Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 496
1.
EBioMedicine ; 105: 105185, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38848648

BACKGROUND: In order to prevent the emergence and spread of future variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing vaccines capable of stopping transmission is crucial. The SARS-CoV-2 vaccine NDV-HXP-S can be administered live intranasally (IN) and thus induce protective immunity in the upper respiratory tract. The vaccine is based on Newcastle disease virus (NDV) expressing a stabilised SARS-CoV-2 spike protein. NDV-HXP-S can be produced as influenza virus vaccine at low cost in embryonated chicken eggs. METHODS: The NDV-HXP-S vaccine was genetically engineered to match the Omicron variants of concern (VOC) BA.1 and BA.5 and tested as an IN two or three dose vaccination regimen in female mice. Furthermore, female mice intramuscularly (IM) vaccinated with mRNA-lipid nanoparticles (LNPs) were IN boosted with NDV-HXP-S. Systemic humoral immunity, memory T cell responses in the lungs and spleens as well as immunoglobulin A (IgA) responses in distinct mucosal tissues were characterised. FINDINGS: NDV-HXP-S Omicron variant vaccines elicited high mucosal IgA and serum IgG titers against respective SARS-CoV-2 VOC in female mice following IN administration and protected against challenge from matched variants. Additionally, antigen-specific memory B cells and local T cell responses in the lungs were induced. Host immunity against the NDV vector did not interfere with boosting. Intramuscular vaccination with mRNA-LNPs was enhanced by IN NDV-HXP-S boosting resulting in improvement of serum neutralization titers and induction of mucosal immunity. INTERPRETATION: We demonstrate that NDV-HXP-S Omicron variant vaccines utilised for primary immunizations or boosting efficiently elicit humoral and cellular immunity. The described induction of systemic and mucosal immunity has the potential to reduce infection and transmission. FUNDING: This work was partially funded by the NIAIDCenters of Excellence for Influenza Research and Response (CEIRR) and by the NIAID Collaborative Vaccine Innovation Centers and by institutional funding from the Icahn School of Medicine at Mount Sinai. See under Acknowledgements for details.

2.
J Exp Med ; 221(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38935072

Germinal centers (GC) are microanatomical lymphoid structures where affinity-matured memory B cells and long-lived bone marrow plasma cells are primarily generated. It is unclear how the maturation of B cells within the GC impacts the breadth and durability of B cell responses to influenza vaccination in humans. We used fine needle aspiration of draining lymph nodes to longitudinally track antigen-specific GC B cell responses to seasonal influenza vaccination. Antigen-specific GC B cells persisted for at least 13 wk after vaccination in two out of seven individuals. Monoclonal antibodies (mAbs) derived from persisting GC B cell clones exhibit enhanced binding affinity and breadth to influenza hemagglutinin (HA) antigens compared with related GC clonotypes isolated earlier in the response. Structural studies of early and late GC-derived mAbs from one clonal lineage in complex with H1 and H5 HAs revealed an altered binding footprint. Our study shows that inducing sustained GC reactions after influenza vaccination in humans supports the maturation of responding B cells.


B-Lymphocytes , Germinal Center , Influenza Vaccines , Vaccination , Germinal Center/immunology , Humans , Influenza Vaccines/immunology , B-Lymphocytes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Antibodies, Viral/immunology , Antibodies, Monoclonal/immunology , Adult , Female , Male , Middle Aged
3.
Front Immunol ; 15: 1394114, 2024.
Article En | MEDLINE | ID: mdl-38873610

Introduction: Several effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and implemented in the population. However, the current production capacity falls short of meeting global demand. Therefore, it is crucial to further develop novel vaccine platforms that can bridge the distribution gap. AVX/COVID-12 is a vector-based vaccine that utilizes the Newcastle Disease virus (NDV) to present the SARS-CoV-2 spike protein to the immune system. Methods: This study aims to analyze the antigenicity of the vaccine candidate by examining antibody binding and T-cell activation in individuals infected with SARS-CoV-2 or variants of concern (VOCs), as well as in healthy volunteers who received coronavirus disease 2019 (COVID-19) vaccinations. Results: Our findings indicate that the vaccine effectively binds antibodies and activates T-cells in individuals who received 2 or 3 doses of BNT162b2 or AZ/ChAdOx-1-S vaccines. Furthermore, the stimulation of T-cells from patients and vaccine recipients with AVX/COVID-12 resulted in their proliferation and secretion of interferon-gamma (IFN-γ) in both CD4+ and CD8+ T-cells. Discussion: The AVX/COVID-12 vectored vaccine candidate demonstrates the ability to stimulate robust cellular responses and is recognized by antibodies primed by the spike protein present in SARS-CoV-2 viruses that infected patients, as well as in the mRNA BNT162b2 and AZ/ChAdOx-1-S vaccines. These results support the inclusion of the AVX/COVID-12 vaccine as a booster in vaccination programs aimed at addressing COVID-19 caused by SARS-CoV-2 and its VOCs.


Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Lymphocyte Activation , Newcastle disease virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Newcastle disease virus/immunology , COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology , Lymphocyte Activation/immunology , Adult , Female , Male , Middle Aged , T-Lymphocytes/immunology , BNT162 Vaccine/immunology , Vaccination , Genetic Vectors/genetics , Genetic Vectors/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism
4.
mBio ; : e0108524, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38899870

Monoclonal antibodies (mAbs) are an attractive therapeutic platform for the prevention and treatment of influenza virus infection. There are two major glycoproteins on the influenza virion surface: hemagglutinin (HA), which is responsible for viral attachment and entry, and neuraminidase (NA), which mediates viral egress by enzymatically cleaving sialic acid to release budding particles from the host cell surface. Broadly neutralizing antibodies (bNAbs) that target the conserved HA central stalk region, such as CR9114, can inhibit both viral entry and egress. More recently, broadly binding mAbs that engage and inhibit the NA active site, such as 1G01, have been described to prevent viral egress. Here, we engineered bispecific antibodies (bsAbs) that combine the variable domains of CR9114 and 1G01 into a single molecule and evaluated if simultaneous targeting of two different glycoproteins improved antiviral properties in vitro and in vivo. Several CR9114/1G01 bsAbs were generated with various configurations of the two sets of the variable domains ("bsAb formats"). We found that combinations employing the addition of a single-chain variable fragment in the hinge region of an IgG scaffold had the best properties in terms of expression, stability, and binding. Further characterization of selected bsAbs showed potent neutralizing and egress-inhibiting activity. One such bsAb ("hSC_CR9114_1G01") provided higher levels of prophylactic protection from mortality and morbidity upon challenge with H1N1 than either of the parental mAbs at low dosing (1 mg/kg). These results highlight the potential use of bsAbs that simultaneously target HA and NA as new influenza immunotherapeutics. IMPORTANCE: Infection by the influenza virus remains a global health burden. The approaches utilized here to augment the activity of broadly protective influenza virus antibodies may lead to a new class of immunotherapies with enhanced activity.

5.
Front Immunol ; 15: 1425842, 2024.
Article En | MEDLINE | ID: mdl-38915410

Vaccination against influenza virus can reduce the risk of influenza by 40% to 60%, they rely on the production of neutralizing antibodies specific to influenza hemagglutinin (HA) ignoring the neuraminidase (NA) as an important surface target. Vaccination with standardized NA concentration may offer broader and longer-lasting protection against influenza infection. In this regard, we aimed to compare the potency of a NA displayed on the surface of a VLP with a soluble NA. The baculovirus expression system (BEVS) and the novel virus-free Tnms42 insect cell line were used to express N2 NA on gag-based VLPs. To produce VLP immunogens with high levels of purity and concentration, a two-step chromatography purification process combined with ultracentrifugation was used. In a prime/boost vaccination scheme, mice vaccinated with 1 µg of the N2-VLPs were protected from mortality, while mice receiving the same dose of unadjuvanted NA in soluble form succumbed to the lethal infection. Moreover, NA inhibition assays and NA-ELISAs of pre-boost and pre-challenge sera confirm that the VLP preparation induced higher levels of NA-specific antibodies outperforming the soluble unadjuvanted NA.


Antibodies, Viral , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Vaccines, Virus-Like Particle , Animals , Neuraminidase/immunology , Neuraminidase/genetics , Influenza Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/administration & dosage , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Female , Mice, Inbred BALB C , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Vaccine Efficacy , Humans , Vaccination/methods
6.
Cell Host Microbe ; 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38889725

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.

7.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690733

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , COVID-19/blood , Male , Longitudinal Studies , SARS-CoV-2/immunology , Female , Middle Aged , Aged , Adult , Cytokines/blood , Cytokines/immunology , Multiomics
8.
Sci Transl Med ; 16(747): eadl1722, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748773

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Neutralization Tests , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/blood , COVID-19/virology , Mice , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cricetinae , Antibodies, Viral/blood , Antibodies, Viral/immunology , Disease Models, Animal
9.
J Infect Dis ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38743692

BACKGROUND: Several influenza vaccine candidates aim to elicit antibodies against the conserved hemagglutinin stalk domain. Understanding the protective mechanism of these antibodies, which mediate broad neutralization and Fc-mediated functions, following seasonal vaccination is critical. METHODS: Plasma samples were obtained from a subset of pregnant women living with or without HIV-1 enrolled in a randomised trial (138 trivalent inactivated vaccine [TIV] and 145 placebo recipients). Twenty-three influenza-illness cases were confirmed within 6 months postpartum. We measured H1 stalk-specific antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and cellular cytotoxicity (ADCC) at enrolment and 1-month post-vaccination. The association between these Fc-mediated functions and protection against influenza-illness following vaccination was examined using multiple logistic regression analysis and risk reduction thresholds were defined by the score associated with the lowest odds of influenza-illness. RESULTS: Amongst TIV and placebo recipients, lower H1 stalk-specific ADCP and ADCD activity was detected for participants with confirmed influenza compared with individuals without confirmed influenza-illness 1-month post-vaccination. Pre-existing ADCP scores ≥250 reduced the odds of A/H1N1 infection (odds ratio 0.11; p=0.01) with an 83% likelihood of risk reduction. Following TIV, ADCD scores of ≥25 and ≥15 significantly reduced the odds against A/H1N1 (0.10; p=0.01) and non-group 1 (0.06; p=0.0004) influenza virus infections, respectively. These ADCD scores were associated with >84% likelihood of risk reduction. H1 stalk-specific ADCC potential was not associated with protection against influenza-illness. CONCLUSION: H1 stalk-specific ADCD correlates with protection against influenza-illness following influenza vaccination during pregnancy. These findings provide insight into the protective mechanisms of HA stalk antibodies.

10.
EBioMedicine ; 104: 105153, 2024 Jun.
Article En | MEDLINE | ID: mdl-38805853

BACKGROUND: The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS: We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS: Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION: Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING: This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).


Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Immunity, Cellular , Influenza Vaccines , Influenza, Human , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Antibodies, Viral/immunology , Female , Adult , Male , T-Lymphocytes/immunology , Immunization, Secondary , Interferon-gamma/metabolism , Nucleoproteins/immunology , Young Adult , Influenza A virus/immunology
11.
J Virol ; 98(6): e0062624, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38747601

Highly pathogenic avian influenza viruses of the H5N1 clade 2.3.4.4b were detected in North America in the winter of 2021/2022. These viruses have spread across the Americas, causing morbidity and mortality in both wild and domestic birds as well as some mammalian species, including cattle. Many surveillance programs for wildlife as well as commercial poultry operations have detected these viruses. In this study, we conducted surveillance of avian species in the urban environment in New York City. We detected highly pathogenic H5N1 viruses in six samples from four different bird species and performed whole-genome sequencing. Sequencing analysis showed the presence of multiple different genotypes. Our work highlights that the interface between animals and humans that may give rise to zoonotic infections or even pandemics is not limited to rural environments and commercial poultry operations but extends into the heart of our urban centers.IMPORTANCEWhile surveillance programs for avian influenza viruses are often focused on migratory routes and their associated stop-over locations or commercial poultry operations, many bird species-including migratory birds-frequent or live in urban green spaces and wetlands. This brings them into contact with a highly dense population of humans and pets, providing an extensive urban animal-human interface in which the general public may have little awareness of circulating infectious diseases. This study focuses on virus surveillance of this interface, combined with culturally responsive science education and community outreach.


Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Animals , New York City/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/classification , Genotype , Humans , Birds/virology , Whole Genome Sequencing , Animals, Wild/virology , Poultry/virology , Influenza, Human/virology , Influenza, Human/epidemiology , Genome, Viral
12.
J Infect Dis ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38723107

BACKGROUND: Influenza virus remains a threat to human health, but gaps remain in our knowledge of the humoral correlates of protection against influenza virus A/H3N2, limiting our ability to generate effective, broadly protective vaccines. The role of antibodies against the hemagglutinin (HA) stalk, a highly conserved but immunologically sub-dominant region, has not been established for influenza virus A/H3N2. METHODS: Household transmission studies were conducted in Managua, Nicaragua across three influenza seasons. Household contacts were tested for influenza virus infection using RT-PCR. We compared pre-existing antibody levels against full-length hemagglutinin (FLHA), HA stalk, and neuraminidase (NA) measured by enzyme-linked immunosorbent assay (ELISA), along with HA inhibition assay (HAI) titers, between infected and uninfected participants. RESULTS: A total of 899 individuals participated in household activation, with 329 infections occurring. A four-fold increase in initial HA stalk titers was independently associated with an 18% decrease in the risk of infection (OR=0.82, 95%CI 0.68-0.98, p=0.04). In adults, anti-HA stalk antibodies were independently associated with protection (OR=0.72, 95%CI 0.54-0.95, p=0.02). However, in 0-14-year-olds, anti-NA antibodies (OR=0.67, 95%CI 0.53-0.85, p<0.01) were associated with protection against infection, but anti-HA stalk antibodies were not. CONCLUSIONS: The HA stalk is an independent correlate of protection against A/H3N2 infection, though this association is age dependent. Our results support the continued exploration of the HA stalk as a target for broadly protective influenza vaccines but suggest that the relative benefits may depend on age and influenza virus exposure history.

13.
Curr Protoc ; 4(4): e1024, 2024 Apr.
Article En | MEDLINE | ID: mdl-38578049

The primary mode of transmission for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is infection of the respiratory tract through droplets and/or aerosols. Therefore, immune responses at respiratory mucosal surfaces play a significant role in the prevention of infection. Greater emphasis is now being placed on mucosal immunity induced by exposure to SARS-CoV-2 antigens through infection or vaccination. In concert with cellular immunity, humoral responses at mucosal surfaces, especially the secretory version of immunoglobulin A (sIgA), can be instrumental in preventing respiratory infections. A better understanding of mucosal immune responses can further our knowledge of immunity to SARS-CoV-2 and help inform vaccine design. Here we describe a detailed protocol for an in vitro assay based on the enzyme-linked immunosorbent assay (ELISA) to assess mucosal antibody response to SARS-CoV-2 spike protein in human saliva. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: ELISA measurement of mucosal antibodies to SARS-CoV-2 spike protein in human saliva.


COVID-19 , Spike Glycoprotein, Coronavirus , Viral Vaccines , Humans , SARS-CoV-2 , Antibodies, Viral , Saliva , Antibody Formation , Enzyme-Linked Immunosorbent Assay
14.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664395

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Chiroptera , Ferrets , Influenza A Virus, H9N2 Subtype , Orthomyxoviridae Infections , Virus Replication , Animals , Ferrets/virology , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/physiology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/isolation & purification , Chiroptera/virology , Humans , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Mice , Phylogeny , Influenza, Human/transmission , Influenza, Human/virology , Lung/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood
15.
Vaccine ; 42(14): 3365-3373, 2024 May 22.
Article En | MEDLINE | ID: mdl-38627145

The head domain of the hemagglutinin of influenza viruses plays a dominant role in the antibody response due to the presence of immunodominant antigenic sites that are the main targets of host neutralizing antibodies. For the H1 hemagglutinin, five major antigenic sites defined as Sa, Sb, Ca1, Ca2, and Cb have been described. Although previous studies have focused on defining the hierarchy of the antigenic sites of the hemagglutinin in different human cohorts, it is still unclear if the immunodominance profile of the antigenic sites might change with the antibody levels of individuals or if other demographic factors (such as exposure history, sex, or age) could also influence the importance of the antigenic sites. The major antigenic sites of influenza viruses hemagglutinins are responsible for eliciting most of the hemagglutination inhibition antibodies in the host. To determine the antibody prevalence towards each major antigenic site, we evaluated the hemagglutination inhibition against a panel of mutant H1 viruses, each one lacking one of the "classic" antigenic sites. Our results showed that the individuals from the Stop Flu NYU cohort had an immunodominant response towards the sites Sb and Ca2 of H1 hemagglutinin. A simple logistic regression analysis of the immunodominance profiles and the hemagglutination inhibition titers displayed by each donor revealed that individuals with high hemagglutination inhibition titers against the wild-type influenza virus exhibited higher probabilities of displaying an immunodominance profile dominated by Sb, followed by Ca2 (Sb > Ca2 profile), while individuals with low hemagglutination inhibition titers presented a higher chance of displaying an immunodominance profile in which Sb and Ca2 presented the same level of immunodominance (Sb = Ca2 profile). Finally, while age exhibited an influence on the immunodominance of the antigenic sites, biological sex was not related to displaying a specific immunodominance profile.


Antibodies, Viral , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus , Immunodominant Epitopes , Influenza, Human , Humans , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , Male , Adult , Immunodominant Epitopes/immunology , Middle Aged , Influenza, Human/immunology , Influenza, Human/prevention & control , Young Adult , Age Factors , Sex Factors , Adolescent , Cohort Studies , Aged , Antigens, Viral/immunology , Influenza A Virus, H1N1 Subtype/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
16.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630846

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


COVID-19 , Humans , Aged , Adolescent , Young Adult , Adult , Middle Aged , Aged, 80 and over , SARS-CoV-2 , Prospective Studies , Multiomics , Chemokines
17.
bioRxiv ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38617218

Highly pathogenic avian influenza viruses of the H5N1 clade 2.3.4.4b arrived in North America in the winter of 2021/2022. These viruses have spread across the Americas causing morbidity and mortality in both wild and domestic birds as well as some mammalian species, including cattle. Many surveillance programs in wildlife as well as commercial poultry operations have detected these viruses. Here we conducted surveillance of avian species in the urban environment in New York City. We detected highly pathogenic H5N1 viruses in six samples from four different bird species and performed full genome sequencing. Sequence analysis showed the presence of multiple different genotypes. Our work highlights that the interface between animals and humans that may give rise to zoonotic infections or even pandemics is not limited to rural environments and commercial poultry operations but extends into the heart of our urban centers.

18.
PLoS One ; 19(4): e0292566, 2024.
Article En | MEDLINE | ID: mdl-38564600

Post vaccine immunity following COVID-19 mRNA vaccination may be driven by extrinsic, or controllable and intrinsic, or inherent health factors. Thus, we investigated the effects of extrinsic and intrinsic on the peak antibody response following COVID-19 primary vaccination and on the trajectory of peak antibody magnitude and durability over time. Participants in a longitudinal cohort attended visits every 3 months for up to 2 years following enrollment. At baseline, participants provided information on their demographics, recreational behaviors, and comorbid health conditions which guided our model selection process. Blood samples were collected for serum processing and spike antibody testing at each visit. Cross-sectional and longitudinal models (linear-mixed effects models) were generated to assess the relationship between selected intrinsic and extrinsic health factors on peak antibody following vaccination and to determine the influence of these predictors on antibody over time. Following cross-sectional analysis, we observed higher peak antibody titers after primary vaccination in females, those who reported recreational drug use, younger age, and prior COVID-19 history. Following booster vaccination, females and Hispanics had higher peak titers after the 3rd and 4th doses, respectively. Longitudinal models demonstrated that Moderna mRNA-1273 recipients, females, and those previously vaccinated had increased peak titers over time. Moreover, drug users and half-dose Moderna mRNA-1273 recipients had higher peak antibody titers over time following the first booster, while no predictive factors significantly affected post-second booster antibody responses. Overall, both intrinsic and extrinsic health factors play a significant role in shaping humoral immunogenicity after initial vaccination and the first booster. The absence of predictive factors for second booster immunogenicity suggests a more robust and consistent immune response after the second booster vaccine administration.


COVID-19 , SARS-CoV-2 , Female , Humans , Antibody Formation , COVID-19/prevention & control , 2019-nCoV Vaccine mRNA-1273 , Cross-Sectional Studies , Antibodies , Vaccination , Antibodies, Viral
19.
Cell Rep Med ; 5(3): 101474, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38508136

Subvariants of the Omicron lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) efficiently escape neutralizing antibody responses induced by both vaccination and infection with antigenically distinct variants. Here, we describe the potency and breadth of neutralizing and binding antibody responses against a large panel of variants following an Omicron BA.1 or BA.2 breakthrough infection in a heterogeneous cohort of individuals with diverse exposure histories. Both BA.1 and BA.2 breakthrough infections significantly boost antibody levels and broaden antibody reactivity. However, this broader immunity induced by BA.1 and BA.2 breakthrough infections does not neutralize Omicron BQ and XBB subvariants efficiently. While these subvariants are not neutralized well by post-breakthrough sera, suggesting escape, binding non-neutralizing antibody responses are sustained. In summary, our data suggest that while BA.1 and BA.2 breakthrough infections broaden the immune response to SARS-CoV-2 spike, the induced neutralizing antibody response is still outpaced by viral evolution.


Antibody Formation , COVID-19 , Humans , Breakthrough Infections , SARS-CoV-2 , Antibodies, Neutralizing
...