Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 4519, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296758

RESUMEN

Structural variation (SV) is a major cause of genetic disorders. In this paper, we show that low-depth (specifically, 4×) whole-genome sequencing using a single Oxford Nanopore MinION flow cell suffices to support sensitive detection of SV, particularly pathogenic SV for supporting clinical diagnosis. When using 4× ONT WGS data, existing SV calling software often fails to detect pathogenic SV, especially in the form of long deletion, terminal deletion, duplication, and unbalanced translocation. Our new SV calling software SENSV can achieve high sensitivity for all types of SV and a breakpoint precision typically ± 100 bp; both features are important for clinical concerns. The improvement achieved by SENSV stems from several new algorithms. We evaluated SENSV and other software using both real and simulated data. The former was based on 24 patient samples, each diagnosed with a genetic disorder. SENSV found the pathogenic SV in 22 out of 24 cases (all heterozygous, size from hundreds of kbp to a few Mbp), reporting breakpoints within 100 bp of the true answers. On the other hand, no existing software can detect the pathogenic SV in more than 10 out of 24 cases, even when the breakpoint requirement is relaxed to ± 2000 bp.


Asunto(s)
Nanoporos , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN , Programas Informáticos , Translocación Genética , Secuenciación Completa del Genoma
2.
NAR Genom Bioinform ; 4(1): lqac005, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35156024

RESUMEN

HKG is the first fully accessible variant database for Hong Kong Cantonese, constructed from 205 novel whole-exome sequencing data. There has long been a research gap in the understanding of the genetic architecture of southern Chinese subgroups, including Hong Kong Cantonese. HKG detected 196 325 high-quality variants with 5.93% being novel, and 25 472 variants were found to be unique in HKG compared to three Chinese populations sampled from 1000 Genomes (CHN). PCA illustrates the uniqueness of HKG in CHN, and the admixture study estimated the ancestral composition of HKG and CHN, with a gradient change from north to south, consistent with their geological distribution. ClinVar, CIViC and PharmGKB annotated 599 clinically significant variants and 360 putative loss-of-function variants, substantiating our understanding of population characteristics for future medical development. Among the novel variants, 96.57% were singleton and 6.85% were of high impact. With a good representation of Hong Kong Cantonese, we demonstrated better variant imputation using reference with the addition of HKG data, thus successfully filling the data gap in southern Chinese to facilitate the regional and global development of population genetics.

3.
BMC Genomics ; 21(Suppl 6): 500, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33349238

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) enables unbiased detection of pathogens by mapping the sequencing reads of a patient sample to the known reference sequence of bacteria and viruses. However, for a new pathogen without a reference sequence of a close relative, or with a high load of mutations compared to its predecessors, read mapping fails due to a low similarity between the pathogen and reference sequence, which in turn leads to insensitive and inaccurate pathogen detection outcomes. RESULTS: We developed MegaPath, which runs fast and provides high sensitivity in detecting new pathogens. In MegaPath, we have implemented and tested a combination of polishing techniques to remove non-informative human reads and spurious alignments. MegaPath applies a global optimization to the read alignments and reassigns the reads incorrectly aligned to multiple species to a unique species. The reassignment not only significantly increased the number of reads aligned to distant pathogens, but also significantly reduced incorrect alignments. MegaPath implements an enhanced maximum-exact-match prefix seeding strategy and a SIMD-accelerated Smith-Waterman algorithm to run fast. CONCLUSIONS: In our benchmarks, MegaPath demonstrated superior sensitivity by detecting eight times more reads from a low-similarity pathogen than other tools. Meanwhile, MegaPath ran much faster than the other state-of-the-art alignment-based pathogen detection tools (and compariable with the less sensitivity profile-based pathogen detection tools). The running time of MegaPath is about 20 min on a typical 1 Gb dataset.


Asunto(s)
Metagenómica , Programas Informáticos , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenoma , Alineación de Secuencia , Análisis de Secuencia de ADN
4.
BMC Bioinformatics ; 16 Suppl 7: S10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25952019

RESUMEN

BACKGROUND: Short-read aligners have recently gained a lot of speed by exploiting the massive parallelism of GPU. An uprising alterative to GPU is Intel MIC; supercomputers like Tianhe-2, currently top of TOP500, is built with 48,000 MIC boards to offer ~55 PFLOPS. The CPU-like architecture of MIC allows CPU-based software to be parallelized easily; however, the performance is often inferior to GPU counterparts as an MIC card contains only ~60 cores (while a GPU card typically has over a thousand cores). RESULTS: To better utilize MIC-enabled computers for NGS data analysis, we developed a new short-read aligner MICA that is optimized in view of MIC's limitation and the extra parallelism inside each MIC core. By utilizing the 512-bit vector units in the MIC and implementing a new seeding strategy, experiments on aligning 150 bp paired-end reads show that MICA using one MIC card is 4.9 times faster than BWA-MEM (using 6 cores of a top-end CPU), and slightly faster than SOAP3-dp (using a GPU). Furthermore, MICA's simplicity allows very efficient scale-up when multiple MIC cards are used in a node (3 cards give a 14.1-fold speedup over BWA-MEM). SUMMARY: MICA can be readily used by MIC-enabled supercomputers for production purpose. We have tested MICA on Tianhe-2 with 90 WGS samples (17.47 Tera-bases), which can be aligned in an hour using 400 nodes. MICA has impressive performance even though MIC is only in its initial stage of development. AVAILABILITY AND IMPLEMENTATION: MICA's source code is freely available at http://sourceforge.net/projects/mica-aligner under GPL v3. SUPPLEMENTARY INFORMATION: Supplementary information is available as "Additional File 1". Datasets are available at www.bio8.cs.hku.hk/dataset/mica.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Humanos , Lenguajes de Programación
5.
PeerJ ; 2: e421, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24949238

RESUMEN

This paper reports an integrated solution, called BALSA, for the secondary analysis of next generation sequencing data; it exploits the computational power of GPU and an intricate memory management to give a fast and accurate analysis. From raw reads to variants (including SNPs and Indels), BALSA, using just a single computing node with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequencing (∼750 million 100 bp paired-end reads), or just 25 min for 210-fold whole exome sequencing. BALSA's speed is rooted at its parallel algorithms to effectively exploit a GPU to speed up processes like alignment, realignment and statistical testing. BALSA incorporates a 16-genotype model to support the calling of SNPs and Indels and achieves competitive variant calling accuracy and sensitivity when compared to the ensemble of six popular variant callers. BALSA also supports efficient identification of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while maintaining the same fidelity as BAM in variant calling, enables efficient storage and indexing, and facilitates the App development of downstream analyses. BALSA is available at: http://sourceforge.net/p/balsa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...