, respectively, to reach 10 mA cm-2 in 0.5 M H2SO4 and 1.0 M KOH solutions, and the assembled water electrolysis cell only requires a voltage of 1.43 V to reach 10 mA cm-2, which is much better than the performance of PtRuFeCoNiZn/C. Combined with the results of in situ attenuated total reflection infrared spectroscopy and density functional theory (DFT), the fundamental reasons for the improvement of catalyst activity come from two aspects: (i) local lattice distortion of HEA caused by the introduction of RE with large atomic radius induces 4f orbital electron delocalization of RE elements and enhances electron exchange between RE and active sites. (ii) The electronegativity difference between the RE element and the active site forms a surface dipole in HEA, which optimizes the adsorption of the active intermediate by the HEA surface site. This study provides an insightful idea for the rational design of high-performance HEA- and RE-based electrocatalysts.

5.
Science ; 385(6704): 68-74, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963855

RESUMEN

Passive radiant cooling is a potentially sustainable thermal management strategy amid escalating global climate change. However, petrochemical-derived cooling materials often face efficiency challenges owing to the absorption of sunlight. We present an intrinsic photoluminescent biomass aerogel, which has a visible light reflectance exceeding 100%, that yields a large cooling effect. We discovered that DNA and gelatin aggregation into an ordered layered aerogel achieves a solar-weighted reflectance of 104.0% in visible light regions through fluorescence and phosphorescence. The cooling effect can reduce ambient temperatures by 16.0°C under high solar irradiance. In addition, the aerogel, efficiently produced at scale through water-welding, displays high reparability, recyclability, and biodegradability, completing an environmentally conscious life cycle. This biomass photoluminescence material is another tool for designing next-generation sustainable cooling materials.

6.
Nanomicro Lett ; 16(1): 217, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884846

RESUMEN

The interfacial instability of the poly(ethylene oxide) (PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batteries. In this work, we have shown an effective additive 1-adamantanecarbonitrile, which contributes to the excellent performance of the poly(ethylene oxide)-based electrolytes. Owing to the strong interaction of the 1-Adamantanecarbonitrile to the polymer matrix and anions, the coordination of the Li+-EO is weakened, and the binding effect of anions is strengthened, thereby improving the Li+ conductivity and the electrochemical stability. The diamond building block on the surface of the lithium anode can suppress the growth of lithium dendrites. Importantly, the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface, which contributes to the interfacial stability (especially at high voltages) and protects the electrodes, enabling all-solid-state batteries to cycle at high voltages for long periods of time. Therefore, the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h. 1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni0.8Mn0.1Co0.1O2/Li all-solid-state batteries achieved stable cycles for 1000 times, with capacity retention rates reaching 85% and 80%, respectively.

7.
Nat Commun ; 15(1): 5157, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886340

RESUMEN

The eukaryotic asparagine (N)-linked glycan is pre-assembled as a fourteen-sugar oligosaccharide on a lipid carrier in the endoplasmic reticulum (ER). Seven sugars are first added to dolichol pyrophosphate (PP-Dol) on the cytoplasmic face of the ER, generating Man5GlcNAc2-PP-Dol (M5GN2-PP-Dol). M5GN2-PP-Dol is then flipped across the bilayer into the lumen by an ER translocator. Genetic studies identified Rft1 as the M5GN2-PP-Dol flippase in vivo but are at odds with biochemical data suggesting Rft1 is dispensable for flipping in vitro. Thus, the question of whether Rft1 plays a direct or an indirect role during M5GN2-PP-Dol translocation has been controversial for over two decades. We describe a completely reconstituted in vitro assay for M5GN2-PP-Dol translocation and demonstrate that purified Rft1 catalyzes the translocation of M5GN2-PP-Dol across the lipid bilayer. These data, combined with in vitro results demonstrating substrate selectivity and rft1∆ phenotypes, confirm the molecular identity of Rft1 as the M5GN2-PP-Dol ER flippase.


Asunto(s)
Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transporte Biológico , Oligosacáridos/metabolismo , Fosfatos de Dolicol/metabolismo , Fosfatos de Dolicol/genética , Membrana Dobles de Lípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Membranas Intracelulares/metabolismo , Lipopolisacáridos
8.
Fitoterapia ; 177: 106052, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848978

RESUMEN

Hypoxia-inducing factor-1α (HIF-1α) is overexpressed in variety of tumor patients and plays an important role in the regulation of hypoxia response in tumor cells. Therefore, its inhibitors have become one of the targets for the treatment of a variety of cancers. Two series of panaxadiol (PD) ester derivatives containing pyrazole (18a-j) and pyrrole (19a-n) moiety were synthesized and their HIF-1α inhibitory activities were evaluated. Among all the target compouds, compounds 18c, 19d, and 19n (IC50 = 8.70-10.44 µM) showed better HIF-1α inhibitory activity than PD (IC50 = 13.35 µM). None of these compounds showed cytotoxicity above 100 µM and inhibited HIF-1α transcription in a dose-dependent manner. These compounds showed good antitumor activity and provide lead compounds for further design and activity study of PD ester derivatives.

9.
Cell Surf ; 11: 100126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38827922

RESUMEN

Cell wall biomass, Earth's most abundant natural resource, holds significant potential for sustainable biofuel production. Composed of cellulose, hemicellulose, lignin, pectin, and other polymers, the plant cell wall provides essential structural support to diverse organisms in nature. In contrast, non-plant species like insects, crustaceans, and fungi rely on chitin as their primary structural polysaccharide. The saprophytic fungus Aspergillus fumigatus has been widely recognized for its adaptability to various environmental conditions. It achieves this by secreting different cell wall biomass degradation enzymes to obtain essential nutrients. This review compiles a comprehensive collection of cell wall degradation enzymes derived from A. fumigatus, including cellulases, hemicellulases, various chitin degradation enzymes, and other polymer degradation enzymes. Notably, these enzymes exhibit biochemical characteristics such as temperature tolerance or acid adaptability, indicating their potential applications across a spectrum of industries.

10.
Herz ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829438

RESUMEN

OBJECTIVES: Delirium is a serious complication of cardiac surgery and a common clinical problem. The study aimed to identify the incidence, risk factors, and outcomes of delirium in older patients (≥ 65 years) with first-ever acute myocardial infarction (AMI) who underwent percutaneous coronary intervention (PCI). METHODS: A retrospective cohort study was performed in a hospital in northern China. A total of 1033 older patients with first-ever AMI who underwent PCI between January 2018 and April 2021 were screened for delirium using the CAM-ICU method. Clinical and laboratory data were collected. RESULTS: A total of 134 (12.97%) patients were diagnosed with delirium. Patients with delirium were older. The most common concomitant diseases were cardiac arrest, chronic renal failure, and a history of coronary artery bypass graft (CABG). Delirious patients experienced more times of mechanical ventilation, more intra-aortic balloon pump (IABP) support, high postoperative immediate pain score (VAS), more non-bedside cardiac rehabilitation, and longer total length of stay and cardiac care unit (CCU) time. Multivariable logistic regression showed that age, mechanical ventilation, postoperative immediate pain score, and non-bedside cardiac rehabilitation were independently associated with delirium. Delirium was an independent predictor of prolonged CCU stay, total length of stay, and 1­year mortality. CONCLUSION: Age, mechanical ventilation, postoperative immediate pain score, and non-bedside cardiac rehabilitation were independently closely related to delirium in older patients with first-ever AMI who underwent PCI. Delirium was associated with a higher 1­year all-cause mortality.

11.
J Dairy Sci ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825137

RESUMEN

This study characterized the sleep activity, sleep mechanism, and active peptides of whey protein hydrolysates selected through behavioral analysis of fruit-flies (Drosophila melanogaster). Sleep-inducing whey protein (WP) hydrolysate was selected through fruit fly behavior analysis, and sleep activity was measured using a pentobarbital model and electroencephalographic analysis. The mechanism of action was confirmed using a γ-aminobutyric acid (GABA) receptor antagonist, and the active peptide was identified using liquid chromatography-mass spectroscopy. Whey protein hydrolysate, prepared using Alcalase and Prozyme (WP-AP), increased sleep time in a dose-dependent manner. WP-AP significantly increased not only sleep time but also slow-wave sleep and showed an insomnia-alleviating effect in a caffeine-induced insomnia mouse model. In addition, the gene and protein expression levels of GABA sub-type A (GABAA) receptors increased in the brains of mice orally administered with WP-AP. Through peptide analysis, the mixture of DIQK, VPPF peptide, and GABA contained in WP-AP was estimated to exhibit sleep activity, and due to its high content, DIQK was speculated to be the main sleep -inducing ingredient. These results indicate that WP-AP has the potential to be used as a new ingredient to improve sleep quality.

12.
Front Plant Sci ; 15: 1392175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736439

RESUMEN

Wolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level.

13.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2393-2401, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812140

RESUMEN

Rhei Radix et Rhizoma is common traditional Chinese medicine with multiple original plants. The content and proportion of the active components in Rhei Radix et Rhizoma from different plant species were compared to accurately evaluate the medicine qua-lity and provide a theoretical basis for precise use of this medicine in clinical practice. In this study, fresh Rhei Radix et Rhizoma samples were collected from the four-year-old plants of Rheum palmatum, R. tanguticum, and R. officinale. The relative content of 220 anthraquinones, anthrones, and tannins in the samples were determined by pseudo-targeted metabolomics, and the differential components were screened by multivariate statistical methods. The principal component analysis classified the samples into three clusters according to the original plants. The orthogonal partial least squares-discriminant analysis(OPLS-DA) screened out 117 differential components, including 8 free anthraquinones, 18 anthraquinone glycosides, 80 anthrones, and 11 tannins. Twenty-eight components had the highest content in R. tanguticum, mainly including sennosides, anthraquinone glycosides, and procyanidins. Thirty-five components showed the highest content in R. officinale, mainly including free anthraquinones and catechines. Fifty-four components showed the highest content in R. palmatum, mainly including dianthrones, while the structures of most of them cannot be determined temporarily. The content distribution of differential components in the three original plants indicates that R. tanguticum has the strongest effect of purging, while R. officinale has the strongest effect of clearing heat and purging fire, and both have stronger effects of resolvong stasis and dredging meridians than R. palmatum.


Asunto(s)
Medicamentos Herbarios Chinos , Metabolómica , Rheum , Rizoma , Rheum/química , Rizoma/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Antraquinonas/química , Antraquinonas/análisis , Cromatografía Líquida de Alta Presión
14.
Angew Chem Int Ed Engl ; : e202405891, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769062

RESUMEN

Organic solvent nanofiltration (OSN) plays important roles in pharmaceutical ingredients purification and solvent recovery. However, the low organic solvent permeance under cross-flow operation of OSN membrane hampers their industrial applications. Herein, we report the construction of coffee-ring structured membrane featuring high OSN permeance. A water-insoluble crystal monomer that dissolved in EtOH/H2O mixed solvent was designed to react with trimesoyl chloride via interfacial polymerization. Owing to the diffusion of EtOH to n-hexane, coffee-ring nanostructure on the support membrane appeared, which served as the template for construction of coffee-ring structured membrane. The optimal nanostructured membrane demonstrated 2.6-fold enhancement in the effective surface area with reduced membrane thickness. Resultantly, the membrane afforded a 2.7-fold enhancement in organic solvent permeance, e.g., ~13 LMH/bar for MeOH, without sacrificing the rejection ability. Moreover, due to the rigid monomer structure, the fabricated membrane shows distinctive running stability in active pharmaceutical ingredients purification and the ability for concentration of medicines.

15.
Cell Rep Med ; 5(6): 101579, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38776910

RESUMEN

Molecular phenotypic variations in metabolites offer the promise of rapid profiling of physiological and pathological states for diagnosis, monitoring, and prognosis. Since present methods are expensive, time-consuming, and still not sensitive enough, there is an urgent need for approaches that can interrogate complex biological fluids at a system-wide level. Here, we introduce hyperspectral surface-enhanced Raman spectroscopy (SERS) to profile microliters of biofluidic metabolite extraction in 15 min with a spectral set, SERSome, that can be used to describe the structures and functions of various molecules produced in the biofluid at a specific time via SERS characteristics. The metabolite differences of various biofluids, including cell culture medium and human serum, are successfully profiled, showing a diagnosis accuracy of 80.8% on the internal test set and 73% on the external validation set for prostate cancer, discovering potential biomarkers, and predicting the tissue-level pathological aggressiveness. SERSomes offer a promising methodology for metabolic phenotyping.


Asunto(s)
Fenotipo , Neoplasias de la Próstata , Espectrometría Raman , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Espectrometría Raman/métodos , Masculino , Metabolómica/métodos , Metaboloma , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral
17.
Front Genet ; 15: 1395315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808332

RESUMEN

Background/purpose: Previous epidemiological studies have associated interstitial lung disease (ILD) with rheumatoid arthritis (RA), yet the causality of this relationship remains uncertain. This study aimed to investigate the genetic causal link between ILD and RA. Methods: Genome-wide association study (GWAS) statistics for ILD and RA were collected from public datasets. Relevant single-nucleotide polymorphisms (SNPs) were selected by executing quality control steps from the GWAS summary results. A two-sample bidirectional Mendelian randomization (MR) analysis was performed to assess the causal relationship between the two conditions. The MR analysis primarily used the inverse variance weighting (IVW), weighted median (WM), and MR-Egger regression methods. Sensitivity analyses, including MR-Egger, leave-one-out, and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO), were conducted to evaluate the heterogeneity and pleiotropy. Replication analyses using Asian datasets were also conducted to enhance the robustness of our findings. Results: In the European population, RA was found to increase the risk of ILD by 9.6% (OR: 1.096, 95% CI: 1.023-1.174, p = 0.009). Conversely, ILD was associated with a 12.8% increased risk of RA (OR: 1.128, 95% CI: 1.013-1.256, p = 0.029). Replication analyses from Asian GWAS further supported these findings, particularly the increased risk of ILD attributable to RA (OR: 1.33, 95% CI: 1.18-1.49, p-value <0.001). Conclusion: Our findings underscore the clinical importance of screening for ILD in RA patients and suggest that effective management of RA could significantly benefit ILD patients. The potential applicability of novel RA treatments to ILD warrants further exploration. Additionally, racial disparities in the manifestation of these diseases should not be overlooked, as they may offer new perspectives for targeted therapies in diverse populations.

18.
Cancer Cell Int ; 24(1): 173, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760774

RESUMEN

BACKGROUND: Drug resistance poses a significant challenge in cancer treatment, particularly as a leading cause of therapy failure. Cisplatin, the primary drug for lung adenocarcinoma (LUAD) chemotherapy, shows effective treatment outcomes. However, the development of resistance against cisplatin is a major obstacle. Therefore, identifying genes resistant to cisplatin and adopting personalized treatment could significantly improve patient outcomes. METHODS: By examining transcriptome data of cisplatin-resistant LUAD cells from the GEO database, 181 genes associated with cisplatin resistance were identified. Using univariate regression analysis, random forest and multivariate regression analyses, two prognostic genes, E2F7 and FAM83A, were identified. This study developed a prognostic model utilizing E2F7 and FAM83A as key indicators. The Cell Counting Kit 8 assay, Transwell assay, and flow cytometry were used to detect the effects of E2F7 on the proliferation, migration, invasiveness and apoptosis of A549/PC9 cells. Western blotting was used to determine the effect of E2F7 on AKT/mTOR signaling pathway. RESULTS: This study has pinpointed two crucial genes associated with cisplatin resistance, E2F7 and FAM83A, and developed a comprehensive model to assist in the diagnosis, prognosis, and evaluation of relapse risk in LUAD. Analysis revealed that patients at higher risk, according to these genetic markers, had elevated levels of immune checkpoints (PD-L1 and PD-L2). The prognostic and diagnosis values of E2F7 and FAM83A were further confirmed in clinical data. Furthermore, inhibiting E2F7 in lung cancer cells markedly reduced their proliferation, migration, invasion, and increased apoptosis. In vivo experiments corroborated these findings, showing reduced tumor growth and lung metastasis upon E2F7 suppression in lung cancer models. CONCLUSION: Our study affirms the prognostic value of a model based on two DEGs, offering a reliable method for predicting the success of tumor immunotherapy in patients with LUAD. The diagnostic and predictive model based on these genes demonstrates excellent performance. In vitro, reducing E2F7 levels shows antitumor effects by blocking LUAD growth and progression. Further investigation into the molecular mechanisms has highlighted E2F7's effect on the AKT/mTOR signaling pathway, underscoring its therapeutic potential. In the era of personalized medicine, this DEG-based model promises to guide clinical practice.

19.
Phys Chem Chem Phys ; 26(15): 12084-12096, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38586994

RESUMEN

Superlattices constructed with the wide-band-gap semiconductor ZnO and magnetic oxide FeO, both in the wurtzite structure, have been investigated using spin-polarized first-principles calculations. The structural, electronic and magnetic properties of the (ZnO)n/(w-FeO)n superlattices were studied in great detail. Two different interfaces in the (ZnO)n/(w-FeO)n superlattices were identified and they showed very different magnetic and electronic properties. Local symmetry-driven interfacial magnetization and electronic states can arise from different Fe/Zn distributions at different interfaces or spin ordering of Fe in the superlattice. The local symmetry-driven interfacial magnetization and electronic states, originating either from different Fe/Zn distribution across interfaces I and II, or by spin ordering of Fe in the superlattice, can be identified. It was also found that, in the case of the ferromagnetic phase, the electrons are more delocalized for the majority spin but strongly localized for the minority spin, which resulted in interesting spin-dependent transport properties. Our results will pave the way for designing novel spin-dependent electronic devices through the construction of superlattices from semiconductors and multiferroics.

20.
Arch Pharm (Weinheim) ; : e2400131, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678538

RESUMEN

Three series of N-{[4-([1,2,4]triazolo[1,5-α]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl]methyl}acetamides (14a-d, 15a-n, and 16a-f) were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. The target compounds showed high ALK5 inhibitory activity and selectivity. The half maximal inhibitory concentration (IC50) for phosphorylation of ALK5 of 16f (9.1 nM), the most potent compound, was 2.7 times that of the clinical candidate EW-7197 (vactosertib) and 14 times that of the clinical candidate LY-2157299. The selectivity index of 16f against p38α mitogen-activated protein kinase was >109, which was much higher than that of positive controls (EW-7197: >41, and LY-2157299: 4). Furthermore, a molecular docking study provided the interaction modes between the target compounds and ALK5. Compounds 14c, 14d, and 16f effectively inhibited the protein expression of α-smooth muscle actin (α-SMA), collagen I, and tissue inhibitor of metalloproteinase 1 (TIMP-1)/matrix metalloproteinase 13 (MMP-13) in transforming growth factor-ß-induced human umbilical vein endothelial cells. Compounds 14c and 16f showed especially high activity at low concentrations, which suggests that these compounds could inhibit myocardial cell fibrosis. Compounds 14c, 14d, and 16f are potential preclinical candidates for the treatment of cardiac fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...