Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ocul Surf ; 34: 30-37, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871216

RESUMEN

PURPOSE: Ocular surface hydration is critical for eye health and its impairment can lead to dry eye disease. Extracellular calcium-sensing receptor (CaSR) is regulator of ion transport in epithelial cells expressing cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. CFTR is also a major ion channel in ocular surface epithelia, however the roles of CaSR in ocular surface are not well studied. This study aims to investigate expression and functional roles of CaSR in ocular surface. METHODS: CaSR immunostaining was performed in mouse and human cornea and conjunctiva. Ocular surface potential difference (OSPD) and tear fluid volume measurements were performed in mice with topically applied cinacalcet (CaSR activator) and NPS-2143 (CaSR inhibitor). RESULTS: CaSR is expressed in corneal and conjunctival epithelia of mice and humans. Topically administered CaSR activator cinacalcet inhibits cAMP agonist forskolin-induced Cl- secretion and CFTR activity up to 90 %. CaSR inhibitor NPS-2143 stimulates CFTR-mediated Cl- secretion in mouse ocular surface, after which cAMP agonist forskolin had minimal additional secretory effects. Single dose NPS-2143 treatment (as an eye drop) increases tear fluid volume in mice by ∼60 % compared to vehicle treatment. NPS-2143 effect on tear volume lasts at least 8 h after single dose. CONCLUSIONS: CaSR is a key regulator of ocular surface ion transport and CaSR inhibition promotes Cl- and tear secretion in the ocular surface. If they are found to be effective in in dry eye models, CaSR inhibitors (currently in clinical development) can potentially be repurposed as novel prosecretory treatments for dry eye disease.

2.
Invest Ophthalmol Vis Sci ; 65(5): 15, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717426

RESUMEN

Purpose: Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFß) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFß signaling ameliorated ASD, supporting a role for the TGFß pathway in disease pathogenesis. Here, we tested whether altered TGFß signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods: To test the role of TGFß signaling in glaucoma-relevant phenotypes, we genetically reduced TGFß signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFß ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results: Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFß receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions: Our results suggest that elevated TGFß signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.


Asunto(s)
Colágeno Tipo IV , Glaucoma , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Ratones , Segmento Anterior del Ojo/metabolismo , Segmento Anterior del Ojo/patología , Colágeno Tipo IV/metabolismo , Colágeno Tipo IV/genética , Modelos Animales de Enfermedad , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patología , Presión Intraocular/fisiología , Ratones Endogámicos C57BL , Mutación , Nervio Óptico/patología , Nervio Óptico/metabolismo , Enfermedades del Nervio Óptico/metabolismo , Enfermedades del Nervio Óptico/genética , Fenotipo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/fisiología , Microscopía con Lámpara de Hendidura , Tomografía de Coherencia Óptica , Tonometría Ocular , Factor de Crecimiento Transformador beta/metabolismo
4.
Nat Commun ; 15(1): 12, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195585

RESUMEN

Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.


Asunto(s)
Quirópteros , Diabetes Mellitus , Humanos , Animales , Páncreas , Riñón , Células Epiteliales
5.
Invest Ophthalmol Vis Sci ; 64(4): 30, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37097227

RESUMEN

Purpose: The unfolded protein response (UPR) is triggered when the protein folding capacity of the endoplasmic reticulum (ER) is overwhelmed and misfolded proteins accumulate in the ER, a condition referred to as ER stress. IRE1α is an ER-resident protein that plays major roles in orchestrating the UPR. Several lines of evidence implicate the UPR and its transducers in neurodegenerative diseases, including retinitis pigmentosa (RP), a group of inherited diseases that cause progressive dysfunction and loss of rod and cone photoreceptors. This study evaluated the contribution of IRE1α to photoreceptor development, homeostasis, and degeneration. Methods: We used a conditional gene targeting strategy to selectively inactivate Ire1α in mouse rod photoreceptors. We used a combination of optical coherence tomography (OCT) imaging, histology, and electroretinography (ERG) to assess longitudinally the effect of IRE1α deficiency in retinal development and function. Furthermore, we evaluated the IRE1α-deficient retina responses to tunicamycin-induced ER stress and in the context of RP caused by the rhodopsin mutation RhoP23H. Results: OCT imaging, histology, and ERG analyses did not reveal abnormalities in IRE1α-deficient retinas up to 3 months old. However, by 6 months of age, the Ire1α mutant animals showed reduced outer nuclear layer thickness and deficits in retinal function. Furthermore, conditional inactivation of Ire1α in rod photoreceptors accelerated retinal degeneration caused by the RhoP23H mutation. Conclusions: These data suggest that IRE1α is dispensable for photoreceptor development but important for photoreceptor homeostasis in aging retinas and for protecting against ER stress-mediated photoreceptor degeneration.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Animales , Ratones , Envejecimiento , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Degeneración Retiniana/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico
6.
bioRxiv ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36824791

RESUMEN

Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we used integrative single-cell sequencing on insectivorous and frugivorous bat kidneys and pancreases and identified key cell population, gene expression and regulatory element differences associated with frugivorous adaptation that also relate to human disease, particularly diabetes. We found an increase in collecting duct cells and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the frugivore kidney. In the frugivorous pancreas, we observed an increase in endocrine and a decrease in exocrine cells and differences in genes and regulatory elements involved in insulin regulation. Combined, our work provides novel insights into frugivorous adaptation that also could be leveraged for therapeutic purposes.

7.
Stem Cell Reports ; 18(3): 706-719, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36827976

RESUMEN

Loss of function (LoF) of TAR-DNA binding protein 43 (TDP-43) and mis-localization, together with TDP-43-positive and hyperphosphorylated inclusions, are found in post-mortem tissue of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those carrying LoF variants in the progranulin gene (GRN). Modeling TDP-43 pathology has been challenging in vivo and in vitro. We present a three-dimensional induced pluripotent stem cell (iPSC)-derived paradigm-mature brain organoids (mbOrg)-composed of cortical-like-astrocytes (iA) and neurons. When devoid of GRN, mbOrgs spontaneously recapitulate TDP-43 mis-localization, hyperphosphorylation, and LoF phenotypes. Mixing and matching genotypes in mbOrgs showed that GRN-/- iA are drivers for TDP-43 pathology. Finally, we rescued TDP-43 LoF by adding exogenous progranulin, demonstrating a link between TDP-43 LoF and progranulin expression. In conclusion, we present an iPSC-derived platform that shows striking features of human TDP-43 proteinopathy and provides a tool for the mechanistic modeling of TDP-43 pathology and patient-tailored therapeutic screening for FTD and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Granulinas/genética , Granulinas/metabolismo , Progranulinas/genética , Progranulinas/metabolismo , Astrocitos/metabolismo , Mutación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Encéfalo/metabolismo
8.
Cell Rep ; 36(5): 109463, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348156

RESUMEN

Specificity and timing of synapse disassembly in the CNS are essential to learning how individual circuits react to neurodegeneration of the postsynaptic neuron. In sensory systems such as the mammalian retina, synaptic connections of second-order neurons are known to remodel and reconnect in the face of sensory cell loss. Here we analyzed whether degenerating third-order neurons can remodel their local presynaptic connectivity. We injured adult retinal ganglion cells by transiently elevating intraocular pressure. We show that loss of presynaptic structures occurs before postsynaptic density proteins and accounts for impaired transmission from presynaptic neurons, despite no evidence of presynaptic cell loss, axon terminal shrinkage, or reduced functional input. Loss of synapses is biased among converging presynaptic neuron types, with preferential loss of the major excitatory cone-driven partner and increased connectivity with rod-driven presynaptic partners, demonstrating that this adult neural circuit is capable of structural plasticity while undergoing neurodegeneration.


Asunto(s)
Red Nerviosa/patología , Heridas y Lesiones/patología , Animales , Femenino , Presión Intraocular , Luz , Masculino , Ratones , Terminales Presinápticos/patología , Células Bipolares de la Retina/patología , Células Ganglionares de la Retina/patología , Sinapsis/patología
9.
Nat Commun ; 12(1): 4877, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385434

RESUMEN

Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10-6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Glaucoma/fisiopatología , Presión Intraocular/fisiología , Malla Trabecular/fisiopatología , Factores de Transcripción/metabolismo , Animales , Humor Acuoso/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Glaucoma/genética , Glaucoma/metabolismo , Células HEK293 , Humanos , Presión Intraocular/genética , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq/métodos , Malla Trabecular/metabolismo , Factores de Transcripción/genética
10.
Cell Rep ; 31(10): 107730, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32521255

RESUMEN

Loss of primary neuronal inputs inevitably strikes every neural circuit. The deafferented circuit could propagate, amplify, or mitigate input loss, thus affecting the circuit's output. How the deafferented circuit contributes to the effect on the output is poorly understood because of lack of control over loss of and access to circuit elements. Here, we control the timing and degree of rod photoreceptor ablation in mature mouse retina and uncover compensation. Following loss of half of the rods, rod bipolar cells mitigate the loss by preserving voltage output. Such mitigation allows partial recovery of ganglion cell responses. We conclude that rod death is compensated for in the circuit because ganglion cell responses to stimulation of half of the rods in an unperturbed circuit are weaker than responses after death of half of the rods. The dominant mechanism of such compensation includes homeostatic regulation of inhibition to balance the loss of excitation.


Asunto(s)
Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Vías Visuales/fisiopatología , Animales , Ratones
11.
Cell Rep ; 27(7): 2171-2183.e5, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091454

RESUMEN

Resilience of neural circuits has been observed in the persistence of function despite neuronal loss. In vision, acuity and sensitivity can be retained after 50% loss of cones. While neurons in the cortex can remodel after input loss, the contributions of cell-type-specific circuits to resilience are unknown. Here, we study the effects of partial cone loss in mature mouse retina where cell types and connections are known. At first-order synapses, bipolar cell dendrites remodel and synaptic proteins diminish at sites of input loss. Sites of remaining inputs preserve synaptic proteins. Second-order synapses between bipolar and ganglion cells remain stable. Functionally, ganglion cell spatio-temporal receptive fields retain center-surround structure following partial cone loss. We find evidence for slower temporal filters and expanded receptive field surrounds, derived mainly from inhibitory inputs. Surround expansion is absent in partially stimulated control retina. Results demonstrate functional resilience to input loss beyond pre-existing mechanisms in control retina.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/metabolismo , Sinapsis/metabolismo , Animales , Ratones , Ratones Transgénicos , Células Fotorreceptoras Retinianas Conos/patología , Células Ganglionares de la Retina/patología , Sinapsis/patología
12.
Am J Neurodegener Dis ; 8(1): 1-15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906671

RESUMEN

Parkinson disease (PD) is a neurodegenerative disease with motor as well as non-motor symptoms, including gastrointestinal dysfunction. In humans, these precede the motor symptoms by decades. Previously developed and characterized transgenic mice expressing the mutant human α-synuclein gene (SNCA) (either A53T or A30P), but not the endogenous mouse Snca, serve as models for familial PD. These animals demonstrate both robust abnormalities in enteric nervous system (ENS) function as well as synuclein-immunoreactive aggregates in ENS ganglia by 3 months of age, recapitulating early gastrointestinal abnormalities seen before the gait impairment characteristics of human and murine PD. Posiphen is a translational inhibitor of α-synuclein that targets the 5' untranslated region (UTR) of SNCA mRNA and could be a potential drug for the treatment of PD. However, its efficacy in ameliorating symptoms of PD has not yet been evaluated. Here, we used these transgenic mouse models to investigate the efficacy of Posiphen in reversing the gastrointestinal dysfunction. We show that Posiphen normalizes the colonic motility of both transgenic mouse models, although it did not affect the Whole Gut Transit Time (WGTT). Pharmacokinetics studies revealed that Posiphen is more abundant in the brain than in blood, in agreement with its lipophilicity, and the main metabolite is N8-NorPosiphen, a molecule with similar properties as Posiphen. The brain Posiphen levels necessary to effect optimal function were calculated and compared with efficacious brain levels from previous studies, showing that a 2-3 mM concentration of Posiphen and metabolites is sufficient for functional efficacy. Finally, 10 mg/kg Posiphen reduced α-synuclein levels in the gut of hSNCAA53T mice treated for twenty-one weeks, while 50 and 65 mg/kg Posiphen reduced α-synuclein levels in the brain of hSNCAA53T mice treated for twenty-one days. In conclusion, this is the first study showing the preclinical efficacy of Posiphen in normalizing the colonic motility in mouse models of gastrointestinal dysfunction in early PD. This result is in agreement with the ability of Posiphen to reach the nervous system, and its mechanism of action, the translational inhibition of α-synuclein expression. These significant findings support further development of Posiphen as a drug for the treatment of PD.

13.
JCI Insight ; 2(12)2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28614796

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease with devastating clinical manifestations. In PD, neuronal death is associated with intracellular aggregates of the neuronal protein α-synuclein known as Lewy bodies. Although the cause of sporadic PD is not well understood, abundant clinical and pathological evidence show that misfolded α-synuclein is found in enteric nerves before it appears in the brain. This suggests a model in which PD pathology originates in the gut and spreads to the central nervous system via cell-to-cell prion-like propagation, such that transfer of misfolded α-synuclein initiates misfolding of native α-synuclein in recipient cells. We recently discovered that enteroendocrine cells (EECs), which are part of the gut epithelium and directly face the gut lumen, also possess many neuron-like properties and connect to enteric nerves. In this report, we demonstrate that α-synuclein is expressed in the EEC line, STC-1, and native EECs of mouse and human intestine. Furthermore, α-synuclein-containing EECs directly connect to α-synuclein-containing nerves, forming a neural circuit between the gut and the nervous system in which toxins or other environmental influences in the gut lumen could affect α-synuclein folding in the EECs, thereby beginning a process by which misfolded α-synuclein could propagate from the gut epithelium to the brain.

14.
JCI Insight ; 1(10)2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27525310

RESUMEN

Homeostasis of the gastrointestinal (GI) tract is controlled by complex interactions between epithelial and immune cells and the resident microbiota. Here, we studied the role of Wnt signaling in GI homeostasis using Disheveled 1 knockout (Dvl1-/-) mice, which display an increase in whole gut transit time. This phenotype is associated with a reduction and mislocalization of Paneth cells and an increase in CD8+ T cells in the lamina propria. Bone marrow chimera experiments demonstrated that GI dysfunction requires abnormalities in both epithelial and immune cells. Dvl1-/- mice exhibit a significantly distinct GI microbiota, and manipulation of the gut microbiota in mutant mice rescued the GI transit abnormality without correcting the Paneth and CD8+ T cell abnormalities. Moreover, manipulation of the gut microbiota in wild-type mice induced a GI transit abnormality akin to that seen in Dvl1-/- mice. Together, these data indicate that microbiota manipulation can overcome host dysfunction to correct GI transit abnormalities. Our findings illustrate a mechanism by which the epithelium and immune system coregulate gut microbiota composition to promote normal GI function.

15.
Toxicol Rep ; 2: 504-511, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25859428

RESUMEN

The protein α -synuclein is considered central to the pathogenesis of Parkinson disease (PD) on genetic and histopathological grounds. It is widely expressed in fetal life and continues to be highly expressed in adult neural tissues, red blood cells and platelets, while the remainder of adult tissues are reported to have little or no expression. Despite cellular and molecular evidence for a role in neuronal function including synaptic vesicle trafficking, neurotransmitter release, mitochondrial function, lipid metabolism, neurogenesis, neuroprotection, and neuromelanin biosynthesis, mice ablated for the gene encoding α -synuclein (Snca) have little or no neurological phenotype. Thus, nearly 20 years of intensive study have yet to reveal conclusively what the normal function of this highly abundant protein is in the nervous system. Interestingly, α -synuclein has also been shown to have enzymatic activity as a ferrireductase capable of reducing Fe+3 to Fe+2. Given its abundant expression in red blood cells, we set out to explore the role of α -synuclein in converting chemically-induced Fe+3 methemoglobin to normal Fe+2 hemoglobin. Initial in vivo experiments with the potent methemoglobin inducer, para-aminopropiophenone and its active metabolite, 4-hydroxy para-aminopropiophenone, demonstrated significantly greater and more prolonged methemoglobinemia in Snca-/- mice compared to Snca+/+ mice. In vitro experiments with red blood cells, however, and in vivo experiments in genetically engineered mouse strains that differ in their α -synuclein expression in various tissues, including the nervous system, red blood cells and liver, revealed that contrary to the initial hypothesis, a lack of expression of α -synuclein in red blood cells did not correlate with higher levels or more prolonged duration of methemoglobinemia. Instead, the greater sensitivity to chemically induced methemoglobinemia correlated with the absence of hepatic α -synuclein expression. We have uncovered a new and robust whole-animal phenotype in mice lacking α -synuclein that reflects its hitherto unrecognized role in xenobiotic detoxification.

16.
Brain ; 137(Pt 12): 3235-47, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25351739

RESUMEN

The involvement of the protein α-synuclein (SNCA) in the pathogenesis of Parkinson's disease is strongly supported by the facts that (i) missense and copy number mutations in the SNCA gene can cause inherited Parkinson's disease; and (ii) Lewy bodies in sporadic Parkinson's disease are largely composed of aggregated SNCA. Unaffected heterozygous carriers of Gaucher disease mutations have an increased risk for Parkinson's disease. As mutations in the GBA gene encoding glucocerebrosidase (GBA) are known to interfere with lysosomal protein degradation, GBA heterozygotes may demonstrate reduced lysosomal SNCA degradation, leading to increased steady-state SNCA levels and promoting its aggregation. We have created mouse models to investigate the interaction between GBA mutations and synucleinopathies. We investigated the rate of SNCA degradation in cultured primary cortical neurons from mice expressing wild-type mouse SNCA, wild-type human SNCA, or mutant A53T SNCA, in a background of either wild-type Gba or heterozygosity for the L444P GBA mutation associated with Gaucher disease. We also tested the effect of this Gaucher mutation on motor and enteric nervous system function in these transgenic animals. We found that human SNCA is stable, with a half-life of 61 h, and that the A53T mutation did not significantly affect its half-life. Heterozygosity for a naturally occurring Gaucher mutation, L444P, reduced GBA activity by 40%, reduced SNCA degradation and triggered accumulation of the protein in culture. This mutation also resulted in the exacerbation of motor and gastrointestinal deficits found in the A53T mouse model of Parkinson's disease. This study demonstrates that heterozygosity for a Gaucher disease-associated mutation in Gba interferes with SNCA degradation and contributes to its accumulation, and exacerbates the phenotype in a mouse model of Parkinson's disease.


Asunto(s)
Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Mutación/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Animales , Modelos Animales de Enfermedad , Enfermedad de Gaucher/complicaciones , Expresión Génica , Genotipo , Heterocigoto , Ratones de la Cepa 129 , Ratones Transgénicos , Enfermedad de Parkinson/complicaciones , Fenotipo , alfa-Sinucleína/metabolismo
17.
Neurosci Lett ; 563: 96-100, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24486885

RESUMEN

Aggregated α-synuclein is a predominant constituent of Lewy bodies, the intracellular protein aggregates seen in Parkinson's disease. While most α-synuclein in the nervous system is unphosphorylated, the majority of α-synuclein in Lewy bodies is phosphorylated at serine 129 (S129). We developed transgenic mice expressing human SNCA with either a phosphomimic (S129D) or a non-phosphorylatable (S129A) mutation, on a mouse Snca knockout background. Transgenic lines with each mutation expressing the human α-synuclein protein at levels ranging from 0.3 to 1.9 fold of endogenous mouse protein were chosen to avoid toxic overexpression effects. We previously demonstrated an altered distribution of presynaptic vesicles in Snca knockout mice, as well as enhanced interaction between presynaptic cytoskeletal proteins and α-synuclein when phosphorylated at S129 or carrying an S129D mutation. We therefore examined α-synuclein's synaptic localization and the distribution of presynaptic vesicles in these mutants. In addition, we evaluated the transgenic lines for reduced colonic motility, an early marker of α-synuclein pathology, and α-synuclein aggregates. No abnormalities were detected in mice expressing either phosphorylation mutant protein as their only α-synuclein protein. These results suggest the S129A and S129D mutations have no obvious effect on α-synuclein function.


Asunto(s)
Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Colon/inervación , Colon/fisiopatología , Sistema Nervioso Entérico/fisiopatología , Femenino , Motilidad Gastrointestinal , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Masculino , Ratones Transgénicos , Mutación , Fosforilación , Sinapsis/metabolismo , alfa-Sinucleína/genética
18.
Gastroenterology ; 141(2): 565-75, 575.e1-4, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21689654

RESUMEN

BACKGROUND & AIMS: Transient receptor potential ankyrin (TRPA) 1, an excitatory ion channel expressed by sensory neurons, mediates somatic and visceral pain in response to direct activation or noxious mechanical stimulation. Although the intestine is routinely exposed to irritant alimentary compounds and inflammatory mediators that activate TRPA1, there is no direct evidence for functional TRPA1 receptors on enteric neurons, and the effects of TRPA1 activation on intestinal function have not been determined. We characterized expression of TRPA1 by enteric neurons and determined its involvement in the control of intestinal contractility and transit. METHODS: TRPA1 expression was characterized by reverse-transcription polymerase chain reaction and immunofluorescence analyses. TRPA1 function was examined by Ca(2+) imaging and by assays of contractile activity and transit. RESULTS: We detected TRPA1 messenger RNA in the mouse intestine and TRPA1 immunoreactivity in enteric neurons. The cecum and colon had immunoreactivity for neuronal TRPA1, but the duodenum did not. TRPA1 immunoreactivity was also detected in inhibitory motoneurons and descending interneurons, cholinergic neurons, and intrinsic primary afferent neurons. TRPA1 activators, including cinnamaldehyde, allyl isothiocyanate (AITC), and 4-hydroxynonenal, increased [Ca(2+)](i) in myenteric neurons. These were reduced by a TRPA1 antagonist (HC-030031) or deletion of Trpa1. TRPA1 activation inhibited contractility of the segments of colon but not stomach or small intestine of Trpa1(+/+) but not Trpa1(-/-) mice; this effect was reduced by tetrodotoxin or N(G)-nitro-l-arginine methyl ester. Administration of AITC by gavage did not alter gastric emptying or small intestinal transit, but luminal AITC inhibited colonic transit via TRPA1. CONCLUSIONS: Functional TRPA1 is expressed by enteric neurons, and activation of neuronal TRPA1 inhibits spontaneous neurogenic contractions and transit of the colon.


Asunto(s)
Vaciamiento Gástrico/fisiología , Motilidad Gastrointestinal/fisiología , Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Neuronas Aferentes/metabolismo , ARN Mensajero/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/fisiología , Acroleína/análogos & derivados , Acroleína/farmacología , Aldehídos/farmacología , Animales , Carbacol/farmacología , Ciego/efectos de los fármacos , Ciego/inervación , Ciego/metabolismo , Ciego/fisiología , Colon/efectos de los fármacos , Colon/inervación , Colon/metabolismo , Colon/fisiología , Duodeno/efectos de los fármacos , Duodeno/inervación , Duodeno/metabolismo , Duodeno/fisiología , Células Epiteliales/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Ganglios/metabolismo , Mucosa Gástrica/metabolismo , Motilidad Gastrointestinal/efectos de los fármacos , Íleon/efectos de los fármacos , Íleon/inervación , Íleon/metabolismo , Íleon/fisiología , Interneuronas/efectos de los fármacos , Mucosa Intestinal/metabolismo , Isotiocianatos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/inervación , Músculo Liso/fisiología , Neuronas Aferentes/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estómago/efectos de los fármacos , Estómago/inervación , Estómago/fisiología , Sustancia P/farmacología , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/agonistas
19.
J Am Soc Nephrol ; 22(3): 443-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21183592

RESUMEN

The Lowe oculocerebrorenal syndrome is an X-linked disorder characterized by congenital cataracts, cognitive disability, and proximal tubular dysfunction. Both this syndrome and Dent Disease 2 result from loss-of-function mutations in the OCRL gene, which encodes a type II phosphatidylinositol bisphosphate 5-phosphatase. Ocrl-deficient mice are unaffected, however, which we believe reflects a difference in how humans and mice cope with the enzyme deficiency. Inpp5b and INPP5B, paralogous autosomal genes that encode another type II phosphoinositide 5-phosphatase in mice and humans, respectively, might explain the distinct phenotype in the two species because they are the closest paralogs to Ocrl and OCRL in their respective genomes yet differ between the two species with regard to expression and splicing. Here, we generated Ocrl(-/-) mice that express INPP5B but not Inpp5b. Similar to the human syndromes, all showed reduced postnatal growth, low molecular weight proteinuria, and aminoaciduria. Thus, we created an animal model for OCRL and Dent Disease 2 tubulopathy by humanizing a modifier paralog in mice already carrying the mutant disease gene.


Asunto(s)
Enfermedad de Dent/genética , Modelos Animales de Enfermedad , Túbulos Renales/fisiopatología , Síndrome Oculocerebrorrenal/genética , Animales , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Monoéster Fosfórico Hidrolasas/genética
20.
J Nutr ; 140(10): 1728-35, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20685892

RESUMEN

We previously detected a membrane-bound, copper-containing oxidase that may be involved in iron efflux in BeWo cells, a human placental cell line. We have now identified a gene encoding a predicted multicopper ferroxidase (MCF) with a putative C-terminal membrane-spanning sequence and high sequence identity to hephaestin (Heph) and ceruloplasmin (Cp), the other known vertebrate MCF. Molecular modeling revealed conservation of all type I, II, and III copper-binding sites as well as a putative iron-binding site. Protein expression was observed in multiple diverse mouse tissues, including placenta and mammary gland, and the expression pattern was distinct from that of Cp and Heph. The protein possessed ferroxidase activity, and protein levels decreased in cellular copper deficiency. Knockdown with small interfering RNA in BeWo cells indicates that this gene represents the previously detected oxidase. We propose calling this new member of the MCF family "zyklopen."


Asunto(s)
Ceruloplasmina/química , Ceruloplasmina/genética , Cobre/análisis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Ceruloplasmina/análisis , Cobre/metabolismo , Femenino , Expresión Génica , Humanos , Hierro/metabolismo , Glándulas Mamarias Animales/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Modelos Moleculares , Especificidad de Órganos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Fragmentos de Péptidos/química , Placenta/enzimología , Embarazo , ARN Interferente Pequeño/farmacología , Ratas , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...